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Abstract: The Schrödinger equation is one of the most basic equations in quantum mechanics. In this
paper, we study the convergence of symmetric discretization models for the nonlinear Schrödinger
equation in dark solitons’ motion and verify the theoretical results through numerical experiments.
Via the second-order symmetric difference, we can obtain two popular space-symmetric discretization
models of the nonlinear Schrödinger equation in dark solitons’ motion: the direct-discrete model
and the Ablowitz–Ladik model. Furthermore, applying the midpoint scheme with symmetry to the
space discretization models, we obtain two time–space discretization models: the Crank–Nicolson
method and the new difference method. Secondly, we demonstrate that the solutions of the two space-
symmetric discretization models converge to the solution of the nonlinear Schrödinger equation.
Additionally, we prove that the convergence order of the two time–space discretization models is
O(h2 + τ2) in discrete L2-norm error estimates. Finally, we present some numerical experiments to
verify the theoretical results and show that our numerical experiments agree well with the proven
theoretical results.

Keywords: nonlinear Schrödinger equation; second-order symmetric difference; space-symmetric
discretization models; time–space discretization models; Crank–Nicolson method; new difference
method

1. Introduction

The nonlinear Schrödinger equation (NLSE) is one of the most widely used and
completely integrable models in nonlinear physics. It plays a crucial role in many physical
fields [1–3], such as nonlinear optics, solid state physics, quantum mechanics, optical fiber
communication, etc. Therefore, the study of such equations has a profound influence on
the development of modern science.

Consider the original NLSE with the initial condition{
iwt + wxx + a|w|2w = 0,
w(x, 0) = w0(x),

(1)

where a is a real constant, and w(x, t) is a complex-valued function; t ∈ [0, ∞), x ∈ R.
NLSE is a class of nonlinear partial differential equations, which produces a special type
of solution–soliton solution. When a > 0 and |w0(∞)| = 0, NLSE has a bright soliton
solution [4]; when a < 0 and |w0(∞)| = ρ, NLSE has a dark soliton solution [5,6]. The
original NLSE has infinite conserved quantities, including

Q =
∫ +∞

−∞

(
|w|2 − ρ2

)
dx, P =

∫ +∞

−∞
{ww̄x − w̄wx}dx
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where Q, P are charge and momentum, respectively. Utilizing the central difference, we can
approximate the conserved quantities Q, P as follows:

S1 = h ∑
j
(wjw̄j − ρ2), S2 = ∑

j
(wjw̄j+1 − wj+1w̄j)

Zakharov and Shabat et al . obtained the exact solution of the original NLSE Equation (1)
using the inverse scattering transformation method [6]. Here, we need to note that the
above equation is idealized. However, the actual physical system has to consider the
influence of dissipation and other conditions, making it difficult to obtain an analytical
solution. Consequently, many numerical methods have been proposed to simulate such
equations and study the properties of NLSE according to numerical results [7–14], such as
the finite difference, the finite element, or the polynomial approximation.

As is well known, the solitons for the original NLSE maintain their original state after
collision with each other. Based on the above unique properties, many researchers have
devoted themselves to studying conservative schemes for simulation [15–17]. Zhu You-lan
considered an implicit scheme and gave its convergence [18]. Guo Ben-yu [19] gave the
convergence of the Crank–Nicolson method and the prediction correction method under
the error estimations. In [20–24], compact finite difference schemes were proven to be
convergent both in the discrete L2-norm and in the discrete L∞-norm. For the important
space-symmetric discretization models of NLSE, the direct-discrete model (D-D model)
and the Ablowitz–Ladik model (A-L model) can be transformed into the Hamiltonian form,
respectively. In [25,26], Tang et al. used the symplectic methods to simulate a Hamiltonian
system and proved that the solution of the D-D model and the A-L model converged to the
original NLSE.

The previous proofs of convergence were almost always focused on bright solitons’
motion. Given the different parameters and conditions, it is difficult to directly apply
the above convergence to dark solitons’ motion. As a result, there is very little literature
dedicated to proving the convergence of dark solitons’ motion (a < 0, |W0(∞)| = ρ).
Hence, we give proof of convergence for the space-symmetric discretization models of the
original NLSE in dark solitons’ motion, which provides theoretical support for numerical
simulation. The Crank–Nicolson method is actually obtained by applying the midpoint
scheme with symmetry in time to solve the D-D model. Similarly, we apply the midpoint
scheme with symmetry to the A-L model and then propose a new difference scheme (called
the new difference method) of the original NLSE. We show that the new difference method
in dark solitons’ motion is convergent and of high accuracy via numerical experiments.

This paper is organized as follows. In Section 2, we present the space-symmetric
discretization models and the time–space discretization models for the original NLSE in
dark solitons’ motion, and we give some conservation invariants of these models. We
confirm the convergence of the space-symmetric discretization models and the time–space
discretization models in Sections 3 and 4, respectively. In Section 5, we obtain the error order
of the space-symmetric discretization models and the time–space discretization models to
test the convergence. In order to further demonstrate the convergence of these models, we
obtain the numerical solutions of these models and check the preservation of the invariants.
Finally, we give some conclusions in Section 6.

2. Different Discretization Models

In this section, we present the space-symmetric discretization models and the time–space
discretization models for the original NLSE. The direct-discrete model and the Ablowitz–Ladik
model discretize the original NLSE in space, while the Crank–Nicolson method and the
new difference method discretize in time and space simultaneously.

2.1. The Space-Symmetric Discretization Models

We substitute second-order symmetric difference [27] for the second derivative wxx in
space, and then obtain two classical space-symmetric discretization models:



Symmetry 2023, 15, 1229 3 of 16

(1) Direct-discrete model (D-D model):
i
dW(l)

dt
+

W(l+1) − 2W(l) + W(l−1)

h2 + a|W(l)|2W(l) = 0,

W(l)(0) = W0(lh),

(2)

By setting W(l) = p(l) + iq(l), the D-D model can be directly rewritten as a Hamiltonian
system, and it has two invariants, namely the energy and the charge:

Q̃ =
1
2 ∑

l

[∣∣W(l)∣∣2 − ρ2
]
= Q1,

Ẽ =
1

2h2 ∑
l

[
p(l)(p(l+1) − 2p(l) + p(l−1)) + q(l)(q(l+1) − 2q(l)

+ q(l−1)]+ a
4 ∑

l

[(
p(l)
)2

+
(
q(l)
)2 − ρ2

]
= E1

(2) Ablowitz–Ladik model (A-L model):
i
dW(l)

dt
+

W(l+1) − 2W(l) + W(l−1)

h2 +
a
2
|W(l)|2(W(l+1) + W(l−1)) = 0,

W(l)(0) = W0(lh)

(3)

where h is the space step size and W(l)(t) = W(lh, t) for l = · · · ,−1, 0, 1, · · · . The A-L
model has infinite invariants [6], and the first two invariants are [28]

F1 = ∑
l

W(l+1)W̄(l)

F2 =
−ah2

4 ∑
l
(W(l+1))2(W̄(l))2 + 2 ∑

l
W(l+1)W̄(l−1)U(l)

where U(l) = 1− ah2

2 |W(l)|2. The above models can be converted into the Hamiltonian
system and then simulated using the symplectic method [25,28].

2.2. The Time–Space Discretization Models

Applying the midpoint scheme with symmetry [27] to the D-D model and the A-L
model in time, we obtain the following two models: the Crank–Nicolson method and
the new difference method. Before introducing the two models, we give some defini-
tions: the time step size and space step size of these models are τ, h, respectively, and
xj = jh(j = · · · − 1, 0, 1, · · · ), tn = nτ(n = 0, 1 · · ·N).

We write the exact solution of the original NLSE as wn
j = w(xj, tn) and the numerical

solution as Wn
j = W(xj, tn), and define

δtVn
j =

Vn+1
j −Vn

j

τ
, δxVn

j =
Vn

j+1 −Vn
j

h
, δx̄Vn

j =
Vn

j −Vn
j−1

h
,

Vn+ 1
2

j =
Vn+1

j + Vn
j

2
, δ2

xVn
j = δxδx̄Vn

j =
1
h2 (V

n
j+1 − 2Vn

j + Vn
j−1)

Let us define that

(Un, Vn) = h ∑
j

Un
j V̄n

j , ||Vn||2L2
= (Vn, Vn), ||Vn||L∞ = max

j
|Vn

j |,

j = · · · − 1, 0, 1, · · ·

Then, the two difference schemes for the original NLSE are as follows:
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(1) Crank-Nicolson method
iδtWn

j +
1
2

δ2
x(W

n+1
j + Wn

j ) +
a
8
|Wn+1

j + Wn
j |2(Wn+1

j + Wn
j )) = 0

j = · · · − 1, 0, 1, · · · , n = 0, 1 · · ·N

W0
j = W0(xj)

(4)

(2) New difference method
iδtWn

j +
1
2

δ2
x(W

n+1
j + Wn

j ) +
a
2
|Wn+ 1

2
j |2(Wn+ 1

2
j+1 + Wn+ 1

2
j−1 ) = 0

j = · · · − 1, 0, 1, · · · , n = 0, 1 · · ·N

W0
j = W0(xj)

(5)

Note that W n = (· · · , Wn
−1, Wn

0 , Wn
1 , · · · )T , |Wn|2 = diag(· · · , |Wn

−1|2, |Wn
0 |2, |Wn

1 |2,
· · · ). Then, Equation (5) can be rewritten as

iδtWn +
1
2

δ2
x(W

n+1 + Wn) +
a
2
|Wn+ 1

2 |2MWn+ 1
2 = 0, n = 1 · · ·N (6)

where

M =



. . . . . .

. . . 0 1
1 0 1
· · · · · · · · ·

1 0 1

1 0
. . .

. . . . . .


(7)

In the numerical experiments, in order to test the convergence of the numerical
solutions of the above models, we will give the preservation of the conserved quantities’
approximation described in Section 1.

3. The Convergence of the Space-Symmetric Discretization Models

In this section, we give the proof of convergence for the two space-symmetric dis-
cretization models in dark solitons’ motion. Suppose that local item Ml(t) = M(lh, t)
(l = · · · ,−1, 0, 1, · · · ),

Ml(t) = i
dw(l)

dt
+

w(l+1) − 2w(l) + w(l−1)

h2 + a|w(l)|2w(l) (8)

Lemma 1. Suppose that w(x, t) is the solution of the original NLSE; the local item Ml(t)
(l = · · · ,−1, 0, 1, · · · ) of the D-D model is O(h2).

Proof of Lemma 1. w(l)(t) satisfies the original NLSE, so

iw(l)
t + w(l)

xx + a|w(l)|2w(l) = 0

Substituting into Equation (8), we obtain that

Ml(t) = h2
(w(l+1) − 2w(l) + w(l−1)

h4 − w(l)
xx

h2

)
= h2Bl(t)
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According to Taylor’s expansion, w(l+1) − 2w(l) + w(l−1) = h2w(l)
xx + h4

12 w(l)
xxxx +O(h6),

and

Bl =
w(l)

xx + h2

12 w(l)
xxxx + O(h4)

h2 − w(l)
xx

h2 =
w(l)

xxxx
12

+ O(h2) (9)

Thus, the local item Ml(t) is of order O(h2).

Theorem 1. Assume that W0(x) is the initial condition of the D-D model (a < 0), and all
derivatives of the initial condition with respect to x satisfy the following:

(1) W0(−∞) and W0(+∞) exist, and |W0(±∞)| = ρ,

(2)
∫ +∞

−∞
||W0(x)|2 − ρ2|dx < +∞ and

∫ +∞
−∞ |

∂k

∂xk W0(x)|2dx < +∞

and when h → 0, the solution of the D-D model converges to the solution of the original NLSE
(a < 0).

Proof of Theorem 1. Suppose that w(x, t) is the solution of the original NLSE,
W(l)(t) = W(lh, t) is the solution of D-D model, and w(l)(t) = w(lh, t).

Subtracting Equation (2) from Equation (8), we obtain
i

d
dt
(w(l) −W(l)) +

w(l+1) −W(l+1) − 2(w(l) −W(l)) + w(l−1) −W(l−1)

h2

+a|w(l)|2w(l) − a|W(l)|2W(l) = Ml

(10)

Let error term ε l = w(l) −W(l)(l = · · · ,−1, 0, 1, · · · ), then

i
dε l
dt

+
ε l+1 − 2ε l + ε l−1

h2 + a[(|w(l)|2 + |W(l)|2)ε l + w(l)W(l) ε̄ l ] = Ml (11)

Multiplying Equation (11) by ε̄ l (the complex conjugate of ε l), summing it up for all l, and
taking the equations’ imaginary parts, we can obtain

Im
[
i ∑

l
ε̄ l(

dε l
dt

)
]
+ Im

[
∑

l
ε̄ l ·

ε l+1 − 2ε l + ε l−1

h2

]
+ aIm

[
∑

l
(|w(l)|2 + |W(l)|2)ε l ε̄ l

+ ∑
l

w(l)W(l) ε̄2
l

]
= Im

[
∑

l
Ml ε̄ l

]
Simplifying the above equation, we then have

1
2

d
dt

(
∑

l
|ε l |2

)
= Im

(
∑

l
Ml ε̄ l

)
− aIm ∑

l
w(l)W(l) ε̄2

l (12)

Scaling Equation (12),

(1) Im
(

∑
l

Ml ε̄ l

)
≤∑

l
|Ml ||ε̄ l | ≤

1
2

(
∑

l
h4|Bl |2 + ∑

l
|ε l |2

)
.

(2) Suppose that ||w(t)||∞ = max
l
|w(l)(t)| < C, ||W(t)||∞ = max

l
|W(l)(t)| < C, and we

obtain Im ∑
l

w(l)W(l) ε̄2
l ≤ C2 ∑

l
|ε l |2.

Then , we have (C, C1 are constants)

d
dt

(
∑

l
|ε l |2

)
≤ C2

1h3 + (1− 2aC2)∑
l
|ε l |2 (13)
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Multiplying both sides of the inequality in Equation (13) by space step size h > 0, and
defining ||.|| as ||ε(t)||2 = (ε(t), ε(t)) = h ∑

l
ε l(t) · η̄l(t), we obtain

d
dt
(
||ε||2

)
≤ C2

1h4 + (1− 2aC2)||ε||2 (14)

We can obtain that

||ε(T)||2 ≤
h4C2

1
1− 2aC2 exp

{
T(1− 2aC2)

}
(a < 0) (15)

where 0 ≤ t ≤ T. Thus, given a simulation time T, the solution of the D-D model converges
to the solution of the original NLSE when h→ 0.

Remark 1. Instead of using condition ||W||2 < C to prove the convergence in bright solitons’
motion in [25], we use condition ||W||∞ < C to prove the above conclusion in dark solitons’ motion.

Theorem 2. Suppose that w(x, t) is the solution of the original NLSE in dark solitons’ motion.
(a < 0 and |w0(∞)| = ρ) , W(l)(t) = W(lh, t) is the solution of the A-L model and
w(l)(t) = w(lh, t). One can find that

||ε(T)||2 ≤ exp(CT)Dh4. (16)

Therefore, given a simulation time T, the solution of the A-L model converges to the solution of the
original NLSE (h→ 0).

Proof of Theorem 2. Through a similar method as in [26], we can deduce

||ε(T)||2 = ||w(T)−W(T)||2 ≤ exp(CT)Dh4. (17)

Then, the above conclusion can be obtained.

4. The Convergence of the Time–Space Discretization Models

In this section, we give the proof of convergence for the time–space discretization
models in dark solitons’ motion. Let the truncation error be ϕn

j ; then,

iδtwn
j +

1
2

δ2
x(w

n+1
j + wn

j ) +
a
2
|wn+ 1

2
j |2(wn+ 1

2
j+1 + wn+ 1

2
j−1 ) = ϕn

j ,

j = · · · − 1, 0, 1, · · · , n = 1 · · ·N
(18)

Lemma 2. Set Un, Vn, and the following equalities hold:

(1) (δ2Un, Vn) = −(δUn, δVn) [23];

(2) (Mεn+ 1
2 , εn+ 1

2 )− (Mε̄n+ 1
2 , ε̄n+ 1

2 ) = 0.

Proof of Lemma 2.

(Mεn+ 1
2 , εn+ 1

2 )− (Mε̄n+ 1
2 , ε̄n+ 1

2 )

= ∑
j
(ε

n+ 1
2

j+1 + ε
n+ 1

2
j−1 )ε̄

n+ 1
2

j −∑
j
(ε̄

n+ 1
2

j+1 + ε̄
n+ 1

2
j−1 )ε

n+ 1
2

j

= ∑
j
(ε

n+ 1
2

j+1 + ε
n+ 1

2
j−1 )ε̄

n+ 1
2

j −∑
j
(ε̄

n+ 1
2

j ε
n+ 1

2
j−1 + ε̄

n+ 1
2

j ε
n+ 1

2
j+1 )

= 0
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Lemma 3. The convergence order of the truncation error ||ϕn||2L2
is O(h4 + τ4).

Proof of Lemma 3. For Equation (18), according to Taylor’s expansion,

iδtwn
j = i[

∂

∂t
wn

j +
τ

2!
∂2

∂t2 wn
j + O(τ2)];

1
2

δ2
x(w

n+1
j + wn

j ) =
∂2

∂x2 wn
j +

1
2

τ
∂3

∂t∂x2 wn
j +

1
12

h2 ∂4

∂x4 wn
j +

1
4

τ2 ∂4

∂t2∂x2 wn
j

+ O(h2τ) + O(τ3);

|wn+ 1
2

j |2 = |wn
j |2 + τ Im(wn

j )
∂

∂t
Im(wn

j ) + τRe(wn
j )

∂

∂t
Re(wn

j ) + O(τ2);

(wn+ 1
2

j+1 + wn+ 1
2

j−1 ) = 2wn
j + τ

∂

∂t
wn

j + h2 ∂2

∂x2 wn
j +

1
2

τ2 ∂2

∂t2 wn
j + O(h2τ) + O(τ3);

we obtain

ϕn
j = i[

∂

∂t
wn

j +
τ

2!
∂2

∂t2 wn
j + O(τ2)] + [

∂2

∂x2 wn
j +

1
2

τ
∂3

∂t∂x2 wn
j +

1
12

h2 ∂4

∂x4 wn
j +

1
4
·

τ2 ∂4

∂t2∂x2 wn
j + O(h2τ) + O(τ3)] +

a
2
[|wn

j |2 + τ Im(wn
j )

∂

∂t
Im(wn

j ) + τRe(wn
j )

∂

∂t
Re(wn

j ) + O(τ2)][2wn
j + τ

∂

∂t
wn

j h2 ∂2

∂x2 wn
j +

1
2

τ2 ∂2

∂t2 wn
j + O(h2τ) + O(τ3)]

(19)

From the original NLSE, we can obtain

i
∂

∂t
wn

j +
∂2

∂x2 wn
j + a|wn

j |2wn
j = 0;

i
∂2

∂t2 wn
j +

∂3

∂t∂x2 wn
j + a

∂

∂t
(wn

j |wn
j |2) = 0;

Substituting them into Equation (19), we find that ϕn
j is of order O(h2 + τ2) or ||ϕn||2L2

is of

order O(h4 + τ4).

Lemma 4 (Gronwall’s inequality [29]). Suppose that {ej}∞
j=0 is a sequence of nonnegative real

numbers satisfying

en+1 ≤ α + β
n

∑
j=0

ejτ, n ≥ 0 (20)

where α ≥, β and τ are positive constants. We then have the inequality

en+1 ≤ (α + τβe0)eβ(n+1)τ (21)

Theorem 3. Suppose that wn
j is the solution of the original NLSE in dark solitons’ motion (a < 0

and |w0(∞)| = ρ), and Wn
j is the solution of the Crank–Nicolson method. If the time step τ is

sufficiently small, we can obtain

||εn||2L2
≤ O(h4 + τ4) (22)

Then, the Crank–Nicolson method is of order O(h2 + τ2) in discrete L2-norm error estimates.

Proof of Theorem 3. Using a similar method as in [19], we can prove

||εn||2L2
≤ O(h4 + τ4)

Then, this theorem holds.
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Theorem 4. Suppose that wn
j is the solution of the original NLSE in dark solitons’ motion (a < 0

and |w0(∞)| = ρ), and Wn
j is the solution of the new difference method. If τ is sufficiently small,

we can obtain
||εn||2L2

≤ O(h4 + τ4) (23)

so the new difference method’s convergence order is O(h2 + τ2) in the discrete L2-norm.

Proof of Theorem 4. Let εn = wn −Wn, and wn satisfy

ϕn = iδtwn
j +

1
2

δ2
x(w

n+1
j + wn

j ) +
a
2
|wn+ 1

2 |2Mwn+ 1
2 , n = 1 · · ·N (24)

Subtracting Equation (6) from Equation (24), we obtain (n = 1 · · ·N):

ϕn = iδtε
n +

1
2

δ2
x(ε

n+1 + εn) +
a
2
[
|wn+ 1

2 |2Mwn+ 1
2 − |Wn+ 1

2 |2MWn+ 1
2 ] (25)

Taking the inner product of Equation (25) with εn+ 1
2 , and taking the inner product

of Equation (25)’s conjugate with ε̄n+ 1
2 , and then subtracting the obtained two equations,

we obtain
(ϕn, εn+ 1

2 )− (ϕ̄n, ε̄n+ 1
2 ) = I I1 + I I2 + I I3

where

I I1 =(iδtε
n, εn+ 1

2 )− (−iδt ε̄
n, ε̄n+ 1

2 )

=ih ∑
|εn+1

j |2 − |εn
j |2

τ
= i
||εn+1||2L2

− ||εn||2L2

τ

I I2 =
1
2
[
(δ2

x(ε
n+1 + εn), εn+ 1

2 )− (δ2
x(ε̄

n+1 + ε̄n), ε̄n+ 1
2 )
]
= 0 (From Lemma 2)

I I3 =
a
2
[
(|wn+ 1

2 |2Mwn+ 1
2 , εn+ 1

2 )− (|wn+ 1
2 |2M w̄n+ 1

2 , ε̄n+ 1
2 )− (|Wn+ 1

2 |2MWn+ 1
2 ,

εn+ 1
2 )− (|Wn+ 1

2 |2MW̄n+ 1
2 , ε̄n+ 1

2 )(where εn = wn −Wn)
]

=
a
2
[
((|wn+ 1

2 |2 − |Wn+ 1
2 |2)Mwn+ 1

2 , εn+ 1
2 )− ((|wn+ 1

2 |2 − |Wn+ 1
2 |2)M w̄n+ 1

2 ,

ε̄n+ 1
2 ) + (|Wn+ 1

2 |2Mεn+ 1
2 , εn+ 1

2 )− (|Wn+ 1
2 |2Mε̄n+ 1

2 , ε̄n+ 1
2 )
]

=aiIm((|wn+ 1
2 |2 − |Wn+ 1

2 |2)Mwn+ 1
2 , εn+ 1

2 )

According to (ϕn, εn+ 1
2 )− (ϕ̄n, ε̄n+ 1

2 ) = 2iIm(ϕn, εn+ 1
2 ), it follows that

||εn+1||2L2
− ||εn||2L2

τ
= 2Im(ϕn, εn+ 1

2 )

− aIm((|wn+ 1
2 |2 − |Wn+ 1

2 |2)Mwn+ 1
2 , εn+ 1

2 )

(26)

For the first term on the right side of Equation (26), using the Cauchy–Schwartz
inequality, we obtain

2Im(ϕn, εn+ 1
2 ) ≤ ||ϕn||2L2

+
1
2
(||εn+1||2L2

+ ||εn||2L2
) (27)

For the second term on the right side of Equation (26), we assume that there is a
constant C, causing the exact solution of the original NLSE to meet

||wn||L∞ ≤ C, 0 ≤ n ≤ N (28)
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We can find that

Im((|wn+ 1
2 |2 − |Wn+ 1

2 |2)Mwn+ 1
2 , εn+ 1

2 )

=
1
16

h
J

∑
j=1

[2Re(wn+1
j + wn

j )(ε̄
n+1
j + ε̄n

j )− |εn+1
j + εn

j |2]Im(wn+1
j+1 + wn

j+1

+ wn+1
j−1 + wn

j−1)(ε
n+1
j + εn

j ) ≤ 2h
J

∑
j=1

C2
0(|εn+1

j |2 + |εn
j |2)

≤ 2C2
0(||εn+1||2L2

+ ||εn||2L2
)

(29)

From Equations (26), (27) and (29), we can obtain that

||εn+1||2L2
− ||εn||2L2

≤ τ||ϕn||2L2
+ Cτ(||εn+1||2L2

+ ||εn||2L2
) (30)

where C = −2aC2
0 +

1
2
≥ 0. Since ||ε0||2L2

= 0, then

(1− Cτ)||εn+1||2L2
≤ τ

n

∑
m=0
||ϕm||2L2

+ 2Cτ
n

∑
m=0
||εm||2L2

As τ → 0, Cτ <
1
2

, and according to Lemma 4, we have

||εn||2L2
≤ O(h4 + τ4) (31)

5. Numerical Experiments

In this section, we present the numerical experiments’ results to test the proven
theorems. The desktop computer used was a Lenovo ThinkCenter M8600t-D241 with an
i7-6700 CPU and 16 G RAM. Consider the initial condition of the original NLSE for one
dark soliton

w(x, 0) = ρ
1 + ei2θeλ(x−x0)

1 + eλ(x−x0)
, (32)

where the exact solution is obtained as

w(x, t) = ρeiaρ2t 1 + ei2θeλ(x−x0+η·t)

1 + eλ(x−x0+η·t) . (33)

and λ =
√
−2aρsinθ, η =

√
−2aρcosθ, a = −2, ρ = 0.72, θ = 0.75, x0 = 0.0.

5.1. Errors and Convergence Order

In this subsection, we give the convergence order of the space-symmetric discretization
models and the time–space discretization models via Experiment 1 and Experiment 2.

Experiment 1: We use the midpoint scheme with symmetry to simulate the D-D model and
A-L model, and we choose a fixed minimum time step size τ = 0.0005 in order to reduce the
error caused by the difference in time as much as possible. Then, comparing the solution
of the space-symmetric discretization model with the exact solution in Equation (33) of
the original NLSE, we can obtain error ||ε(T)||2 and the corresponding convergence order
at time t = 1.6 with different space step sizes h = 0.4, 0.2, 0.1, 0.05. Finally, we plot
“log(||ε(T)||2)” with respect to “log(h)” in Figure 1. Tables 1 and 2 indicate that when space
step size h is halved, the error ||ε(T)||2 decreases to 1

16 , or ||ε(T)|| decreases to 1
4 . This

means that the convergence order of the D-D model and the A-L model is O(h2) in the
defined norm, which fits the results of Theorems 1 and 2 very well.



Symmetry 2023, 15, 1229 10 of 16

Table 1. Errors and convergence order of D-D model at time t = 1.6.

h τ ||ε(T)||2× 106 Order

0.4 0.00005 8.804684
0.2 0.00005 0.546416 4.01416
0.1 0.00005 0.034090 4.00359

0.05 0.00005 0.002130 4.00086

Table 2. Errors and convergence order of A-L model at time t = 1.6.

h τ ||ε(T)||2× 104 Order

0.4 0.00005 5.709740
0.2 0.00005 0.354637 4.01251
0.1 0.00005 0.022128 4.00330

0.05 0.00005 0.001382 4.00083
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||0
n ||2 )
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(a) D-D model

-1.4 -1.2 -1 -0.8 -0.6 -0.4

 log(h)

-7

-6

-5

-4

-3

-2

-1

 lo
g(

||0
n ||2 )   y=4x

(b) A-L model
Figure 1. Errors and convergence order at time t = 1.6.

Experiment 2: In order to determine the convergence order of the Crank–Nicolson method
and new difference method, we choose the space step sizes h = 0.4, 0.2, 0.1, 0.05 and the time
step sizes t = 0.008, 0.004, 0.002, 0.001. Then, we can calculate the truncation error ||εn||2L2

,
where ||εn||2L2

= ||wn−Wn||2L2
. Due to h : τ = K (K is fixed), we choose to plot “log(||εn||2L2

)”
with respect to “log(h)” in Figure 2. Tables 3 and 4 and Figure 2 indicate that the convergence
order of the Crank–Nicolson method and the new difference method is O(h2 + τ2) in the
L2-norm, which is also in good agreement with the results of Theorems 3 and 4.

Table 3. Errors and convergence order of Crank–Nicolson method at time t = 1.6.

h τ ||εn||2L2
× 106 Order

0.4 0.008 9.490216
0.2 0.004 0.589315 4.01295
0.1 0.002 0.036771 4.00331

0.05 0.001 0.002297 4.00083
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Table 4. Errors and convergence order of new difference method at time t = 1.6.

h τ ||εn||2L2
× 104 Order

0.4 0.008 5.730127
0.2 0.004 0.355952 4.01223
0.1 0.002 0.022211 4.00323

0.05 0.001 0.001388 4.00082

-1.4 -1.2 -1 -0.8 -0.6 -0.4

log(h)

-9

-8

-7

-6

-5

-4

-3

-2

-1

lo
g(

||0
n ||2 )

  y=4x

(a) Crank–Nicolson method

-1.4 -1.2 -1 -0.8 -0.6 -0.4

 log(h)

-7

-6

-5

-4

-3

-2

-1

 lo
g(

||0
n ||2 )   y=4x

(b) New difference method
Figure 2. Errors and convergence order at time t = 1.6.

5.2. Numerical Simulation of Dark Solitons’ Motion

Experiment 3: We take the spatial interval x ∈ [−125, 75] and temporal interval from t = 0
to t = 40 with two different pairs of integration parameters:

h = 0.4, τ = 0.02. (34)

The numerical solutions for the Crank–Nicolson method and the new difference method
are provided in Figures 3 and 4. From the figures, we can see that the two methods simulate
the motion of the one dark soliton for the original NLSE very well. This means that the
Crank–Nicolson method and the new difference method have strong convergence, which
is consistent with our theories.
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Figure 3. The numerical solutions for the Crank–Nicolson method.

Figure 4. The numerical solutions for the new difference method.

5.3. Preservation of Invariants

In order to further demonstrate the convergence, we check the preservation of the
invariants of these models. We introduce the unique property of the original NLSE men-
tioned in Section 1, which has infinite conserved quantities. If the model can preserve the
conserved quantity of the original NLSE very well, it can be confirmed that the numerical
solution has high accuracy and is thus convergent. Here, we take the space step size h = 0.4
and the time step size τ = 0.02, 0 ≤ t = nτ ≤ 40 and set err(A)(t) = A(t)− A(0) for any
invariant A.

Experiment 4: For the D-D model, we give the preservation of the invariants E1 and Q1.
For the A-L model, the invariants F1 and F2 have both a real part and an imaginary part,
so we present the real and imaginary parts of invariants F1 and F2 ( Fm = FRm + iFIm),
respectively. From Figure 5, both the D-D model and A-L model preserve their invariants
well, which means that their numerical solutions have high accuracy. Thus, we can draw
the conclusion that the space-symmetric discretization models have a good simulation
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effect from the trend of the invariants’ error, which further confirms the convergence of
these models.

Experiment 5: We use the conserved quantities’ approximation S1 and S2 ( Sm = SRm + iSIm)
of the original NLSE to test the convergence of the time–space discretization models. As the
imaginary part SI1 of S1 and the real part SR2 of S2 are zero, we only present the evolution
of the remaining SR1 and SI2. Figure 6 shows that the time–space discretization models can
maintain the conserved quantities’ approximations S1 and S2 well, which further illustrates the
convergence of these models.
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(a) D-D model
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Figure 5. Evolution of invariants by the space-symmetric discretization models.
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(a) Crank–Nicolson method
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(b) New difference method
Figure 6. Evolution of invariants by the time–space discretization models.

6. Conclusions

For dark solitons’ motion (a < 0, |W0(∞)| = ρ), we give two popular space discretiza-
tion models of the original NLSE by second-order symmetric difference: the direct-discrete
model (D-D model) and the Ablowitz–Ladik model (A-L model). On this basis, by applying
the midpoint scheme with symmetry to the space-symmetric discretization models, we
obtain two time–space discretization models: the Crank–Nicolson method and the new
difference method. In dark solitons’ motion, we have proven that the solutions of the
D-D model and the A-L model converge to the solution of the original NLSE when h→ 0,
and their convergence order is O(h2) in the defined norm. Through numerical experi-
ments, we give the convergence order to verify the convergence of the space-symmetric
discretization models. The results of our numerical experiments are in good agreement
with the proven theorems. Furthermore, through theoretical proof, we show that the Crank–
Nicolson method and new difference method are of order O(h2 + τ2) in discrete L2-norm
error estimates. The corresponding numerical experiments indicate the convergence of the
time–space discretization models, which fit the proven theories well.

In future research, we can simulate D-D model and A-L model via numerical methods
with different orders. Comparing the error (for different time step sizes) as a function of the
execution time, we can obtain the appropriate figures of the numerical methods. Moreover,
we will consider simulation through parallel computing. There is little related work, but it
is worth studying.
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