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Abstract: In this article, we develop a new notion that combines fixed-point theory and graph theory:
graphical bipolar b-metric spaces. We demonstrate fixed-point solutions in the framework of graphical
bipolar b-metric spaces, employing covariant and contravariant mapping contractions, which is a
new addition to this end. This article also features illustrative examples drawn from various contexts
to further demonstrate our findings. This is a significant study since it melds ideas from graph theory
with those from generalized bipolar metric spaces, and considers that the symmetry of the edges
of the underlying graphs connected with the enunciated metric spaces is essential in the graphical
metric spaces.

Keywords: directed graph; edge symmetry; fixed point; graphic contraction; graphical bipolar
b-metric space

1. Introduction

Fixed-point theory (FPT), which serves as a bridge between topology and analysis,
is a fundamental and commonly used tool in modern mathematics. It investigates the
circumstances in which a self-map on a non-empty set admits one or more fixed points. FPT
is divided into three categories: metric FPT, topological FPT, and discrete FPT. This field’s
researchers operate in a variety of directions and generalize their findings. Poincare and
Brouwer made substantial contributions to this field, particularly Brouwer’s (topological)
fixed-point theorem. The metric fixed-point theorem rose to popularity due to its appli-
cations in both pure and applied mathematics, particularly in determining the presence
of solutions to nonlinear systems. Banach’s contraction principle, established in 1922, is
a noteworthy achievement in FPT and approximation theory, and it is well respected for
its adaptability.

In FPT, the concept of metric space (MS) and the Banach contraction principle (BCP)
are fundamental. Many scholars have been drawn to metric spaces (MSs) because of
their axiomatic clarity. Several writers have generalized the BCP by using various forms of
contraction mappings in different MSs (for example, [1,2]). Mutlu and Gürdal [3] introduced
the concept of bipolar MS in 2016, which is a type of partial distance that connects MSs

and bipolar MSs. After that, Mutlu and Ozkan generalized coupled fixed-point theorems
in bipolar MSs in 2017 [4]. Furthermore, Gürdal et al. extended fixed-point results to
multivalued mappings in these spaces in 2020 [5]. Researchers interested in an in-depth
analysis may refer to [6,7].

Many researchers are concentrating on the field of graphical FPT, as evidenced by
pioneering articles such as [8–11]. Graph theory has become increasingly significant in the
study of FPT. For solving DEs with infinite delay, Hammad and Zayed [12] used fixed-point
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analysis on b-MS in conjunction with graph symmetry, while Shukla et al. defined graphical
MSs [13], and Chuensupantharat et al. [8] defined graphical b-MSs with accompanying
graphs. In 2019, Younis et al. expanded on previous work by extending these notions
to graphical rectangular b-MSs and controlled-graphical MSs [11,14]. Hooda et al. [15]
provided a good summary of the literature on b-MSs and their generalized forms. The
authors emphasized specific ordered vector spaces derived from the b-MSs and discussed
their relevance in economic research. Then, using a graph endowed with edge symmetry,
they built shared fixed-point outcomes on the vector b-MSs. Popescu [16], on the other hand,
used the graphic contraction principle to deal with a new type of operator and produced
fixed-point theorems that complement prior discoveries in nonlinear operator theory. A
connection is shown between iterative techniques and Ulam–Hyers stability issues in
particular. The illuminating article given in [17] provides a comprehensive explanation of
graphical structures.

Considering the aforementioned discussion, in this article, we establish the notion of
graphical structure in bipolar b-MSs, which is a generalization of bipolar MSs, prompted by
the existing literature and following the work of Younis et al. and Mutlu and Gürdal [3,11].
We demonstrate the correctness of fixed-point theorems by using covariant and contravari-
ant mapping contractions, respectively, and give examples with different cases.

2. Preliminaries

In this part of the article, we will discuss some primary definitions and certain primary
facts necessary for the continued examination of the subject.

Consider Θ = (V(Θ), E(Θ)), a digraph having no parallel edges carrying ∆ as a
diagonal of Ł× Ł, φ 6= Ł. It is assumed that the vertex set (node-set) V(Θ) coincides with
the set Ł, whereas E(Θ) is equipped with all the loops of the graph.

We refer to the graph with symmetric edges as Θ̆ (graph symmetry). With this concept,
we have

E(Θ−1) ∪ E(Θ) = E(Θ̆),

where Θ−1 is a symmetric graph obtained by inverting the edges of θ.
Let us say that the nodes of the digraph Θ are κ and w. A sequence {κj}m

j=0 with
(1 + m) nodes is a path in Θ if the following contends:

κ0 = κ, κm = w such that (κj−1, κj) ∈ E(Θ); j = 1, 2, . . . , m.

If a path connects a node of Θ to every other node, we say Θ is connected. In the
case of a graph, Θ is undirected and possesses a path between its very pair of nodes; we
call Θ to be a weakly connected graph. A graph H = (V(H), E(H)) is considered to be a
sub-graph of Θ if V(H)⊆V(Θ) and E(H)⊆E(Θ).

On the other side, a novel development in graph-metric theory was introduced by
Shukla [13], where the authors used the following notions:

• [κ]lΘ consists of the set of all nodes w ∈Ł making a directed path from κ in Θ with
length l.

• The symbol P represents a relation on Ł with (κPw)Θ representing that there is a path
from κ to w in the graph Θ.

• If w ∈ (κPw)Θ, then w is somewhere on the path (κPw)Θ.

Additionally, we say a sequence {κm} ⊂ Ł is Θ− term-wise-connected (Θ− TWC)
if (κmPκm+1)Θ for all m ∈ N. Unless otherwise specified, all graphs will thereafter be
interpreted as being directed.

Bipolar MSs are a new kind of partial distance introduced by Mutlu and Gürdal [3]. In
particular, they focus on the completeness of MSs and their connection to bipolar MSs. The
following is the formal definition.

Definition 1 ([3]). A bipolar MS is triple (Ł, Ł∗, d) such that Ł, Ł∗ 6= φ and d : Ł× Ł∗ → R+ is
a function satisfying the underlying properties:
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1. If d(∂,ð) = 0, then ∂ = ð, (∂,ð) ∈ Ł× Ł∗.
2. If ∂ = ð, then d(∂,ð) = 0, (∂,ð) ∈ Ł× Ł∗.
3. d(∂,ð) = d(ð, ∂), for all ∂,ð ∈ Ł∩ Ł∗.
4. d(∂1,ð2) ≤ d(∂1,ð1) + d(∂2,ð1) + d(∂2,ð2),

for all ∂1, ∂2 ∈ Ł , ð1,ð2 ∈ Ł∗ and R+ is set of all non-negative real numbers. Then, d is
called a bipolar MS on the pair (Ł, Ł∗).

The following characteristics are listed following the aforementioned definition:

(i) If conditions (2) and (3) are satisfied, d is referred to as a bipolar pseudo-semi metric
on the pair (Ł, Ł∗).

(ii) A bipolar pseudo-metric (BPSM) is one where d is a bipolar pseudo-semi metric meet-
ing (4).

(iii) A bipolar metric is a BPSM d satisfying (2).
A triple (Ł, Ł∗, d), where d is a bipolar (pseudo-(semi)) metric on (Ł, Ł∗), is referred
to as a bipolar (pseudo-(semi)) MS. Specifically, the space is referred to as a disjoint if
Ł∩ Ł∗ = φ; otherwise, it is referred to as a joint. The left and right poles of (Ł, Ł∗, d)
are the sets L and L∗, respectively.

A BPSM typically only considers the distance between points that are in different poles
of space. It also reveals some details about these poles’ internal structure.

Example 1 ([3]). The following are some examples related to the defined terms:

(i) If (Ł, Ł∗) is a (pseudo-(semi)) MS with distance function d, then (Ł, Ł∗, d) is a bipolar (pseudo-
(semi)) MS. Conversely, if (Ł, Ł∗, d) is a bipolar (pseudo-(semi)) MS with Ł = Ł∗, then (Ł, Ł∗)
is also a (pseudo-(semi)) MS.

(ii) In a quasi-MS (Ł, Ł∗), if we define the set Ł∗ = Ł× Ł, then (Ł, Ł∗, d′) is a disjoint bipolar MS,
where d′(∂1, (∂2, Ł)) = d(∂1, ∂2) for every ∂1, ∂2 ∈ Ł. The axiom of regularity requires that
the sets Ł and Ł∗ be disjoint.

(iii) Let Ł be a set, and d be a pseudo-semimetric on Ł with the property that Ł∩ P(Ł) = ∅. The
point-to-set distance function d′ : Ł× P(Ł)→ R+ is a bipolar pseudo-semimetric on the pair
(Ł, P(Ł)).

(iv) Consider the nonempty sets Ł and Ł∗, a pseudo-MS (Z, ρ), and a function f : Ł ∪ Ł∗ → Z.
The function d : Ł× Ł∗ → R+ defined as d(∂,ð) = ρ( f (∂), f (ð)) represents a BPSM on
(Ł, Ł∗). If Ł and Ł∗ are normed spaces, then d(∂,ð) = |||∂|| − ||ð||| denotes a BPSM on
(Ł, Ł∗).

(v) Let C represent the set of all functions, f : R→ [1, 3], and d : C×R→ R+ can be defined
as d( f , ∂) = f (∂). The space (C,R, d) is a disjoint bipolar MS.

Definition 2 ([4]). Let (Ł1, Ł∗1) and (Ł2, Ł∗2) be two sets and consider a mapping T : Ł1 ∪ Ł∗1 ⇒
Ł2 ∪ Ł∗2 ; then, T is called a covariant (CoVM) if T fulfills the underlying property:

T(Ł1) ⊆ Ł2 and T(Ł∗1) ⊆ Ł∗2 .

On the other hand, T is called a contravariant mapping (CnVM) if the following condition
is met:

T(Ł1) ⊆ Ł∗2 and T(Ł∗1) ⊆ Ł2.

Such types of mappings are denoted by T : (Ł1, Ł∗1)� (Ł2, Ł∗2). One should take care that d1
and d2 are bipolar MSs on (Ł1, Ł∗1) and (Ł2, Ł∗2), respectively.

Definition 3 ([5]). Suppose (Ł, Ł∗, d) is a bipolar MS. A point κ ∈ Ł ∪ Ł∗ is the left point if
κ ∈ Ł, the right point if κ ∈ Ł∗ and a central point if κ ∈ Ł ∩ Ł∗. A sequence (∂n) on Ł is the
left sequence and (ðn) on Ł∗ is the right sequence. A left or right sequence is simply a sequence in
(Ł, Ł∗, d). A sequence (κn) is said to be convergent to a point κ; if (κn) is the left sequence and κ
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is the right point, then lim
n→∞

d(κn, κ) = 0. Similarly, if (κn) is the right sequence and κ is the left

point, then lim
n→∞

d(κ, κn) = 0. A sequence (∂n,ðn) ∈ Ł× Ł∗, is said to be a bi-sequence (BC) on

(Ł, Ł∗, d). If both sequences (∂n) and (ðn) converge, then the BC is said to be bi-convergent, and if
both sequences converge to the same point κ ∈ Ł∩ Ł∗, then BC is said to be bi-convergent. Every
bi-convergent BC in (Ł, Ł∗, d) is a Cauchy BC, and every convergent BC is bi-convergent.

Definition 4 ([3]). Let (Ł1, Ł∗1 , d1) and (Ł2, Ł∗2 , d2) be a bipolar MS. A mapping T is continuous
if it is left continuous at each point ∂ ∈ Ł1 and right continuous at each point ð ∈ Ł∗1 . A CnVM

T : (Ł1, Ł∗1) � (Ł2, Ł∗2) is continuous if and only if it is continuous as a CoVM T : (Ł1, Ł∗1) ⇒
(Ł2, Ł∗2).

It can be seen from Definition 3 that a covariant or a CnVM is continuous if and only if (∂n)→ ð
on (Ł1, Ł∗1 , d1), implying that T(∂n)→ T(ð) on (Ł2, Ł∗2 , d2).

3. Graphical Bipolar b-MSs

In this section, we introduce the notion of graphical bipolar b-MS (Ł, Ł∗, dΘ) as follows:

Definition 5. Consider a metric dΘ : Ł× Ł∗ → R+, endowed with the graph Θ with Ł , Ł∗ 6= φ
and b ≥ 1, contending the following axioms:

1. If dΘ(∂,ð) = 0, then ∂ = ð.
2. If ∂ = ð, then dΘ(∂,ð) = 0.
3. dΘ(∂,ð) = dΘ(ð, ∂), for all ∂,ð ∈ Ł∩ Ł∗.
4. (∂1Pð2)Θ, ∂2,ð1 ∈ (∂1Pð2)Θ ⇒ dΘ(∂1,ð2) ≤ b[dΘ(∂1,ð1) + dΘ(∂2,ð1) + dΘ(∂2,ð2)],

for all ∂1, ∂2 ∈ Ł and ð1,ð2 ∈ Ł∗ , where (∂,ð) ∈ Ł× Ł∗.
A triplet (Ł, Ł∗, dΘ) is called a graphical bipolar b-MS if dΘ satisfies the postulates (1–4).

Remark 1. It is noteworthy that graphical bipolar b-MS (Ł, Ł∗, dΘ) is the generalization of bipolar
MS (Ł, Ł∗, d) if we take b = 1.

Example 2. Let Ł = {1, 3, 5, 7, 13}, Ł∗ = {2, 4, 5, 7, 15}, and the function dΘ : Ł× Ł∗ → R+ is
defined as

dΘ(∂,ð) =
{

0, if ∂ = ð
min{∂,ð}, otherwise,

where b = 13
4 for all ∂ ∈ Ł, ð ∈ Ł∗ and equipped with graph Θ. The graph Θ = (V(Θ), E(Θ)),

having the set of vertices

V(Θ) = Ł∪ Ł∗ = {1, 2, 3, 4, 5, 7, 13, 15},

and the set of edges given by the following:

E(Θ) = 4∪


(1, 2), (1, 3), (1, 4), (1, 5), (1, 7), (1, 13),
(1, 15), (3, 2), (2, 4), (5, 2), (2, 7), (13, 2),
(2, 15), (3, 4), (3, 5), (3, 7), (3, 13), (3, 15),
(5, 4), (4, 7), (13, 4), (4, 15), (5, 7), (5, 13),

(5, 15), (7, 13), (7, 15), (13, 15).


The corresponding edges of the graph Θ are propounded in Figure 1.
In order to verify that (Ł, Ł∗, dΘ) is graphical bipolar b-MS, we discuss some cases for

validating the underlying inequality of Definition 5.

dΘ(∂1,ð2) ≤ b[dΘ(∂1,ð1) + dΘ(∂2,ð1) + dΘ(∂2,ð2)]. (1)
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Case (i): If we take ∂1 = 13, ∂2 = 1, ð1 = 2, and ð2 = 15, we have

dΘ(13, 15) ≤ b [dΘ(13, 2) + dΘ(1, 2) + dΘ(1, 15)

13 ≤ b (4).

Consequently, for b = 13
4 , (1) holds.

Case (ii): If ∂1 = 1, ∂2 = 13, ð1 = 4, and ð2 = 2, then

dΘ(1, 2) ≤ b [(1, 4) + dΘ(13, 4) + dΘ(13, 2)]

7 ≤ b (7).

This amounts to saying that (1) holds for b = 13
4 .

Case (iii): When ∂1 = 3, ∂2 = 5, ð1 = 2, and ð2 = 4, we find

dΘ(3, 4) ≤ b [dΘ(3, 2) + dΘ(5, 2) + dΘ(5, 4)]

3 ≤ b (6).

Evidently, (1) is valid for b = 13
4 .

For different cases, we adopt the same analysis to infer that (Ł, Ł∗, dΘ) is a graphical bipolar
b-MS with b = 13

4 .

 

13 4 

5 7 

3 15 

1 2 

Figure 1. Underlying graph.

Definition 6. Let f : Ł1 ∪ Ł∗1 → Ł2 ∪ Ł∗2 be a function on pairs of sets (Ł1, Ł∗1) and (Ł2, Ł∗2). If
f (Ł1) ⊆ Ł2 and f (Ł∗1) ⊆ Ł∗2 , f is known as CoVM from (Ł1, Ł∗1) to (Ł2, Ł∗2) and denoted as

f : (Ł1, Ł∗1)⇒ (Ł2, Ł∗2).

If f (Ł1) ⊆ Ł∗2 and f (Ł∗1) ⊆ Ł2, f is known as CnVM from (Ł1, Ł∗1) to (Ł2, Ł∗2) and denoted as

f : (Ł1, Ł∗1)� (Ł2, Ł∗2).

If dΘ1 and dΘ1 are graphical bipolar MSs on (Ł1, Ł∗1) and (Ł2, Ł∗2), respectively, then, we use
the notions

f : (Ł1, Ł∗1 , dΘ1)⇒ (Ł2, Ł∗2 , dΘ2), (CoVM)

and
f : (Ł1, Ł∗1 , dΘ1)� (Ł2, Ł∗2 , dΘ2), (CnVM).
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Definition 7. Let (Ł, Ł∗, dΘ) be a graphical bipolar b-MS:

(i) A point z ∈ Ł∪ Ł∗ is the left point if z ∈ Ł, the right point if z ∈ Ł∗, and a central point if
z ∈ Ł∩ Ł∗.

(ii) A sequence (∂n) on Ł is the left sequence and (ðn) on Ł∗ is the right sequence. A left or right
sequence is simply a sequence in (Ł, Ł∗, dΘ). A sequence (zn) is said to be convergent to a
point z if (zn) is the left sequence and z is a right point; then,

lim
n→∞

dΘ(zn, z) = 0.

Similarly, if (zn) is the right sequence and z is a left point then

lim
n→∞

dΘ(z, zn) = 0.

(iii) A sequence (∂n,ðn) ∈ Ł× Ł∗, is said to be (BC) on (Ł, Ł∗, dΘ). If both sequences (∂n) and
(ðn) converge, then the BC is said to be bi-convergent, and if both sequences converge to the
same point z ∈ Ł∩ Ł∗, then BC is said to be bi-convergent.

(iv) Every bi-convergent BC in (Ł, Ł∗, dΘ) is a Cauchy BC and every convergent BC is bi-
convergent.

(v) A graphical bipolar b-MS is called complete if every Cauchy BC in (Ł, Ł∗, dΘ) is convergent.

Definition 8. Let (Ł1, Ł∗1 , dΘ1) and (Ł2, Ł∗2 , dΘ2) be the graphical bipolar b-MSs:

(i) A mapping f : (Ł1, Ł∗1 , dΘ1)⇒ (Ł2, Ł∗2 , dΘ2) is said to be left continuous at a point ∂0 ∈ Ł1,
if for every ε > 0, there exists δ > 0 such that

dΘ1(∂0,ð) < δ =⇒ dΘ2( f (∂0), f (ð)) < ε for all ð ∈ Ł∗1 .

Similarly, it is right continuous at a point ð0 ∈ Ł∗1 , if for every ε > 0, there exists δ > 0 such
that

dΘ1(∂,ð0) < δ =⇒ dΘ2( f (∂), f (ð0)) < ε for all ∂ ∈ Ł,

and a mapping f is called continuous if it is left continuous at each point ∂ ∈ Ł1 and right
continuous at each point ð ∈ Ł∗1 .

(ii) A mapping f : (Ł1, Ł∗1 , dΘ1)� (Ł2, Ł∗2 , dΘ2) is continuous if it is continuous as a covariant
mapping f : (Ł1, Ł∗1 , dΘ1)⇒ (Ł2, Ł∗2 , dΘ2).
Now, we can say that a CoVM and CnVM are continuous from (Ł1, Ł∗1 , dΘ1) to (Ł2, Ł∗2 , dΘ2) if:

(zn)→ κ on (Ł1, Ł∗1 , dΘ1) implies that ( f (zn))→ f (κ) on (Ł2, Ł∗2 , dΘ2).

4. Main Results

In this section, we will give some fixed-point theorems for CoVMs and CnVMs, satisfying
various contractive conditions in the environment of graphical complete bipolar b-MSs
(Ł, Ł∗, dΘ). We treated the graph Θ as a weighted graph. Let ∂0 ∈ Ł and ð0 ∈ Ł∗ be the
initial values of the BC (∂m,ðm); we say (∂m,ðm) is f−Picards BC ( f − PbS) if ∂m = f ∂m−1
and ðm = fðm−1 for all m ∈ N.

Definition 9. Consider a relation P on Ł×Ł∗ with (∂1Pð2)Θ if there exists a path from ∂1 to ð2 in
Θ. If ∂2,ð1 ∈ (∂1Pð2)Θ, then a BC (∂m,ðm) ∈ Ł× Ł∗ is Θ∗−termwise connected (Θ∗ − TWC)
if (∂mPðm+1) for all ∂ ∈ Ł, ð ∈ Ł∗ , and m ∈ N. Furthermore, we say a graph Θ = (V(Θ), E(Θ))
satisfies the property (P∗) if a Θ∗ − TWC f−Picards BC (∂m,ðm) is bi-convergent in Ł ∩ Ł∗,
which guarantees that there is a limit κ such that ((∂m,ðm), κ) ∈ E(Θ) or (κ, (∂m,ðm)) ∈ E(Θ)
for all m > m0.

Definition 10. Let Θ be a graph containing all the loops associated with graphical bipolar b-MS
(Ł, Ł∗, dΘ). A CoVM f : (Ł, Ł∗, dΘ)⇒ (Ł, Ł∗, dΘ) is said to be Θb−contraction (on Ł∪ Ł∗) on a
graphical bipolar b-MS (Ł, Ł∗, dΘ) if
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(i) For (∂,ð) ∈ E(Θ), the graph is preserved,

( f ∂, fð) ∈ E(Θ), for all ∂ ∈ Ł, ð ∈ Ł∗. (2)

(ii) There exists 0 < γ < b for all ∂ ∈ Ł, and ð ∈ Ł∗ with (∂,ð) ∈ E(Θ) implies

dΘ( f ∂, fð) ≤ γ

b2 dΘ(∂,ð). (3)

Theorem 1. Let f : (Ł, Ł∗, dΘ)⇒ (Ł, Ł∗, dΘ) be a graphical Θb−contraction on a Θ−complete
graphical bipolar metric (Ł, Ł∗, dΘ). If the underneath axioms are contended,

(i) The property (P∗) is asserted by the graph Θ.
(ii) There exists ∂0 ∈ Ł, and ð0 ∈ Ł∗ with ( f ∂0, fð0) ∈ [(∂0,ð0)]

l
Θ for some l ∈ N.

Then, there exists κ ∈ Ł∩ Ł∗ such that f − PbS (∂m,ðm) with the initial value ∂0 ∈ Ł,
and ð0 ∈ Ł∗ is Θ∗ − f WC and bi-converges to both κ and f κ.

Proof. Let ∂0 ∈ Ł and ð0 ∈ Ł∗ such that ( f ∂0, fð0) ∈ [(∂0,ð0)]
l
Θ for some l ∈ N. By taking

∂0 ∈ Ł and ð0 ∈ Ł∗ as initial values of f − PbS (∂m,ðm), there exists a path {(∂j,ðj)}l
j=0,

such that ∂n+1 = f ∂n and ðn+1 = fðn, where (∂j,ðj) ∈ E(Θ) for j = 0, 1, 2 . . . , l. By
using (2), we have ( f ∂j−1, fðj) ∈ E(Θ) for j = 1, 2 . . . , l. This implies that {( f ∂j, fðj)}l

j=0

is a path from ∂2 = f ∂1 = f 2∂0 to ð2 = fð1 = f 2ð0 having length l such that (∂2,ð2) ∈
[(∂1,ð1)]

l
Θ. Continuing this procedure, we conclude that {( f m∂j, f mðj)}l

j=0 is a path from

( f m−1∂0, f m−1ð0) = (∂m,ðm) to ( f m+l∂0, f m+lð0) = (∂m+l ,ðm+l) of length l and hence
(∂m+l ,ðm+l) ∈ [(∂m,ðm)]lΘ for all m ∈ N. This confirms that (∂m,ðm) is a Θ∗ − f WC BC,
which shows that

( f m∂j, f mðj) ∈ E(Θ) for j = 1, 2 . . . , l and m ∈ N.

Utilizing (3), we attain

dΘ( f m∂j, f mðj) ≤
γ

b2 dΘ( f m−1∂j, f m−1ðj)

≤ γ2

b4 dΘ( f m−2∂j, f m−2ðj).

Continuing the same procedure, we conclude that

dΘ( f m∂j, f mðj) ≤
γm

b2m dΘ(∂j,ðj).

Since the BC ( f ∂n, fðn) is a Θ∗ − f WC BC, now, we have to show that (∂n,ðn) is
Cauchy BC in graphical bipolar b-MS (Ł, Ł∗, dΘ) for each positive integer n and m. We have

dΘ(∂n+1,ðn+1) = dΘ( f (∂n), f (ðn))

≤ γ

b2 dΘ(∂n−1,ðn−1)

≤ γ2

b4 dΘ(∂n−2,ðn−2)

...

≤ γn

b2n dΘ(∂0,ð0).
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Furthermore,

dΘ(∂n+1,ðn+2) = dΘ( f (∂n), f (ðn+1))

≤ γ

b2 dΘ(∂n−1,ðn)

≤ γ2

b4 dΘ(∂n−2,ðn−1)

...

≤ γn

b2n dΘ(∂0,ð1).

Now for m ≥ n, we assert

dΘ( f ∂m, fðn) ≤ b[dΘ( f ∂m, fðn+1) + dΘ( f ∂n, fðn+1) + dΘ( f ∂n, fðn)]

≤ b[dΘ( f ∂m, fðn+1) +
γn

b2n dΘ(∂0,ð1) +
γn

b2n dΘ(∂0,ð0)] (4)

≤ bdΘ( f ∂m, fðn+1) +
γn

b2n−1 [dΘ(∂0,ð1) + dΘ(∂0,ð0)].

Furthermore, we can prove that

dΘ( f ∂m, fðn+1) ≤ b[dΘ( f ∂m, fðn+2) + dΘ( f ∂n+1, fðn+2) + dΘ( f ∂n+1, fðn+1)]

≤ b[dΘ( f ∂m, fðn+2) +
γn+1

b2n+2 dΘ(∂0,ð1) +
γn+1

b2n+2 dΘ(∂0,ð0)] (5)

≤ bdΘ( f ∂m, fðn+2) +
γn+1

b2n+1 [dΘ(∂0,ð1) + dΘ(∂0,ð0)].

Similarly, we assert

dΘ( f ∂m, fðm−1) ≤ b[dΘ( f ∂m, fðm) + dΘ( f ∂m−1, fðm) + dΘ( f ∂m−1, fðm−1)]

≤ b[dΘ( f ∂m, fðm) +
γm−1

b2m−2 dΘ(∂0,ð1) +
γm−1

b2m−2 dΘ(∂0,ð0)] (6)

≤ bdΘ( f ∂m, fðn+2) +
γm−1

b2m−3 [dΘ(∂0,ð1) + dΘ(∂0,ð0)].

From the observation of (4)–(6), if we set M = dΘ(∂0,ð1) + dΘ(∂0,ð0), then we have

dΘ( f ∂m, fðn) ≤ bdΘ( f ∂m, fðn+1) +
γn

b2n−1 M

≤ b2dΘ( f ∂m, fðn+2) +
γn

b2n−1 M +
γn+1

b2n+1 M

...

≤ bm−ndΘ( f ∂m, fðm) +
γn

b2n−1 M +
γn+1

b2n+1 M + . . . +
γm−1

b2m−3 M

≤ γn

b2n−1 M +
γn+1

b2n+1 M + . . . +
γm−1

b2m−3 M +
γm

bm+n M

≤ (
γ

b
)n M + (

γ

b
)n+1M + . . . + (

γ

b
)m−1M + (

γ

b
)m M

≤
[
( γ

b )
n M

1− γ
b

]
→ 0,

which shows that (∂n,ðn) is a Cauchy BC. Now, (Ł, Ł∗, dΘ) being a Θ−complete graphical
bipolar b-MS, BC (∂n,ðn) is bi-convergent to κ in Ł ∩ Ł∗. Making use of (i), there exists
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some κ ∈ Ł ∩ Ł∗, n0 ∈ N such that ((∂n,ðn), κ) ∈ E(Θ) and (κ, (∂n,ðn)) ∈ E(Θ) for all
n > n0 and

lim
n→∞

dΘ((∂n,ðn), κ) = 0,

which confirms that BC (∂n,ðn) is bi-convergent to κ. If ((∂n,ðn), κ) ∈ E(Θ), then by
using (3)

dΘ((∂n+1,ðn+1), κ) = dΘ(( f ∂n, fðn), f κ)

≤ γ

b2 dΘ((∂n,ðn), κ),

for all n > n0, which shows that

lim
n→∞

dΘ((∂n+1,ðn+1), κ) = 0.

If (κ, (∂n,ðn)) ∈ E(Θ), a similar argument to that we used above,

lim
n→∞

dΘ(κ, (∂n+1,ðn+1)) = 0,

Hence, BC (∂n,ðn) is bi-convergent to κ and f κ.

To demonstrate that the mapping f has a fixed point, we define the property (Q∗).

Definition 11. Let f : Ł ∪ Ł∗ → Ł ∪ Ł∗ be a mapping on graphical bipolar b-MS (Ł, Ł∗, dΘ).
We say that if the quadruple (Ł, Ł∗, dΘ, f ) meets the property (Q∗) corresponding to two limits
u ∈ Ł∩ Ł∗ and κ ∈ f (Ł∩ Ł∗) of a Θ∗ − TWC f − PbS (∂n,ðn), we have u = κ.

Theorem 2. If all the hypotheses in Theorem 1 are true and we further suppose that the quadruple
(Ł, Ł∗, dΘ, f ) meets the property (Q∗), then f concedes a fixed point.

Remark 2. It is worth noting that in the setting of graphical bipolar b-MS (Ł, Ł∗, dΘ), Theorem 2
is an extended form of BCP. To clarify, we can observe that inequality (3) is more general when
evaluated within the context of graphical bipolar b-MS (Ł, Ł∗, dΘ). This is backed further by
Remark 1. With these facts, it can be readily seen that the remarkable results attributed to Banach
(BCP) and Mutlu and Gürdal [3] are special cases of the Theorem 2.

Proof. Theorem 1 exhibits that f − PbS (∂n,ðn) with initial values ∂0 ∈ Ł, and ð0 ∈ Ł∗

bi-converges to both κ and f κ. Since κ ∈ Ł ∩ Ł∗ and f κ ∈ f (Ł ∩ Ł∗), by hypothesis, we
obtain κ = f κ and f concedes a fixed point.

Below, we will discuss an example related to Theorem 1 with different cases.

Example 3. Let Ł = {2, 4, 6, 8}, Ł∗ = {1, 6, 8, 12}, and the function dΘ : Ł× Ł∗ → R+ is
defined as

dΘ(∂,ð) =
{

0, if ∂ = ð
min{∂,ð}, otherwise,

for all ∂ ∈ Ł, ð ∈ Ł∗ and equipped with graph Θ. The graph Θ = (V(Θ), E(Θ)), having the set of
vertices

V(Θ) = Ł∪ Ł∗ = {1, 2, 4, 6, 8, 12},

and the set of edges obtained from the vertex set V(Θ), is obtained as

E(Θ) = 4∪


(2, 4), (2, 6), (2, 8), (2, 1), (2, 12),
(4, 6), (4, 8), (4, 1), (4, 12), (6, 8),
(6, 1), (6, 12), (8, 1), (8, 12), (1, 12)

.
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See Figure 2 for further exposition. It is simple to confirm that (Ł, Ł∗, dΘ) is a graphical
bipolar b-MS with b = 2.

 

1 

12 6 

4

2 

2 

8 

Figure 2. Graph related to Examples 3 and 5.

Now, we define a CoVM
f : (Ł, Ł∗, dΘ)⇒ (Ł, Ł∗, dΘ),

with f (Ł) ⊆ Ł and f (Ł∗) ⊆ Ł∗, where

f ∂ = 6, if ∂ ∈ {4, 6}, and fð = 6, if ð ∈ {1, 12},

for all ∂ ∈ Ł and ð ∈ Ł∗.
Furthermore, if ∂ = 4 and ð = 12, we have the following

dΘ( f 4, f 12) ≤ γ

b2 dΘ(4, 12)

dΘ(6, 6) ≤ γ

b2 dΘ(4, 12)

0 ≤ γ

b2 (4).

Again, if ∂ = 4 and ð = 1, we infer

dΘ( f 4, f 1) ≤ γ

b2 dΘ(4, 1)

dΘ(6, 6) ≤ γ

b2 dΘ(4, 1)

0 ≤ γ

b2 (1),

proving that f is a Θb−contraction with b = 2 and γ = 1, where 0 < γ < b. A simple computation
leads us to obtain γ

b2 = 1
4 . This shows that all the assertions of the Theorem 1 are met, and f concedes

a fixed point for all ∂ ∈ Ł and ð ∈ Ł∗, which is 6 ∈ Ł∩ Ł∗.

Below, we will prove a similar result for CnVMs.

Definition 12. Let Θ be a graph containing all the loops associated with graphical bipolar b-MS
(Ł, Ł∗, dΘ). A CnVM f : (Ł, Ł∗, dΘ)� (Ł, Ł∗, dΘ) is said to be a Θ∗b−contraction (on Ł∪ Ł∗) on
a graphical bipolar b-MS (Ł, Ł∗, dΘ) if the following axioms are upheld:
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(i) For (∂,ð) ∈ E(Θ), we have

( f ∂, fð) ∈ E(Θ), for all ∂ ∈ Ł, ð ∈ Ł∗. (7)

(ii) There exists 0 < γ < b for all ∂ ∈ Ł, and ð ∈ Ł∗ with (∂,ð) ∈ E(Θ) implies

dΘ( f ∂, fð) ≤ γ

b2 dΘ(ð, ∂). (8)

Theorem 3. Let f : (Ł, Ł∗, dΘ)� (Ł, Ł∗, dΘ) be a graphical Θ∗b−contraction on a Θ−complete
graphical bipolar b-MS (Ł, Ł∗, dΘ) if the following conditions hold:

(i) Θ exhibits the property (P∗).
(ii) There exists ∂0 ∈ Ł, and ð0 ∈ Ł∗ with ( f ∂0, fð0) ∈ [(∂0,ð0)]

l
Θ for some l ∈ N.

Then, there exists κ ∈ Ł∩ Ł∗ such that f − PbS (∂m,ðm) with the initial value ∂0 ∈ Ł,
ð0 ∈ Ł∗ is Θ∗ − TWC and bi-converges to both κ and f κ.

Proof. Let ∂0 ∈ Ł such that ( f ∂0, fð0) ∈ [(∂0,ð0)]
l
Θ for some l ∈ N. By taking ∂0 ∈ Ł as

the initial values of f − PbS (∂m,ðm), there exists a path {(∂j,ðj)}l
j=0, such that ðn = f ∂n

and ∂n+1 = fðn where (∂j,ðj) ∈ E(Θ) for j = 0, 1, . . . , l. By using (7), we assert that
( f ∂j−1, fðj) ∈ E(Θ) for j = 1, . . . , l. This implies that {( f ∂j, fðj)}l

j=0 is a path from

∂2 = f 2∂1 = f 3∂0 to ð2 = f 2ð1 = f 3ð0 having length l such that (∂2,ð2) ∈ [(∂1,ð1)]
l
Θ. Con-

tinuing this procedure, we conclude that {( f m∂j, f mðj)}l
j=0 is a path from ( f m∂0, f mð0) =

(∂m,ðm) to ( f m+l∂0, f m+lð0) = (∂m+l ,ðm+l) of length l and hence (∂m+1,ðm+1) ∈
[(∂m,ðm)]lΘ for all m ∈ N. This confirms that (∂m,ðm) is a Θ∗ − TWC BC, which shows that

( f m∂j, f mðj) ∈ E(Θ) for j = 1, 2 . . . , l and m ∈ N.

Imposing inequality (8), we infer

dΘ( f m∂j, f mðj) ≤
γ

b2 dΘ( f m−1ðj, f m∂j)

≤ γ2

b4 dΘ( f m−1ðj, f m−1∂j)

=
γ2

b4 dΘ( f m−1∂j, f m−1ðj).

Continuing the same approach, we arrive at the conclusion that

dΘ( f m∂j, f mðj) ≤
γ2m

b4m dΘ(∂j,ðj).

Since the BC (∂n,ðn) is a Θ∗ − TWC BC, it is imperative to prove that (∂n,ðn) is
Cauchy BC in graphical bipolar b-MS (Ł, Ł∗, dΘ). For every positive integer n and m, we
proceed as follows:

dΘ(∂n,ðn) = dΘ( f (ðn−1), f (∂n))

≤ γ

b2 dΘ(∂n,ðn−1)

≤ γ2

b4 dΘ(∂n−1,ðn−1)

...

≤ γ2n

b4n dΘ(∂0,ð0),
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Furthermore,

dΘ(∂n,ðn+1) = dΘ( f (∂n−1), f (ðn))

≤ γ

b2 dΘ(∂n−1,ðn)

...

≤ γ2n

b4n dΘ(∂0,ð1).

Now, for m ≥ n, we obtain

dΘ( f ∂m, fðn) ≤ b[dΘ( f ∂m, fðn+1) + dΘ( f ∂n, fðn+1) + dΘ( f ∂n, fðn)]

≤ b[dΘ( f ∂m, fðn+1) +
γn

b4n dΘ(∂0,ð1) +
γn

b4n dΘ(∂0,ð0)] (9)

≤ bdΘ( f ∂m, fðn+1) +
γn

b4n−1 [dΘ(∂0,ð1) + dΘ(∂0,ð0)].

Moreover,

dΘ( f ∂m, fðn+1) ≤ b[dΘ( f ∂m, fðn+2) + dΘ( f ∂n+1, fðn+2) + dΘ( f ∂n+1, fðn+1)]

≤ b[dΘ( f ∂m, fðn+2) +
γ2(n+1)

b4(n+1)
dΘ(∂0,ð1) +

γ2(n+1)

b4(n+1)
dΘ(∂0,ð0)] (10)

≤ bdΘ( f ∂m, fðn+2) +
γ2(n+1)

b4(n+1)−1
[dΘ(∂0,ð1) + dΘ(∂0,ð0)].

Similarly, we obtain

dΘ( f ∂m, fðm−1) ≤ b[dΘ( f ∂m, fðm) + dΘ( f ∂m−1, fðm) + dΘ( f ∂m−1, fðm−1)]

≤ b[dΘ( f ∂m, fðm) +
γ2(m−1)

b4(m−1)
dΘ(∂0,ð1) +

γ2(m−1)

b4(m−1)
dΘ(∂0,ð0)] (11)

≤ bdΘ( f ∂m, fðm) +
γ2(m−1)

b4(m−1)−1
[dΘ(∂0,ð1) + dΘ(∂0,ð0)].

From the observations (9)–(11), if we set M = dΘ(∂0,ð1) + dΘ(∂0,ð0), we arrive at

dΘ( f ∂m, fðn) ≤ bdΘ( f ∂m, fðn+1) +
γ2n

b4n−1 M

≤ b2dΘ( f ∂m, fðn+2) +
γ2n

b4n−1 M +
γ2(n+1)

b4(n+1)−1
M

...

≤ bm−ndΘ( f ∂m, fðm) +
γ2n

b4n−1 M +
γ2(n+1)

b4(n+1)−1
M + . . . +

γ2(m−1)

b4(m−1)−1
M

≤ bm−n γ2m

b4m M +
γ2n

b4n−1 M +
γ2(n+1)

b4(n+1)−1
M + . . . +

γ2(m−1)

b4(m−1)−1
M

≤ γ2n

b4n−1 M +
γ2(n+1)

b4(n+1)−1
M + . . . +

γ2(m−1)

b4(m−1)−1
M +

γ2m

b3m+n M

≤ 1
b
[(

γ2

b4 )
n M + (

γ2

b4 )
n+1M + . . . + (

γ2

b4 )
m−1M + (

γ2

b4 )
m M]

≤ 1
b

 ( γ2

b4 )
n M

1− ( γ2

b4 )
→ 0

→ 0,

which shows that (∂n,ðn) is a Cauchy BC. Since (Ł, Ł∗, dΘ) is a Θ−complete graphical
bipolar b-MS, then BC (∂n,ðn) is bi-convergent to κ in Ł∩ Ł∗ and from (i) there exists some
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κ ∈ Ł ∩ Ł∗, n0 ∈ N such that ((∂n,ðn), κ) ∈ E(Θ) and (κ, (∂n,ðn)) ∈ E(Θ) for all n > n0
and

lim
n→∞

dΘ((∂n,ðn), κ) = 0,

which confirms that BC (∂n,ðn) is bi-convergent to κ. If ((∂n,ðn), κ) ∈ E(Θ), then by
using (8)

dΘ((∂n+1,ðn+1), κ) = dΘ(( fðn, f ∂n+1), f κ)

≤ γ

b2 dΘ((∂n+1,ðn), κ)

≤ γ2

b4 dΘ((∂n,ðn), κ)

for all n > n0, which shows that

lim
n→∞

dΘ((∂n+1,ðn+1), κ) = 0.

If (κ, (∂n,ðn)) ∈ E(Θ), a similar argument to that we used above,

lim
n→∞

dΘ(κ, ( f ∂n+1, fðn+1)) = 0.

Hence, BC (∂n,ðn) is bi-convergent to κ and f κ.

To demonstrate that mapping f has a fixed point, we employ the attribute (P∗).

Theorem 4. If all the hypotheses are retained in Theorem 3 and we further suppose that the
quadruple (Ł, Ł∗, dΘ, f ) fulfills the property (P∗), then f concedes a fixed point.

Proof. From the Theorem 3, we find that f − PbS (∂n,ðn) with the initial values ∂0 ∈ Ł
bi-converges to both κ and f κ. Since κ ∈ Ł ∩ Ł∗ and f κ ∈ f (Ł ∩ Ł∗), by hypothesis, we
obtain κ = f κ and f concedes a fixed point.

Below, we will discuss an example related to Theorem 3 with different cases.

Example 4. Let Ł = {a, b, c}, Ł∗ = {b, c, d} and dΘ : Ł× Ł∗ → R+ be defined as

dΘ a b c d
a 0 1 2 4
b 1 0 1 2
c 2 1 0 1
d 4 2 1 0

for all ∂ ∈ Ł and ð ∈ Ł∗. For b = 4
3 > 1, it is simple to observe that (Ł, Ł∗, dΘ) is graphical bipolar MS

with the vertex set V(Θ) = Ł∪ Ł∗ and edge set E(Θ) = {(a, b), (a, c), (a, d), (c, b), (b, d), (c, d)},
as shown in Figure 3.

We define a CnVM using the following:

f : (Ł, Ł∗, dΘ)� (Ł, Ł∗, dΘ),

with f (Ł) ⊆ Ł∗ , f (Ł∗) ⊆ Ł such that

f ∂ =

{
c, if ∂ = a,
d, if ∂ = b,

and

fð =

{
b, if ð = b,
c, if ð = d,
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for all ∂ ∈ Ł , ð ∈ Ł∗.

 

 

 

 

   

c 

d b 

a 

Figure 3. Underlying graph linked to Example 4.

The cases below are examined while assuming that γ = 11
10 :

Case (i): When ∂ = a and ð = d, then

dΘ( f a, f d) ≤ γ

b2 dΘ(b, d)

dΘ(c, c) ≤ γ

b2 dΘ(b, d)

0 ≤ γ

b2 (2).

Evidently, the case holds for γ = 11
10 and b = 4

3 .
Case (ii): For ∂ = b and ð = d,

dΘ( f b, f d) ≤ γ

b2 dΘ(b, d)

dΘ(d, c) ≤ γ

b2 dΘ(b, d)

1 ≤ γ

b2 (2).

Hence, Θ∗b−contraction is satisfied for b = 4
3 and γ = 11

10 , where 0 < γ < b. After simple
calculation, we obtain γ

b2 = 0.61875 < 1. This suggests that all the requirements of Theorem 3 are
satisfied, and f concedes a fixed point for all ∂ ∈ Ł and ð ∈ Ł∗, which is b ∈ Ł∩ Ł∗.

Similarly, we can continue Example 3 related to Theorem 1 with CnVM.

Example 5. If we take all the terms and conditions of Example 3 and define a CnVM

f : (Ł, Ł∗, dΘ)� (Ł, Ł∗, dΘ),

with f (Ł) ⊆ Ł∗ and f (Ł∗) ⊆ Ł such that

f ∂ = 1, if ∂ = 6, and fð = 8, if ð ∈ {8, 12},

for all ∂ ∈ Ł and Ł∗ ∈ Ł∗.
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For ∂ = 6 and ð = 12, then

dΘ( f 6, f 12) ≤ γ

b2 dΘ(6, 12)

dΘ(1, 8) ≤ γ

b2 dΘ(6, 12)

1 ≤ γ

b2 (6),

which is true for b = 2 and γ = 1.
Hence, Θ∗b−contraction is satisfied for b = 2 and γ = 1, where 0 < γ < b. With routine

calculations, we obtain γ
b2 = 1

4 , showing that all the requirements of Theorem 3 are met, and f
concedes a fixed point for all ∂ ∈ Ł and ð ∈ Ł∗, which is 8 ∈ Ł∩ Ł∗.

Remark 3. It is important to note that all of the conclusions presented in this article apply equally
to symmetric graphs, or graphs in which edge symmetry exists.

5. Conclusions

Metric spaces and their various generalizations allow us to consider the distances
between points in a set, either classically or non-classically. However, in some situations,
distances might occur between components of two distinct sets compared to between points
of a single set. Distances among the same type of points are either indefinite or unclear
in some circumstances due to a lack of data. Illustrations of these distances abound in
mathematics and science. Some examples include distance within lines and points in a
Euclidean space, suitability measurement of habitats to species, an affinity across a group
of students, and a set of duties, etc. We formalize such distances as the graphical bipolar
b-metric but only examine them isometrically without deeply delving into their topological
aspects. We begin by offering basic definitions and examples of graphical bipolar b-MS,
then explain maps and bi-sequences, investigate the completeness, explore some related
features, and conclude with convergence results, employing covariant and contravariant
mapping contractions in the form of graphs.

With this aim, we instigate a novel notion, termed graphical bipolar b-metric spaces,
which combines graphical analysis and fixed-point theory. We propound fixed-point
results using covariant and contravariant mapping contractions within the context of
graphical bipolar b-metric spaces, a novel study within the field of graphical metric spaces,
considering the symmetry of the edges of the underlying graph. These results are the
first of their kind in the current state of the art. Illustrative examples with appropriate
graphs are provided to demonstrate the findings. These examples help to improve the
comprehension and implementation of the concepts that have been developed.

We offer the following open questions for future developments of this study:

I Can the proposed convergence theorems in this study be generalized to multi-valued
mappings?

I Is it possible to use CnVM and CoVM to obtain the fixed points for Reich-type contractions
in a graph setting?
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