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Abstract: In this article, we present a measurable version of the spectral decomposition theorem for 
a 2 -action on a compact metric space. In the process, we obtain some relationships for a 2 -
action with shadowing property and k -type weak extending property. Then, we introduce a defi-
nition of measure expanding for a 2 -action by using some properties of a Borel measure. We also 
prove one property that occurs whenever a 2 -action is invariantly measure expanding. All of the 
supporting results are necessary to prove the spectral decomposition theorem, which is the main 
result of this paper. More precisely, we prove that if a 2 -action is invariantly measure expanding, 
has shadowing property and has k -type weak extending property, then it has spectral decomposi-
tion. 
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1. Introduction 
The theorem of spectral decomposition had caught the attention of many when it was 

first attained by Smale in 1967 [1]. Then, it was extended by Bowen four years later [2]. 
The ongoing efforts to generalize Smale’s spectral decomposition theorem have led to a 
continuously evolving theorem [3–8]. Aoki was the person who first gave the topological 
version of the spectral decomposition theorem for homeomorphism f  on compact met-
ric spaces [3]. He claimed that expansiveness and shadowing property are conditions for 
spectral decomposition to take place; that is, the set of all non-wandering points ( )fΩ  
can be decomposed into a finite union of closed and invariant subsets ( )( )1

l

ii
f S

=
Ω =   such 

that each restricted homeomorphism on the subset ( )|
iS

f  is topologically transitive. Das 
et al. [4] generalized the spectral decomposition theorem for topologically Anosov home-
omorphisms on noncompact and non-metrizable spaces. 

The shadowing property (or pseudo-orbit tracing property) is the main role of the 
study about stability [9–12]. The theory of shadowing has rapidly grown for the qualita-
tive theory of discrete dynamical systems. Intuitively, a homeomorphism is said to have 
shadowing property if for every 0ε >  there is 0δ >  such that every δ -pseudo orbit 
is being ε  -shadowed by some element. There is abundant research about shadowing 
property (See [13–15]). In addition, there are also other notions of shadowing that have 
been introduced, such as weak shadowing [16], orbital shadowing [17], eventually shad-
owing property [5,18], finite shadowing property [15], periodic shadowing [19,20], etc. 

The concept of expansive is another main key in the spectral decomposition theorem 
[3,4]. The model behind expansiveness is to describe the trajectory of every nearby point 
separate from the initial one in the system [21]. We can observe that expansive is closely 
related to the concept of sensitive dependence on initial conditions. Therefore, expansivity 
manifests the most chaotic scenario in which predictions may have no sense at all [21,22]. 
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1. Introduction

The theorem of spectral decomposition had caught the attention of many when it was
first attained by Smale in 1967 [1]. Then, it was extended by Bowen four years later [2].
The ongoing efforts to generalize Smale’s spectral decomposition theorem have led to a
continuously evolving theorem [3–8]. Aoki was the person who first gave the topological
version of the spectral decomposition theorem for homeomorphism f on compact metric
spaces [3]. He claimed that expansiveness and shadowing property are conditions for
spectral decomposition to take place; that is, the set of all non-wandering points Ω( f )
can be decomposed into a finite union of closed and invariant subsets

(
Ω( f ) = ∪l

i=1Si

)
such that each restricted homeomorphism on the subset

(
f |Si

)
is topologically transitive.

Das et al. [4] generalized the spectral decomposition theorem for topologically Anosov
homeomorphisms on noncompact and non-metrizable spaces.

The shadowing property (or pseudo-orbit tracing property) is the main role of the
study about stability [9–12]. The theory of shadowing has rapidly grown for the qualitative
theory of discrete dynamical systems. Intuitively, a homeomorphism is said to have
shadowing property if for every ε > 0 there is δ > 0 such that every δ-pseudo orbit
is being ε-shadowed by some element. There is abundant research about shadowing
property (See [13–15]). In addition, there are also other notions of shadowing that have been
introduced, such as weak shadowing [16], orbital shadowing [17], eventually shadowing
property [5,18], finite shadowing property [15], periodic shadowing [19,20], etc.

The concept of expansive is another main key in the spectral decomposition theorem [3,4].
The model behind expansiveness is to describe the trajectory of every nearby point separate
from the initial one in the system [21]. We can observe that expansive is closely related to
the concept of sensitive dependence on initial conditions. Therefore, expansivity manifests
the most chaotic scenario in which predictions may have no sense at all [21,22].

Extensive literature about expansive has been developed from many different research
studies. It is natural to consider other notions of expansiveness, such as N-expansive [23],
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G-expansive [24] and pointwise expansive [25]. Some studies have already defined expan-
siveness for flows [26], group actions [27], Zd-actions [28], etc. Morales and Sirvent were
able to develop and introduce a notion of expansivity by using the theory of measures.
They considered the property of having zero measure with respect to a given Borel prob-
ability measure to define the concept of expansive measure for a homeomorphism [21].
Carrasco-Olivera and Morales studied expansive measure for flows [29].

Other than that, Cordeiro et al. [30] defined another notion of expansiveness for a
Borel measure, which is called strongly expansive. Then, they introduced the notion of
strongly measure expansive for a homeomorphism f by characterizing that every Borel
measure is strongly expansive for f . Dong et al. [5] introduced another type of expansive
measure known as measure expanding to develop a measurable version of the spectral
decomposition theorem for a homeomorphism on a compact metric space. They proved
that if a homeomorphism is invariantly measure expanding and eventually has shadowing
property on its chain recurrent set, then the phenomenon of spectral decomposition will
occur. In addition, Lee and Nguyen also defined measure expanding for flows on a
compact metric space and gave a measurable version of the spectral decomposition theorem
specifically for flows [7].

A Zd-action on a topological space is known as a multidimensional discrete dynamical
system, which has been described by the two properties of its mapping. There is also
abundant research about Zd-action in many different kinds of topics (See [28,31–35]). One
of the most interesting results in the study of Zd-action is about the spectral decomposition
theorem. Oprocha developed the spectral decomposition theorem for a Zd-action on a
compact metric space [8]. It was said that a spectral decomposition will take place for
a Zd-action, which has shadowing property, has k-type weak pseudo-orbit extending
property and is expansive. Kim and Lee proved the spectral decomposition theorem for
a Z2-action on a compact metric space [6]. They declared that shadowing property and
expansiveness are the conditions required to admit the spectral decomposition in Z2-action.

The main objective of our study is to give a measurable version of the spectral decom-
position theorem for a Z2-action on a compact metric space. This paper is organized into
sections. Section 2 gives all preliminary definitions required for this article. In Section 3, we
discuss some results that are related to shadowing property and k-type weak extending
property of a Z2-action. In Section 4, we introduce some terms of measure theory for a
Z2-action. Then, we define the concept of measure expanding of a Z2-action, and we prove
an important lemma, which is closely related to the property of measure expanding. In
Section 5, we prove the main theorem of this article, which is the measurable version of the
spectral decomposition theorem for a Z2-action on a compact metric space.

2. Preliminary Definitions

In this section, we begin with some basic notions and properties that are necessary for
this paper. Let (X, ρ) be a compact metric space. We define ρ(a, B) for any point a ∈ X and
any subset B ⊂ X as

ρ(a, B) = inf
b∈B

ρ(a, b)

Let Ur(x) be an open ball with radius r > 0 centered at x ∈ X. We let e1 = (1, 0)
and e2 = (0, 1) be the standard canonical basis such that every n ∈ Z2 can be expressed
as n = (n1, n2) = n1e1 + n2e2 where n1, n2 ∈ Z. We let k ∈ {1, 2, 3, 4}, associated to
k′ =

(
k′1, k′2

)
∈ {0, 1}2 such that

k = 1 +
2

∑
i=1

k′i2
i−1

Then, we say that x >k y for x, y ∈ Z2 and k ∈ {1, 2, 3, 4} if (−1)k′i xi > (−1)k′i yi for
i ∈ {1, 2} [6,8]. We find that the relation ‘>k’ on Z2 is transitive through this lemma below.
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Lemma 1. For any k ∈ {1, 2, 3, 4}, the k-type inequality ‘>k’ on Z2 has transitive relation.

Proof. Let k ∈ {1, 2, 3, 4} and k′ =
(
k′1, k′2

)
such that k = 1 + ∑2

i=1 k′i2
i−1. Assume that ‘>k’

is a relation on Z2 such that u >k v whenever (−1)k′i ui > (−1)k′i vi for each i ∈ {1, 2}. Let
x = (x1, x2), y = (y1, y2) and z = (z1, z2). Suppose that x >k y and y >k z. Then,

(−1)k′i xi > (−1)k′i yi

and
(−1)k′i yi > (−1)k′i zi

for each i ∈ {1, 2}. Since (−1)k′i xi > (−1)k′i yi > (−1)k′i zi for each i ∈ {1, 2}, then
(−1)k′i xi > (−1)k′i zi for each i ∈ {1, 2}. Then, x >k z. Therefore, the relation >k on
Z2 is transitive.
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′ ′

′ ′ ′ ′

′ ′

− > −

− + − > − + −
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for every { }1, 2i ∈ . Then, k+ > +x m y m . □ 
It is obvious that the k-type inequality ‘>k’ on Z2 for any k ∈ {1, 2, 3, 4} does not have

symmetric relation. However, for any x, y, u, v ∈ Z2, which x >1 y and u >2 v, then they
imply to y >4 x and v >3 u, respectively. Next, a relation between two elements of Z2 is
described as follows.

Lemma 2. Let k ∈ {1, 2, 3, 4}. For every m, l ∈ Z2 with m >k l, there exists r >k 0 = (0, 0)
such that m = l + r.

Proof. Letm = (m1, m2), l = (l1, l2), k ∈ {1, 2, 3, 4} andm >k l. Then, let k′ =
(
k′1, k′2

)
∈ {0, 1}2

such that k = 1 + ∑2
i=1 k′i2

i−1. Then, (−1)k′i mi > (−1)k′i li for all i ∈ {1, 2}. Then,

(−1)k′i mi − (−1)k′i li > 0 for all i ∈ {1, 2}. Then, (−1)k′i (mi − li) > (−1)k′i 0 for all i ∈ {1, 2}.
Let r = (r1, r2) such that ri = mi − li for all i ∈ {1, 2}. Since (−1)k′i ri > (−1)k′i 0i, which
0i = 0 for all i ∈ {1, 2}, then r >k 0 and l + r = m.
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m = (m1, m2) ∈ Z2. Then, x + m = (x1 + m1, x2 + m2) and y + m = (y1 + m1, y2 + m2).
Then,

(−1)k′i xi > (−1)k′i yi

(−1)k′i xi + (−1)k′i mi > (−1)k′i yi + (−1)k′i mi

(−1)k′i (xi + mi) > (−1)k′i (yi + mi)

for every i ∈ {1, 2}. Then, x + m >k y + m.
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for every { }1, 2i ∈ . Then, k+ > +x m y m . □ 
Then, we describe a strictly monotonic increasing sequence {tm}m∈N ⊂ Z2 as follows.

Lemma 4. Let {tm}m∈N ⊂ Z2 be a sequence with tm+1 >k tm where k ∈ {1, 2, 3, 4}. Then, there
exists M ∈ N such that tn >k 0 for all n > M.

Proof. Let {tm}m∈N = {t1, t2, t3, . . .} ⊂ Z2 be a sequence such that t2 >k t1, t3 >k t2 and so
on. If t1 >k 0, then we are done since the relation ‘>k’ is transitive according to Lemma 1.
Suppose that t1 <k 0. Then, by Lemma 2, there exists r >k 0 such that 0 = t1 + r. Since
ti+1 >k ti for each i ∈ N, then clearly ti+1 >k t1 for all i ∈ N by transitivity of ‘>k’ from
Lemma 1. Then, by Lemma 2, we let ri >k 0 for each i ∈ N such that ti+1 = t1 + ri.
Then, we have ri+1 >k ri for each i ∈ N. Let {ri}i∈N be a sequence. Suppose that the
sequence {ri}i∈N is bounded above. Let S ∈ N such that ri <k rS for every i ∈ N and
tS+1 = t1 + rS. Since {tm}m∈N is strictly monotonic increasing, then tS+2 >k tS+1. Then,
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t1 + rS+1 >k t1 + rS. Then, rS+1 >k rS, and this is a contradiction since ri <
k rS for every

i ∈ N. Therefore, the sequence {ri}i∈N is not bounded above, and thus, it is divergent. Since
r >k 0 and ri+1 >k ri >

k 0 for each i ∈ N, then we can take some L ∈ N, which rL >k r,
and tL+1 ∈ {tm}m∈N, which corresponds to rL such that tL+1 = t1 + rL. Since t1 = −r, then
tL+1 = t1 + rL = −r + rL. Since rL − r >k 0, then clearly tL+1 >k 0 and tL+i+1 >k 0 for all
i ∈ N by transitivity of ‘>k’ from Lemma 1. Therefore, we have M = L + 1, which tn >k 0
for all n > M.
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for every { }1, 2i ∈ . Then, k+ > +x m y m . □ 

Next, we recall a Z2-action on X is a continuous map T : Z2 × X → X such that

1. T(0, x) = x for 0 = (0, 0) ∈ Z2 and any x ∈ X,
2. T(n, T(m, x)) = T(n + m, x) for any n, m ∈ Z2 and x ∈ X.

The map Tn : X → X is defined by Tn(x) = T(n, x) for all n ∈ Z2 and x ∈ X. Note
that the map Tn is a homeomorphism on compact metric space X [33]. Moreover, we
can observe that each Tn can be expressed as a finite composition of Te1 and Te2 ; that is,
Tn = Tei1 ◦ Tei2 ◦ · · · ◦ T

eij for i1, i2, . . . , ij ∈ {1, 2} [6].
For x ∈ X, we write OT(x) =

{
Tn
∣∣n ∈ Z2} as the orbit of x ∈ X under T. A point

p ∈ X is called a periodic point of T if its orbit OT(x) is finite. Equivalently, we say there is
some n ∈ Z2 such that Tn(x) = x. We denote Per(T) as the set of all periodic points of T.
Next, a subset A ⊂ X is said to be T-invariant if for every y ∈ A, then Tei (y) ∈ A for any
i ∈ {1, 2}. Then, a sequence known as a δ-pseudo orbit is defined as follows.

Definition 1 ([6,8]). Let T be a Z2-action on a compact metric space (X, ρ). A sequence
ξ = {xn}n∈Z2 in (X, ρ) is said to be a δ-pseudo orbit of T if ρ(Tei (xn), xn+ei ) < δ for any
n ∈ Z2 and i ∈ {1, 2}.

The definition of shadowing property for a Z2-action can be seen below.

Definition 2 ([6,8]). Let T be a Z2-action on a compact metric space (X, ρ). We say that a
Z2-action T has shadowing property if, for every ε > 0, there exists δ > 0 such that every
δ-pseudo orbit {xn}n∈Z2 ⊂ X is ε-shadowed by a point of X; that is, there exists y ∈ X such that
ρ(Tn(y), xn) < ε for every n ∈ Z2.

Next, we describe a k-type δ-chain by a definition as follows.

Definition 3 ([8]). Let T be a Z2-action on a compact metric space (X, ρ). Let x ∈ X and δ > 0. It
is said that a k-type δ-chain for x is a δ-pseudo orbit γ = {yn}n∈Z2 with two conditions as follows:

(i) y0 = x,
(ii) if for some u ∈ X and some index n ∈ Z2, which the equality yn = u holds, then the set{

j ∈ Z2 : yj = u, j >k l
}

is infinite for any l ∈ Z2.
Then, the notion of weak chain recurrence is given as below.

Definition 4 ([8]). Let T be a Z2-action on a compact metric space (X, ρ). Let δ > 0, x, y ∈ X and
k ∈ {1, 2, 3, 4}. A sequence

{
xt0 , xt1 , . . . , xtn , xtn+1

}
⊂ X with {ti}n+1

i=0 ⊂ Z2 is said to be a weak
k-type δ-pseudo orbit from x to y if ts+1 >k ts >k 0 and ρ

(
Tts(xts), xts+1

)
< δ for s = 0, 1, . . . , n

and additionally xt0 = x, xtn+1 = y.

Definition 5 ([8]). Let x ∈ X, k ∈ {1, 2, 3, 4} and δ > 0. Any weak k-type δ-pseudo orbit from
x to x is called a weak k-type δ-chain for x. A point x is said to be a weak k-type chain recurrent
point if, for every δ > 0, there exists a weak k-type δ-chain for x. The set of all weak k-type chain
recurrent points will be denoted by WCRk(T).
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Definition 6 ([8]). Let T be a Z2-action on a compact metric space (X, ρ) and k ∈ {1, 2, 3, 4}.
For x, y ∈ X and δ > 0, we define x as k-type δ-related to y (written as x ∼k(δ) y) if there exist
two weak k-type δ-pseudo orbits ξ1 and ξ2 from x to y and from y to x, respectively, through
ξ1 =

{
xt0 = x, . . . , xtn+1 = y

}
and ξ2 =

{
ys0 = y, . . . , ysm+1 = x

}
for some n, m ∈ N. If

x ∼k(δ) y for any δ > 0, then x is k-type related to y (written as x ∼k y).

The relation ∼k is an equivalence relation on WCRk(T) [8]. For an index set Λ, we
denote Dλ for λ ∈ Λ as an equivalence class of this relation. The equivalence class is called
a k-type chain component of T. Next, we want to define a k-type weak extending property
for a Z2-action. First, we define an infinite weak k-type δ-pseudo orbit.

Definition 7 ([8]). Let T be a Z2-action on a compact metric space (X, ρ). Let δ > 0, x, y ∈ X and
k ∈ {1, 2, 3, 4}. A bi-infinite sequence {xti}i∈Z ⊂ X, which {ti}i∈Z ⊂ Z2 with ti ≥k 0 whenever
i ≥ 0 and ti <

k 0 whenever i < 0, is said to be an infinite weak k-type δ-pseudo orbit if ts+1 >k ts
and ρ

(
Tts(xts), xts+1

)
< δ for any s ∈ Z.

Then, we define a box and k-type chain of boxes, which were introduced earlier by
Oprocha (2008) as in the following.

Definition 8 ([8]). For any n, m ∈ Z2 with n >k m where k ∈ {1, 2, 3, 4}, a set Bk(n, m) ⊂ Z2

is said to be a box given by the formula

Bk(n, m) =
{

b ∈ Z2 : n ≤k b ≤k m
}

Definition 9 ([8]). A sequence {Bi}i∈Z ⊂ Z2 is called a k-type chain of boxes if it fulfills the
following conditions:

(i) for any i ∈ Z, set Bi is a box and Bi ∩ Bi+1 6= ∅,
(ii) for any i ∈ Z, a ∈ Bi and b ∈ Bi+1, the inequality a ≤k b holds.

The set C = ∪i∈ZBi ⊂ Z2 is said to be a realization of k-type chain of boxes {Bi}i∈Z.

Remark 1 ([8]). Observe that for any given k-type chain of boxes
{

Bi = Bk(pi, qi)
}

i∈Z
and any

i ∈ Z, it holds that

Bi ∩ Bi+1 = {qi} =
{

pi+1
}

.

Furthermore, Bi ∩ Bj ∩ Bl = ∅ for any i, j, l ∈ Z.
For an infinite weak k-type δ-pseudo orbit {xti}i∈Z, we let

sj =


∑

j−1
i=0 ti, if j > 0,

0, if j = 0,
−∑−1

i=j ti, if j < 0.

For each i ∈ Z, we let Ai = Bk(0, ti) whenever i ≥ 0 and Ai = Bk(ti, 0) whenever
i < 0. We recall that if F ⊂ Z2 and n ∈ Z2, then n + F = {n + m : m ∈ F} ⊂ Z2 is a set. Let
s ∈ N. A set Λ(s) = {−s + 1, . . . , s− 1}2 is said to be a symmetric s-cube centered at 0.

Then, we let Bi = si + Ai for each i ∈ Z. Since si + ti = si+1 for each i ∈ Z, it implies
that {Bi}i∈Z is a k-type chain of boxes, and let C = ∪i∈ZBi be its realization. Then, we define
a sequence {zn}n∈C by the formula zn = Tn−si (xti ) for every n ∈ Bi\Bi+1 and i ∈ Z. The
sequence {zn}n∈C is said to be a box realization of an infinite weak k-type δ-pseudo orbit
{xti}i∈Z. Then, the definition of a k-type weak extending property is described as follows.



Symmetry 2023, 15, 1223 6 of 13

Definition 10 ([8]). Let T be a Z2-action on a compact metric space (X, ρ) and k ∈ {1, 2, 3, 4}. It
is said that T has a k-type weak extending property if, for any ε > 0, there exist δ > 0 and s ∈ N+

such that if {xti}i∈Z is any infinite weak k-type δ-pseudo orbit and {zn}n∈C is its box realization,
then there exists ε-pseudo orbit {yn}n∈Z2 fulfilling zi = yi for any i ∈ Z2 such that i+Λ(s) ⊂ C.

Next, the definition of a k-type non-wandering point is described as below.

Definition 11 ([6,8]). Let T be a Z2-action on a compact metric space (X, ρ). A point x ∈ X is
said to be a k-type non-wandering point of T if, for any open ball Uδ(x) and m ∈ Z2, there exists
n ∈ Z2 such that n >k m and Tn(Uδ(x)) ∩Uδ(x) 6= ∅. Then, we denote Ωk(T) as the set of all
k-type non-wandering points of T.

According to Kim and Lee [6], we know that every k-type non-wandering point
x ∈ Ωk(T) is k-type δ-related to Tei (x) for every δ > 0 and i ∈ {1, 2} by the nature of its
definition. Next, we introduce a δ-neighborhood of a k-type chain component Dλ in Ωk(T)
as the set Uδ(Dλ) =

{
y ∈ Ωk(T)

∣∣∣ρ(y, Dλ) < δ
}

for δ > 0. Then, we prove that the set

Uδ(Dλ) is an open set of Ωk(T) as follows.

Lemma 5. Let T be a Z2-action on a compact metric space (X, ρ). Let
Uδ(Dλ) =

{
y ∈ Ωk(T)

∣∣∣ρ(y, Dλ) < δ
}

be a δ-neighborhood of a k-type chain component Dλ

in Ωk(T) for δ > 0. Then, Uδ(Dλ) is an open set of Ωk(T).

Proof. Clearly, Uδ(Dλ) =
{

y ∈ Ωk(T)
∣∣∣ρ(y, Dλ) < δ

}
= {y ∈ X|ρ(y, Dλ) < δ} ∩ Ωk(T).

Since ρ(y, Dλ) = inf
b∈Dλ

ρ(a, b), then {y ∈ X|ρ(y, Dλ) < δ} = ∪
δ′<δ

∪
a∈Dλ

Uδ′(a) is an open set.

Therefore, Uδ(Dλ) is open.
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for every { }1, 2i ∈ . Then, k+ > +x m y m . □ 

Then, we recall the definition of topologically k-type transitive as follows.

Definition 12 ([6,8]). A Z2-action T : Z2 × X → X is said to be topologically k-type transitive if,
for every open set U and V of X, there exists n >k 0 such that Tn(U) ∩V 6= ∅ where n ∈ Z2.

3. Shadowing Property and k-Type Weak Extending Property

Throughout this section, we explore some related results of shadowing property and
k-type weak extending property of a Z2-action on a compact metric space (X, ρ). The
shadowing property is one of the main ingredients to prove the spectral decomposition
theorem of a Z2-action. Therefore, we recall some lemmas and theorems from Kim and
Lee [6] as follows.

Theorem 1 ([6]). Let T be a Z2-action on a compact metric space (X, ρ). If T has the shadowing
property, then

(i) Per(T) is dense in Ωk(T) for any k ∈ {1, 2, 3, 4},
(ii) WCRk(T) = Ωk(T) for each k ∈ {1, 2, 3, 4},
(iii) Each k-type chain component Dλ is open in Ωk(T) for any k ∈ {1, 2, 3, 4}, and
(iv) T|Ωk(T) has the shadowing property.

Proof. Refer to Theorem 3.6, Lemma 4.1, Lemma 4.2 and Theorem 4.1 in [6].
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for every { }1, 2i ∈ . Then, k+ > +x m y m . □ 

Next, we recall a theorem from [8], which described a property under k-type weak
extending property as in the following.
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Theorem 2 ([8]). Let T be a Z2-action on a compact metric space (X, ρ) and k ∈ {1, 2, 3, 4}. If T
has a k-type weak extending property, then for any δ > 0 and x ∈WCRk(T), there exists a k-type
δ-chain for x.

Proof. Refer to Theorem 7.5 in [8].
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for every { }1, 2i ∈ . Then, k+ > +x m y m . □ 

In this study, we also prove some interesting implications of shadowing property.
First, we show that each k-type chain component Dλ is closed in Ωk(T) and T-invariant as
in the following.

Lemma 6. Each k-type chain component Dλ is closed in Ωk(T) and T-invariant if T has
shadowing property.

Proof. Let λ′ ∈ Λ and Dλ′ be a k-type chain component of T. Then,
Ωk(T)\Dλ′ = ∪λ∈Λ\{λ′}Dλ. By Theorem 1, then Ωk(T)\Dλ′ is open. Thus, Dλ′ is closed.
Next, we let y ∈ Dλ. By Theorem 1, y ∈ Ωk(T). By the definition of k-type non-wandering
point of T, we know that y is k-type δ-related to Tei (y) for every δ > 0 and i ∈ {1, 2}.
Then, y ∼k Tei (y) for any i ∈ {1, 2}. Therefore, Tei (y) ∈ Dλ for any i ∈ {1, 2}. Thus, Dλ is
T-invariant.
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for every { }1, 2i ∈ . Then, k+ > +x m y m . □ 

We then show the existence of periodic points in any neighborhood of any point in
k-type chain component of T.

Lemma 7. Let T be a Z2-action on a compact metric space (X, ρ). Let Dλ be a k-type chain
component of T. Suppose that T has shadowing property. Then, for any y ∈ Dλ and δ > 0, there
exists a periodic point pδ such that ρ(pδ, y) < δ.

Proof. Let δ > 0, and let y ∈ Dλ. Since T has shadowing property, by Theorem 1, Per(T)
is dense in Ωk(T). Let Uδ(y) be an open ball of y with radius δ and U′δ(y) be a set such
that U′δ(y) = Uδ(y) ∩Ωk(T). Clearly, U′δ(y) is open since it is an intersection of the two
open sets and, therefore, Per(T) ∩U′δ(y) 6= ∅. Hence, there exists pδ ∈ Per(T) such that
ρ(pδ, y) < δ.
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for every { }1, 2i ∈ . Then, k+ > +x m y m . □ 

All of the results above are necessary to prove the last main theorem of this study that
will be discussed in the last section of this article.

4. Measure Expanding

In this section, we discuss some basic notions in measure theory for a Z2-action. For a
given compact metric space (X, ρ), we let β(X) be the Borel σ-algebra on X, which is the
σ-algebra generated by the open sets of X. Then, a Borel measure on X is a non-negative
σ-additive map µ defined on β(X). We also assume that a Borel measure on X implies a
Borel probability measure, that is, µ(X) = 1.

We denote M(X, T) as the collection of all invariant Borel probability measures on X.
For a given δ > 0, let τT

δ (x) be a dynamical δ-ball centered at x ∈ X, which is defined by

τT
δ (x) =

{
y ∈ X

∣∣∣ρ(Tm(x), Tm(y)) ≤ δ for all m ∈ Z2
}

.

Then, it is said that a Z2-action T is expansive if there is an ε > 0 such that τT
ε (x) = {x}

for all x ∈ X [28].
We introduce the definition of measure expanding, which is given as in the following.

Definition 13. Let T be a Z2-action on a compact metric space (X, ρ). A Borel measure µ on X is
said to be expanding for T if there is δ > 0 such that µ

(
τT

δ (x)\OT(x)
)
= 0 for all x ∈ X. Then,
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we say that a Z2-action T is measure expanding (resp. invariantly measure expanding) if every
Borel measure (resp. invariant Borel measures) µ on X expanding for T.

In this study, we found a lemma that is important to prove the measurable version of
the spectral decomposition theorem for a Z2-action. To prove the lemma, we first introduce
a Dirac measure defined for a given Tn(x) ∈ X where n ∈ Z2 and for any A ∈ β(X) by

δTn(x)(A) =

{
1, if Tn(x) ∈ A,
0, if Tn(x) /∈ A.

We assume Bk(0, n) ⊂ Z2 is a box as introduced in Definition 8 where n = (n1, n2) >
k 0.

The cardinality of the box Bk(0, n) is the number of its elements, which is given by
n
(

Bk(0, n)
)

= |(n1 + 1)(n2 + 1)|. Next, we prove a lemma that describes a property
of measure expanding as follows.

Lemma 8. Let T be a Z2-action on a compact metric space (X, ρ) and suppose that it is invariantly
measure expanding. Then, for any k ∈ {1, 2, 3, 4}, there is a constant e > 0 such that if

ρ(Tn(x), Tn(p)) ≤ e for all n >k 0
(

resp. for all n <k 0
)

for some x ∈ X and p ∈ Per(T), then

lim
s→+∞

ρ
(
Tts(x), OT(p)

)
= 0

(
resp. lim

s→+∞
ρ
(
T−ts(x), OT(p)

)
= 0

)
or any infinite sequence {ts}s∈N in Z2 with ts+1 >k ts.

Proof. Suppose that T is a Z2-action that is invariantly measure expanding on a compact
metric space (X, ρ). Then, every Borel measure is expanding. Let e > 0 be a constant such
that µ

(
τT

e (a)\OT(a)
)
= 0 for all a ∈ X and µ ∈ M(X, T).

Suppose, by contradiction, that there are x ∈ X, a periodic point p ∈ Per(T) and
r > 0 such that for any k ∈ {1, 2, 3, 4}, ρ(Tn(x), Tn(p)) ≤ e for all n >k 0, but there is
a sequence {us}s∈N ⊂ Z2 with us+1 >k us, which converge to infinity as s→ +∞ and
ρ(Tus(x), OT(p)) > r for all s ∈ N. Since X is compact, we suppose that lim

s→+∞
Tus(x) = x0

and lim
s→+∞

Tus(p) = p0 for some x0, p0 ∈ X. Obviously, p0 is a periodic point. Since

ρ(x0, OT(p)) = ρ

(
lim

s→+∞
Tus(x), OT(p)

)
= lim

s→+∞
ρ(Tus(x), OT(p)) > r,

then x0 /∈ OT(p). Next, for each m ∈ Z2, we construct a sequence {ws}s∈N ⊂ Z2 defined by
ws = us +m for all s ∈ N. By Lemma 3, then ws+1 >k ws for each s ∈ N. Then, by Lemma 4,
there exists S ∈ N such that wt >k 0 for all t > S. Thus, we have ρ(Twt(x), Twt(p)) ≤ e for
all t > S and so

lim
s→+∞

ρ(Tws(x), Tws(p)) ≤ e.

Then, we have

ρ(Tm(x0), Tm(p0)) = ρ

(
Tm
(

lim
s→+∞

Tus(x)
)

, Tm
(

lim
s→+∞

Tus(p)
))

= ρ

(
lim

s→+∞
Tm+us(x), lim

s→+∞
Tm+us(p)

)
= lim

s→+∞
ρ(Tws(x), Tws(p)) ≤ e
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for all m ∈ Z2 and, therefore, p0 ∈ τT
e (x0). Let np0 >k 0 be the period of p0 and, obviously,

np0 ∈ Bk(0, np0

)
. Then, we define an invariant Borel measure µj of T by

µj(A) =
1

n
(

Bk
(
0, np0

)) ∑
i∈Bk(0,np0 )

δTi(p0)
(A)

where A ∈ β(X) and n
(

Bk(0, np0

))
is the cardinality of the box Bk(0, np0

)
. Since

p0 ∈ τT
e (x0), then δp0

(
τT

e (x0)\OT(x0)
)
= δT0(p0)

(
τT

e (x0)\OT(x0)
)
= 1.

Thus, µj
(
τT

e (x0)\OT(x0)
)
≥ µj({p0}) > 0, and this is a contradiction since T is

invariantly measure expanding. Therefore, lim
s→+∞

ρ
(
Tts(x), OT(p)

)
= 0 for any sequence

{ts}s∈N in Z2 with ts+1 >k ts.
Similarly, we can show that if ρ(Tn(x), Tn(p)) ≤ e for all n <k 0 for some x ∈ X and

p ∈ Per(T), then lim
s→+∞

ρ
(
T−ts(x), OT(p)

)
= 0 for any infinite sequence {ts}s∈N in Z2 with

ts+1 >k ts.
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5. Measurable Spectral Decomposition Theorem

The main highlight of this paper is to prove the measurable version of the spectral
decomposition theorem for a Z2-action on a compact metric space (X, ρ). More precisely,
we show that if a Z2-action is invariantly measure expanding, has shadowing property and
has k-type weak extending property, then the set of all k-type non-wandering points can be
decomposed into a disjoint union of closed and invariant sets such that the restriction map
on each of the sets is topologically k-type transitive. Now, we present the theorem and its
proof in this section.

Theorem 3. Let T be a Z2-action on a compact metric space (X, ρ). Let k ∈ {1, 2, 3, 4}. Suppose
that T is invariantly measure expanding, has shadowing property and has k-type weak extending
property. Then, there exists closed, pairwise disjoint and invariant sets S1, . . . , Sl ⊂ Ωk(T), which
additionally fulfill the following conditions:

(i) Ωk(T) = S1 ∪ . . . ∪ Sl ,
(ii) T|Si

is topologically k-type transitive for each i = 1, 2, . . . , l.

Proof. (i). Suppose that T is invariantly measure expanding, has shadowing property
and has k-type weak extending property. By properties (i) and (ii) in Theorem 1, we have
Per(T) = Ωk(T) = WCRk(T). Thus,

Ωk(T) = WCRk(T) = ∪λ∈ΛDλ

where Dλ is the k-type chain components of T. By Lemma 6, k-type chain component Dλ is
closed and T-invariant. By property (iv) in Theorem 1, T|Ωk(T) has the shadowing property.

Now, let us claim that each Dλ is open in Ωk(T). Since T is invariantly measure
expanding on X, then every Borel measure in M(X, T) is expanding. Let e > 0 be a
constant as given in Lemma 8, which µ

(
τT

e (x)\OT(x)
)
= 0 for all x ∈ X and µ ∈ M(X, T).

By the shadowing property of T|Ωk(T), take δe > 0 corresponding to e, which satisfy that

every δe-pseudo orbit of Ωk(T) is e-shadowed by a point in Ωk(T).
We fix λ ∈ Λ and let Uδe(Dλ) =

{
y ∈ Ωk(T)

∣∣∣ρ(y, Dλ) < δe

}
be a δe-neighborhood of

Dλ in Ωk(T). By Lemma 5, Uδe(Dλ) is an open set of Ωk(T). Since Per(T) = Ωk(T), then
Uδe(Dλ) ∩ Per(T) 6= ∅. Then, we can take p ∈ Uδe(Dλ) ∩ Per(T) and y ∈ Dλ such that
ρ(p, y) < δe. We claim that p is k-type related to y, p ∼k y, i.e., p ∼k(τ) y for any τ > 0.

Let τ > 0. Then, for y ∈ Dλ and τ
2 > 0, by Lemma 7, we let pτ ∈ Per(T) such that

ρ(pτ , y) < τ
2 . We first show that pτ ∼k(τ) y. Since pτ is a periodic point, which is also a



Symmetry 2023, 15, 1223 10 of 13

weak k-type chain recurrent point, then we let
{

xt0 = pτ , xt1 , . . . , xtj , xtj+1 = pτ

}
be a weak

k-type τ
2 -chain for pτ such that {ti}

j+1
i=0 ⊂ Z2 with ts+1 >k ts >k 0 and ρ

(
Tts(xts), xts+1

)
< τ

2

for s = 0, 1, . . . , j. Since ρ
(

Ttj
(

xtj

)
, pτ

)
< τ

2 and ρ(pτ , y) < τ
2 , then

ρ
(

Ttj
(

xtj

)
, y
)
≤ ρ

(
Ttj
(

xtj

)
, pτ

)
+ ρ(pτ , y) < τ.

By letting a new sequence ω =
{

wt0 , . . . , wtj+1

}
such that wts = xts for all s ∈ {0, 1, . . . , j}

and wtj+1 = y, then ω is a weak k-type τ-pseudo orbit from pτ to y. Similarly, we can

construct a weak k-type τ-pseudo orbit from y to pτ . Therefore, pτ ∼k(τ) y.
Next, we claim that p ∼k(τ) pτ . Let a sequence γ = {vi}i∈Z2 be a k-type δe-pseudo

orbit for p, which is defined vj = Tj(p) if j ≥k 0 and vj = Tj(pτ) if j <k 0 for some
index j ∈ Z2. By the shadowing property of T|Ωk(T), there exists z ∈ Ωk(T) such that γ is

e-shadowed by it. That is, ρ
(
Ti(z), vi

)
≤ e for every i ∈ Z2. Thus, we have

ρ
(

Tj(z), Tj(p)
)
≤ e for all j >k 0

and
ρ
(

Tj(z), Tj(pτ)
)
≤ e for all j <k 0.

By Lemma 8, it implies that

lim
s→+∞

ρ
(
Tts(z), OT(p)

)
= 0

and
lim

m→+∞
ρ
(
T−um(z), OT(pτ)

)
= 0

for two infinite sequences {ts}s∈N, {um}m∈N ⊂ Z2 with ts+1 >k ts and um+1 >k um,
respectively. Next, let S > 0 and M > 0 such that

ρ
(
Tts′ (z), OT(p)

)
< τ

and
ρ
(
T−um′ (z), OT(pτ)

)
< τ

for all s′ > S and m′ > M. By Lemma 4, we can choose s1 > S and m1 > M such that
ts1 >k 0 and um1 >k 0. Since T−um1 (pτ) ∈ OT(pτ) and p ∈ OT(p), then we can have

ρ
(
T−um1 (z), T−um1 (pτ)

)
< τ (1)

and
ρ
(
Tts1 (z), p

)
< τ (2)

Since −um1 <k 0 and ts1 >k 0, then we can let a sequence {ri}n+1
i=0 ⊂ Z2 for some

n ∈ N such that r0 = −um1 ,rn+1 = ts1 and ri+1 >k ri for each i ∈ {0, 1, . . . , n}. Then, for the
sequence {rt}n+2

t=0 ⊂ Z2, we let α =
{

ur0 , ur1 , . . . , urn , urn+1 , urn+2

}
be a sequence of X such

that ur0 = pτ ,ur1 = Tr0(z),uri = Tri−1
(
uri−1

)
for all i ∈ {2, 3, . . . , n},urn+1 = z and urn+2 = p.

Then, we have these observations:

1.
ρ(Tr0(ur0), ur1) = ρ

(
T−um1 (pτ), Tr0(z)

)
= ρ

(
T−um1 (pτ), T−um1 (z)

)
< τ by (1).

2.
ρ(Tr1(ur1), ur2) = ρ(Tr1(Tr0(z)), Tr1(ur1))

= ρ(Tr1(Tr0(z)), Tr1(Tr0(z)))
= 0 < τ.
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3.

ρ
(
Trs(urs), urs+1

)
= ρ

(
Trs(urs), Tr(s+1)−1

(
ur(s+1)−1

))
= ρ(Trs(urs), Trs(urs))
= 0 < τ

for each s ∈ {2, 3, . . . , n}
4. ρ

(
Trn+1

(
urn+1

)
, urn+2

)
= ρ

(
Tts1 (z), p

)
< τ by (2).

Then, α is a weak k-type τ-pseudo orbit from pτ to p. Similarly, we can construct a
weak k-type τ-pseudo orbit from p to pτ . Then, p ∼k(τ) pτ ∼k(τ) y. Since τ is arbitrary,
then we obtain p ∼k y, and this means p ∈ Dλ. Thus, Uδe(Dλ) ∩ Per(T) ⊂ Dλ.

Since Dλ is closed in Ωk(T), then Dλ = Dλ. Since Uδe(Dλ) ∩ Per(T) ⊂ Dλ, then
Uδe(Dλ) ∩ Per(T) ⊂ Dλ. Then, we have

Dλ = Dλ ⊃ Uδe(Dλ) ∩ Per(T).

Let c ∈ Uδe(Dλ) ∩ Per(T). Since c ∈ Uδe(Dλ), then c ∈ Ωk(T) such that ρ(c, Dλ) < δe.
Since c ∈ Per(T), then c ∈ Per(T) or c is a limit point of Per(T). The first case is when
c ∈ Per(T). Then, c ∈ Uδe(Dλ) ∩ Per(T). Therefore,

Uδe(Dλ) ∩ Per(T) ⊃ Uδe(Dλ) ∩ Per(T).

The second case is when c /∈ Per(T). Then, c is a limit point of Per(T). Let Ur(c)
be an open ball of c with radius r > 0. Then, Ur(c) ∩ Per(T)\{c} 6= ∅. Let ε′ > 0 and
δc > 0 such that ρ(c, Dλ) = δc < δe. Then, let β = min{δe − δc, ε′}. Then, we have
Uβ(c) ∩ Per(T)\{c} 6= ∅. Thus, there exists c̃ ∈ Per(T) such that ρ(c̃, c) < β. Then,
ρ(c̃, Dλ) ≤ ρ(c̃, c) + ρ(c, Dλ) < β + δc < (δe − δc) + δc = δe. Therefore, c̃ ∈ Uδe(Dλ). Since
c̃ ∈ Uε′(c) ∩ [Uδe(Dλ) ∩ Per(T)], then

Uε′(c) ∩ [Uδe(Dλ) ∩ Per(T)]\{c} 6= ∅

for any ε′ > 0. Thus, c is a limit point of Uδe(Dλ) ∩ Per(T).
Since c ∈ Uδe(Dλ) ∩ Per(T), then we have

Uδe(Dλ) ∩ Per(T) ⊃ Uδe(Dλ) ∩ Per(T).

We know obviously that Uδe(Dλ) ∩ Per(T) ⊂ Uδe(Dλ). Now, we let b ∈ Uδe(Dλ).
Then, b ∈ Ωk(T) such that ρ(b, Dλ) < δe. Since Ωk(T) = Per(T), then b ∈ Per(T). Hence,
Uδe(Dλ) = Uδe ∩ Per(T). It implies that

Dλ ⊃ Uδe(Dλ) ∩ Per(T) ⊃ Uδe(Dλ) ∩ Per(T) = Uδe(Dλ).

Thus, each Dλ is open in Ωk(T). Therefore, {Dλ}λ∈Λ is an open cover of Ωk(T). By
compactness of Ωk(T), {Dλ}λ∈Λ has a finite subcover, {Di}l

i=1. Let us denote Si = Di for
each i ∈ {1, 2, . . . , l}. Hence, Ωk(T) can be expressed as a union of a finite set of {Si}l

i=1,
that is,

Ωk(T) =
l
∪

i=1
Si.

(ii). Next, we prove that T|Si
for each i ∈ {1, 2, . . . , l} is topologically k-type transitive. Let

t ∈ {1, 2, . . . , l} and St = Dt, which is one of the k-type chain components of T. Let U and
V be two nonempty open sets of Dt. We want to show that there exists m >k 0 such that
Tm(U) ∩V 6= ∅.

Let x ∈ U and y ∈ V. Then, let Ur(x) ∩ Dt ⊂ U and Ur(y) ∩ Dt ⊂ V for some
r > 0. Since r > 0 and T has shadowing property, take δr corresponding to r, which
satisfy that every δr-pseudo orbit of T in X is r-shadowed by a point in X. Since x, y ∈ Dt,
then x must be k-type related to y. Then, we can say that x ∼k(δ) y for any δ > 0. Let
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ξ1 =
{

x′t0
= x, . . . , x′tn+1

= y
}

and ξ2 =
{

y′s0
= y, . . . , y′sm+1

= x
}

be the two weak k-type
δ-pseudo orbits from x to y and from y to x, respectively. By joining the two sequences
ξ1 and ξ2, we obtain a weak k-type δ-pseudo orbit from x to x, or it is known as a weak
k-type δ-chain for x. Since T has k-type weak extending property and x ∈ WCRk(T), then
by Theorem 2, there exists a k-type δ-chain for x, which contains y at some position. Since
δ > 0 is arbitrary, then we can let {un}n∈Z2 be a k-type δr-chain for x and let l >k 0 be
an index such that ul = y. Since {un}n∈Z2 is a δr-pseudo orbit of T, then by shadowing
property of T, there exists z ∈ X such that ρ(Tn(z), un) < r for all n ∈ Z2. Since u0 = x
and ul = y, then we have ρ(z, x) < r and ρ

(
Tl(z), y

)
< r. Then, z ∈ Ur(x) ∩ Dt ⊂ U and

Tl(z) ∈ Ur(y) ∩ Dt ⊂ V. Therefore, we have m = l >k 0 such that Tm(U) ∩V 6= ∅, and it
implies that T

∣∣Di = T
∣∣
Si

for each i ∈ {1, 2, . . . , l} is topologically k-type transitive.
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6. Discussion and Conclusions

By referring to the discussions from Aoki [3] and Das et al. [4], the spectral decomposi-
tion theorem for a homeomorphism had already been proven with two sufficient conditions,
which are the shadowing property and expansivity. While Dong et al. [5] presented an
alternative to the theorem by introducing the concept of measure expanding using a funda-
mental concept of measure theory and had distributed a measurable version of the spectral
decomposition theorem for a homeomorphism. The study from Oprocha [8] presented
the spectral decomposition theorem for a Zd-action with three sufficient conditions, which
are the shadowing property, k-type weak extending property and expansivity. Kim and
Lee [6] focused on Z2-action and proved the spectral decomposition theorem with two
sufficient conditions, which are the shadowing property and expansivity. The concept of ex-
pansivity of Zd-action in [6,8] were described by a topological approach. Our study focused
on Z2-action for a measurable version of the spectral decomposition theorem. The three
conditions are required to prove the result, which are the measure expanding, shadowing
property and k-type weak extending property. As a future direction of the research, this
study can be extended by proving a measurable version of the spectral decomposition the-
orem for a Zd-action. Furthermore, there are many different kinds of shadowing property
and expansivity, which can be considered as other future works to prove different versions
of the spectral decomposition theorem.
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