
Citation: Žalik, B.; Strnad, D.;

Podgorelec, D.; Kolingerová, I.; Nerat,

A.; Lukač, N.; Kohek, Š.; Lukač, L.

Geometric Shape Characterisation

Based on a Multi-Sweeping

Paradigm. Symmetry 2023, 15, 1212.

https://doi.org/10.3390/

sym15061212

Academic Editor: Stanisława Kanas

Received: 9 May 2023

Revised: 31 May 2023

Accepted: 5 June 2023

Published: 6 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Geometric Shape Characterisation Based on
a Multi-Sweeping Paradigm
Borut Žalik 1,* , Damjan Strnad 1 , David Podgorelec 1 , Ivana Kolingerová 2 , Andrej Nerat 1 ,
Niko Lukač 1 , Štefan Kohek 1 and Luka Lukač 1

1 Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška cesta 46,
SI-2000 Maribor, Slovenia; damjan.strnad@um.si (D.S.); david.podgorelec@um.si (D.P.);
andrej.nerat@um.si (A.N.); niko.lukac@um.si (N.L.); stefan.kohek@um.si (Š.K.); luka.lukac@um.si (L.L.)

2 Department of Computer Science and Engineering, University of West Bohemia, Technická 8,
306 14 Plzen̆, Czech Republic; kolinger@kiv.zcu.cz

* Correspondence: borut.zalik@um.si

Abstract: The characterisation of geometric shapes produces their concise description and is, therefore,
important for subsequent analyses, for example in Computer Vision, Machine Learning, or shape
matching. A new method for extracting characterisation vectors of 2D geometric shapes is proposed
in this paper. The shape of interest, embedded into a raster space, is swept several times by sweep-
lines having different slopes. The interior shape’s points, being in the middle of its boundary and
laying on the actual sweep-line, are identified at each stage of the sweeping process. The midpoints
are then connected iteratively into chains. The chains are filtered, vectorised, and normalised. The
obtained polylines from the vectorisation step are used to design the shape’s characterisation vector
for further application-specific analyses. The proposed method was verified on numerous shapes,
where single- and multi-threaded implementations were compared. Finally, characterisation vectors,
among which some were rotated and scaled, were determined for these shapes. The proposed method
demonstrated a good rotation- and scaling-invariant identification of equal shapes.

Keywords: computer science; image analysis; computational geometry; local reflection symmetry

1. Introduction

Dealing with geometric data has become one of the main issues of many modern
computer applications. There are countless solutions using geometric data in manufactur-
ing, robotics, traffic, medicine, engineering, chemistry, cultural heritage, art, security, and
defence. Unfortunately, answering questions about geometric shapes, which are treated
easily by humans, frequently represents a considerable challenge to computers. Among
such tasks are finding (almost) identical shapes, extracting those shapes that expose some
kind of symmetry, finding the desired objects in point clouds obtained by remote sensing
scanners, discovering pathological structures in medical images, or matching biometric
data. Namely, the internal data structures storing the information about geometric shapes
are designed with the main aim of how to represent the shapes in an unambiguous way [1,2]
and do not support querying about the shapes’ characteristics directly.

In this paper, the shape characteristic corresponds to the description of the shape’s
geometrical and/or topological properties in a countable way. We will refer to it as a
characterisation in the continuation (terms such as attributes, properties, or features are
also used [3]). This approach is based on geometric shapes’ local symmetries and the
multi-sweeping paradigm [4] and works in 2D. The proposed method works in three steps:

• Initialisation, where a shape is inserted into a grid of equally sized cells;
• Processing, where the shape is swept several times with sweep-lines having different

slopes; as a result of each sweep, the interior midpoints with respect to the shape
boundary are determined and linked into the chains of midpoints;

Symmetry 2023, 15, 1212. https://doi.org/10.3390/sym15061212 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15061212
https://doi.org/10.3390/sym15061212
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-4372-5020
https://orcid.org/0000-0003-4468-0290
https://orcid.org/0000-0002-0701-9201
https://orcid.org/0000-0003-4556-2771
https://orcid.org/0000-0003-1559-9776
https://orcid.org/0000-0002-9517-1157
https://orcid.org/0000-0002-6210-0889
https://orcid.org/0000-0003-4691-5401
https://doi.org/10.3390/sym15061212
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15061212?type=check_update&version=3

Symmetry 2023, 15, 1212 2 of 15

• Finalisation, where the obtained chains are filtered, vectorised, and normalised. A
shape’s characterisation vector is then formed from the polylines, which were obtained
by the vectorisation.

The main benefits of this approach are the following:

• The obtained set of polylines enables the construction of various, application-specific
characterisation vectors;

• It handles free-form shapes;
• It processes the shapes containing holes without any modifications in the algorithm;
• It can be parallelised.

The paper consists of five sections: Section 2 contains a summary of the previous
works; Section 3 introduces the new shape characterisation approach; Section 4 presents
the experimental results; Section 5 concludes the paper.

2. Related Works

The sweeping paradigm is explained first in this section. The shape characterisation
methods, most similar to the introduced approach, are explained briefly after that.

2.1. Sweeping Paradigm

Sweeping, proposed by Shamos and Hoey [5], is an algorithmic paradigm used to
solve various geometric problems. The idea is straightforward. Let s be a sweeping element
(typically, a line in 2D or a plane in 3D), which glides continuously through the Euclidean
space populated by geometric objects. When the geometric object of interest is hit by s, the
sweeping element stops for a while, works out the considered problem locally, and updates
an internal data structure. The stop is considered a sweep event, while the data structure a
sweep status. In this way, the problem is solved behind s completely and unknown in front
of it. When all the geometric objects have been passed by s, the sweep status contains the
final solution of the considered problem. In practice, however, s does not glide continuously,
but jumps from event to event. For this reason, the geometric objects should be sorted in
regard to the movement of s before the sweeping is started. This is why s moves typically
along one of the coordinate axes.

Many tasks have been solved efficiently by this strategy, such as, for example: comput-
ing the visibility on the terrain [6], establishing hierarchy among circles [7], constructing
polygon trapezoidation [8], finding spatial clusters [9,10], constructing Delaunay triangula-
tion [11,12] or a Voronoi diagram [13], determining the directional distance between points
and shorelines [14], and many others.

2.2. Characterisation Methods and Skeletons

The characterisation of geometric shapes has attracted much research culminating in
various reviews [15–17] and considered in books [18–20]. In general, the characterisation of
shapes results either in a numerical value or in an alternative shape representation. The first
group of methods parses the shape boundary and applies various transforms on it, while
the second group stays in the space domain and produces another shape representation,
from which a vector of values is derived (i.e., a characterisation vector). In the continuation,
we review the latest ones briefly, among which the most-well-known is the medial axis
transform or topological skeleton. There are, however, different terminologies in use [16].
However, for the purposes of this overview, we considered them the same and shall use
the term skeleton in the continuation.

The skeleton (the concept was introduced by Blum [21]) is a set of all points being
inside of the shape and having more than one closest point on its boundary. In this way, a
reduced version of the shape is obtained, which contains enough information to reconstruct
the shape. The skeleton captures the geometrical and topological characteristics of the shape
and represents them internally with a graph, from which the characterisation information,
such as the connectivity, lengths, directions, and widths, can be obtained directly. This
information can then be used in the characterisation process. The main problem of the

Symmetry 2023, 15, 1212 3 of 15

skeleton is its sensitivity to noise, as even a small change in the shape’s boundary can
cause a considerable change in the graph’s topology. A different solution was proposed to
mitigate this problem [22].

A simple polygon can be represented by a straight skeleton [23]. As the name suggests,
it consists only of line segments in contrast to the topological skeleton, which may contain
parabolic arcs. Its generalisation to general polygons was introduced shortly after that [24].
An algorithm for constructing an approximate straight skeleton using Steiner points was
suggested in [25].

A scale axis transform, another type of skeleton, was proposed in [26]. It is defined
by multiplicative scaling operations, with the aim to eliminate small local features of the
shape. The points belonging to the skeleton are considered the centres of balls, touching at
least two boundary points. By the gradual scaling of the shape, some balls become covered
entirely by other balls. These covered balls are removed, and a hierarchical skeleton is
obtained as a result. The skeleton is simplified most at the topmost level.

A β-skeleton was suggested in [27]. It is an undirected graph, defined on a set of
points on the plane. The boundary points pi and pj are connected by an edge if there exists
point q whose angle ∠piqpj is greater than the user-defined parameter β. The undirected
graph is not always connected in this way.

Regardless of the skeleton type, it can be used for shape classifications, comparisons,
and recognition. Various skeleton applications have been reported [28–33].

The most-recent studies in the field of shape characterisation heavily rely on neu-
ral networks and deep learning. Applications of these state-of-the-art techniques have
been utilised successfully in numerous research domains, such as medicine [34,35], re-
mote sensing [36], and physics [37]. Unfortunately, the downside of these methods is the
requirement for large training sets in order to achieve high characterisation accuracy.

3. Materials and Methods

Let π be a rasterised plane consisting of equally sized squared cells ci,j, 0 ≤ i < n,
0 ≤ j < m, where n and m define the horizontal and vertical resolutions of π. Each cell ci,j
is associated with an attribute ai,j ∈ {I, B, E}, where I stands for interior, B for border, and
E for exterior. Let S be a subset of π, such that S = {ci,j} : ai,j ∈ {B, I}. In addition, let
us introduce sweep-line s(α) with the slope α ∈ [0◦, 180◦). s(α) investigates π by gliding
through it. The sweeping is repeated for different slopes α; this is why the method is
considered the Multi-Sweep Characterisation Algorithm (MSCA) in the continuation. It
works in three main steps:

• Initialisation;
• Multi-sweeping;
• Finalisation.

These are discussed in the following subsections.

3.1. Initialisation

The MSCA accepts S either in a vector or a discrete form. The task of the initiali-
sation is to unify these two possibilities for the unique processing. The bounding box
BBox(S) = (xmin, ymin, xmax, ymax) is determined firstly in both cases, where (xmin, ymin)
and (xmax, ymax) represent its left-bottom and right-upper corner, respectively. BBox is
then moved at the origin and becomes our rasterised plane π. If S is given in the discrete
form (for example, by one of the known chain codes exposing four-connectivity [38–41]),
the cell’s size = 1, and the size of the bounding box is obtained as n = xmax − xmin and
m = ymax − ymin. Otherwise, when S is given in the vector form, suitable heuristics should
be applied to determine the size and the number of cells n and m. S is rasterised by the
four-connected rasteriser [42,43], and the shape’s boundary cells are obtained.

Having π and the boundary cells determined, the interior cells are marked by setting
ai,j = I by one of the shape-filling algorithms, while all the remaining cells are marked by

Symmetry 2023, 15, 1212 4 of 15

setting ai,j = E. Figure 1 shows the result of the initialisation for the demonstration shape,
which has been given in the vector form at the input.

(0, 0)

(n, m)

Figure 1. Result of the initialisation for the demonstration shape plotted in orange, where cells with
ai,j = E are white, ai,j = B are black, while the grey cells indicate ai,j = I.

3.2. Multi-Sweeping

Because π is discrete, some changes to the classical sweep-line paradigm (explained
in Section 2.1) are needed in the MSCA:

• Sorting of geometric objects is not needed as the cells in π are organised clearly;
• π is not infinite, but bounded by its frontier cells, i.e., ci,0, c0,j, cn−1,j, ci,m−1, 0 ≤ i < n,

0 ≤ j < m;
• s(α) does not move from an event to an event, but advances through the consecutive

frontier cells.

The multi-sweep part of the MSCA is explained by the pseudocode shown in
Algorithm 1. An initialisation of variables is performed in Lines 8–10. The function
in Line 14 (considered later in Algorithm 2) returns the endpoints (x1, y1) and (x2, y2) of
the sweep-line segment s(α). The function also sets the flag, indicating whether the whole
π has been swept. If it has not, the intersections between s(α) and cells with ai,j = B are
calculated by the function in Line 16. The midpoints ti,j between these intersections, which
are inside S , are calculated and returned in sequence T = 〈ti,j〉 by the function in Line 17.
They are appended to previously determined midpoints to form a set of chains L = {Li},
Li = 〈ti,j〉. The chains are controlled by two sweep-line events as follows:

• Chain Li is created when the local shape feature is met by s(α) (Sweep-lines a and b
in Figure 2);

• Chain Li is terminated when the local shape feature is swept completely (Sweep-line c
in Figure 2).

In this context, the local shape feature is any concave part of S (if S is convex, only
one chain is obtained during each sweep). These two events can, however, appear simulta-
neously at any position of the actual s(α). For example, the chain (or more of them) can
be terminated, and another one (or more of them) can be created at the same time (see
Sweep-line c in Figure 2). The opposite case is shown for Sweep-line d in Figure 2, where
one chain is terminated and three new chains are born. The obtained chains are stored in
the sweep-line status SLS = {Li}. The whole process is repeated by increasing α in Line
22 by the user-defined parameter step. The MSCA terminates when α ≥ 180◦. It returns
terminated chains, stored in SLS , for further processing.

Symmetry 2023, 15, 1212 5 of 15

It is obvious that the cardinality of SLS depends on the local shape’s features and
the value of the parameter step. Although its actual value is not critical, some reasonable
guidelines should be considered:

• Too small values result in many similar (or even equal) chains, which do not contribute
additional information to the shape characterisation and slow down the whole process.

• Large values may cause some local feature to be missed if the filtering process, as
described in Section 3.3, is applied.

• It is practical that step is an integer divisor of 180◦.

Various values of step were evaluated in our experiments. However, the values for the
parameter step = i · 15◦, i = 1, 2, ..., 11, yielded the best results.

Algorithm 1 The multi-sweep-line part of MSCA.

1: function MULTI-SWEEP(step, size, n, m, π)
2: . step: an increment of the sweep-line slope
3: . size: the size of the cell
4: . n, m: the resolution of π
5: . π: rasterised plane with embedded geometric shape S
6: . returns list of resulting chains
7:
8: SLS ← ∅ . Sweep-line status is empty at the beginning
9: α← 0◦ . initial angle of sweep-line

10: validSLCoordinates← TRUE . Flag becomes FALSE when π is swept
11: repeat
12: L ← ∅ . set of chains is cleared
13: repeat . sweeping process
14: validSLCoordinates← GetSweepLineCoordinates(α, size, n, m, x1, y1, x2, y2)
15: if validSLCoordinates = TRUE then
16: borderPixels← SweepLineGridIntersections(size, x1, y1, x2, y2, π)
17: T ← CalculateMidPoints(borderPixels)
18: L ← ConcatenateMidPointsToChains(T,L)
19: end if
20: until validSLCoordinates = FALSE
21: SLS ← SLS ∪ L
22: α← α + step
23: until (α ≥ 180◦)
24: return SLS
25: end function

Figure 2. Common sweep-line events (the arrow denotes the sweep-line moving direction, while the
sequence of red dots belongs to the chains Li; characteristic positions of sweep-line are marked with
characters a–e).

Symmetry 2023, 15, 1212 6 of 15

The pseudocode in Algorithm 2 determines the endpoints of s(α). The function in
Line 7 returns necessary frontier cells one by one until all of them are used. The returned
frontier cells depend on α as shown in Figure 3, where these cells are coloured in blue. The
frontier cell (x1, y1), obtained by this function, is the first sweep-line coordinate. The second
one is obtained by the function in Line 9. This function calculates the intersection point of
the line passing through cell (x1, y1) with slope α and pierces BBox(S) = (0, 0, m, n).

Algorithm 2 Algorithm returns the sweep-line’s endpoints.

1: function GETSWEEPLINECOORDINATES(α, n, m, x1, y1, x2, y2)
2: . α: the sweep-line slope
3: . n, m: the resolution of π
4: . x1, y1, x2, y2; the endpoints of the sweep-line, returned by the function
5: . returns TRUE, if endpoints have been determined, and FALSE otherwise
6:
7: (flag, x1, y1)← GetNextStartingPoint()
8: if flag = TRUE then
9: (x2, y2)← GetSecondCoordinate(α, n, m, x1, y1)

10: return TRUE
11: end if
12: return FALSE
13: end function

(a) (b) (c)

(d) (e) (f)

Figure 3. Results of multi-sweeping, when α = 0◦ (a), α = 30◦ (b), α = 60◦ (c), α = 90◦ (d),
α = 120◦ (e), and α = 150◦ (f). The frontier cells utilised in the sweeping are coloured in blue.

The results of multi-sweeping for slopes α = i · step, i = {0, 1, 2, 3, 4, 5} and step = 30◦

are shown in Figure 3. Midpoints that have already been determined by s(α) are coloured
in red. Meanwhile, midpoints that lie in front of s(α) and are yet to be discovered are
plotted in grey.

Symmetry 2023, 15, 1212 7 of 15

3.3. Finalisation

Finalisation consists of three parts:

• Chain filtering;
• Chain vectorisation;
• Normalisation.

Chain filtering: Different filtering methods can be designed; however, for demonstration
purposes, the following two methods are proposed:

(a) If |Li| ≤ ∆, then chain Li is removed from SLS . |Li| denotes the number of points
in Li, while ∆ is a threshold denoting the minimal number of midpoints in the chain.
It may be determined by users or by heuristics. An example of such a heuristic used
in the experiments presented in Section 4 is given in (1).

∆ =

⌈
max{m, n}

20

⌉
(1)

(b) The average angle α of lines is calculated, determined by the sequential pairs of
midpoints tx,y ∈ Li. Li is accepted if α is close to being perpendicular in regard to α,
i.e, if the heuristic, given in (2), is valid.

90◦ − 0.25 · step ≤ |α− α| ≤ 90◦ + 0.25 · step. (2)

Figure 4 shows the remaining chains in SLS after filtering.

Figure 4. Chains after filtering, where the red points remain from s(0◦), yellow from s(30◦), green
from s(60◦), orange from s(90◦), blue from s(120◦), and purple from s(150◦).

Chain vectorisation: Round-off errors in the raster space π are, unfortunately, unavoidable.
Therefore, it is favourable to vectorise Li ∈ SLS to minimise the effect of the round-off
errors in the further characterisation process. The well-known Douglas–Peucker algo-
rithm [44] was applied on Li ∈ SLS . The set of polylines PL = {PLi} was obtained,
which replaced SLS in the further steps of the algorithm.
Normalisation: The normalisation is performed to make the characterisation of S insen-
sitive to scaling or rotation. BBox(S) = BBox(0, 0, n, m) is transformed into a normalised
bounding box BBox∗(S) according to (3).

Symmetry 2023, 15, 1212 8 of 15

q = max{n, m}

BBox∗ =
{

0, 0,
n
q

,
m
q

}
,

(3)

and after that, PLi ∈ PL are transformed similarly.

3.4. Time Complexity of the Algorithm

The MSCA operates in discrete space π, which consists of equally sized cells ci,j,
0 ≤ i < n, 0 ≤ j < m. There are, altogether, k = n×m cells. The forming of π with all k
cells is performed in linear time O(k). S is then embedded into π to determine boundary
cells, and after that, the remaining cells are classified as being either inside or outside
of the shape. Each cell is visited only once, and therefore, the classification of all cells is
performed in O(k). It can, therefore, be concluded that the initialisation is performed in
linear time O(k).

The main part of the MSCA is multi-sweeping. Let us consider the whole sweep-line
process for the given slope α. Sweep-lines are sent through m + n frontier cells. The first
coordinate of each s is determined in this way, while the second is calculated in constant
time O(1) by determining the intersection of the bounding box and s. s is then rasterised,
and the exact intersection points are calculated for cells with the attribute ai,j = B. The
number of boundary cells on s is considerably smaller than k, and as the calculation of the
intersection points is performed in constant time, all intersection points on a sweep-line are
obtained in O(1). The midpoints ti,j between the obtained intersection points being inside
S are calculated after that in O(1). The sequence of midpoints T is obtained in this way.
Midpoints from T are then concatenated to chains L. However, as the number of chains is
significantly smaller than k, this task is also terminated in O(1). We have already stated
that the count of all sweep-lines at an arbitrary angle α is at most m + n� k. However, all
cells that form π are visited during one sweep-line process, and therefore, the whole π is
swept in O(k). The sweeping is repeated multiple times at various slopes. The number of
slopes is considerably smaller than k; therefore, the time complexity of all different slopes
remains O(k).

Finalisation consists of three steps and operates only on obtained chains consisting
of midpoints stored in SLS . As the number of midpoints in SLS is significantly smaller
than k, it can be accepted that the finalisation is performed in constant time O(1). It can,
therefore, be concluded that the proposed MSCA works in linear time O(k), where k is the
number of cells defining the raster space π.

4. Experiments

This section consists of two parts. The information about 12 testing shapes is given
first, and the results of the MSCA are presented on them. The efficiency of the method
was evaluated after that by measuring the CPU time spent on single- and multi-threaded
implementations. In the second part, the MSCA was applied to find equal shapes, some of
which were rotated and scaled. For this, a characterisation vector V(S) was constructed for
each shape and compared against the characterisation vectors of the other shapes.

4.1. Demonstration of MSCA on Testing Shapes

Twelve shapes, shown in Figure 5, were used in the experiments. Their borders were
described by the Freeman chain code in eight directions [38]. The properties of these shapes
and the number of detected chains are collected in Table 1.

Symmetry 2023, 15, 1212 9 of 15

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5. Testing shapes: (a) Circle, (b) Square, (c) Rocket, (d) Hand, (e) Airplane, (f) Penguin,
(g) Runner, (h) Buddha, (i) Detective, (j) Ballet, (k) Dragon, (l) Cupid.

In the continuation, the results obtained by the MSCA for two shapes, Circle and
Cupid, are shown in Figure 6 and Figure 7, respectively. Circle is the simplest shape,
where the chains are in the form of straight lines. However, Cupid is a challenging shape
containing holes and many concave parts. As can be seen, the MSCA handled both shapes
successfully. It should be noted that the characterisation of these shapes can be performed
equally successfully with other values of step as far as the guidelines given in Section 3.2
are followed.

Symmetry 2023, 15, 1212 10 of 15

Table 1. Properties of S .

S No. of ai,j = B No. of. Holes BBox(S) No. of Chains

Circle 1068 0 327 × 327 12
Square 1068 0 327 × 327 12
Rocket 1232 0 343 × 412 26
Hand 1860 0 363 × 352 82

Airplane 2260 0 430 × 431 52
Penguin 1968 0 390 × 484 45
Runner 2896 0 471 × 508 56
Buddha 11,366 1 2648 × 2850 46

Detective 14,128 2 2440 × 2850 65
Ballet 16,712 1 2313 × 2575 117

Dragon 26,334 2 2807 × 2848 104
Cupid 25,160 4 2727 × 2721 157

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6. Chains produced by the MSCA for S = Circle when: (a) α = 0◦, (b) α = 15◦, (c) α = 30◦,
(d) α = 45◦, (e) α = 60◦, (f) α = 75◦, (g) α = 90◦, (h) α = 105◦, (i) α = 120◦, (j) α = 135◦, (k) α = 150◦,
and (l) α = 165◦.

The CPU times spent by the MSCA are shown in Table 2. A personal computer was
used with an Intel i9-12900K CPU and 64 GB of DDR5 RAM running Windows 11. An
MSVC compiler for C++, along with Microsoft Visual Studio 2022, were applied for de-
velopment and compilation purposes. Two versions of the MSCA were implemented: the
single- and the multi-threaded one using 12 threads. As shown, the multi-threaded imple-
mentation reduced the processing time considerably only for shapes with the larger BBox.

Symmetry 2023, 15, 1212 11 of 15

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 7. Chains obtained with the MSCA for S = Cupid when: (a) α = 0◦, (b) α = 15◦, (c) α = 30◦,
(d) α = 45◦, (e) α = 60◦, (f) α = 75◦, (g) α = 90◦, (h) α = 105◦, (i) α = 120◦, (j) α = 135◦, (k) α = 150◦,
and (l) α = 165◦.

Table 2. CPU time of the MSCA spent for different shapes.

S Single-Threaded Time (s) Multi-Threaded Time (s)

Circle 0.076 0.152
Square 0.081 0.183
Rocket 0.100 0.153
Hand 0.106 0.157

Airplane 0.132 0.205
Penguin 0.141 0.175
Runner 0.195 0.220
Buddha 3.508 1.798

Detective 4.311 1.712
Ballet 4.794 1.511

Dragon 9.297 2.630
Cupid 11.384 2.994

4.2. Recognition of Equal Objects

Arbitrary selected shapes from Figure 5 were used for this experiment. Some of them
were rotated by a multiple of 90◦, and some of them were enlarged by a factor of two, while
the remaining shapes were just copied. The set of shapes obtained in this way is shown in
Figure 8. The aim of the experiment was to find equal objects, regardless of whether they were
rotated, scaled, or just duplicated. For this, characterisation vector Vi(PL) for shape S i was
constructed using the set of polylines PL, produced by the MSCA. Various characteristics
can, of course, be designed. Vi(PL) was formed in this experiment as follows:

Symmetry 2023, 15, 1212 12 of 15

• For each polyline PLk ∈ PL, 0 ≤ k < |PL|, its length was calculated according to (4).

Vi
k =

l=|PLk |−1

∑
l=0

D(PLk,l , PLk,l+1), and 0 ≤ k < |PLi| (4)

where D denotes the Euclidean distance between consecutive polyline points.
• Components Vi

k of an individual vector Vi were sorted after that in decreasing order.

Two shapes S i and S j are considered equal when:

• |Vi| = |V j|, where | | denotes the cardinality of vectors, and if this condition is true;

• Vi
k ≈ V j

k , 0 ≤ k ≤ b0.7|Vi|c, where ≈ corresponds to a user-defined 5% tolerance.

This tolerance was determined experimentally as the best compromise between the
ability of the algorithm to, despite the rounding errors, discriminate similar, yet different
shapes (e.g., a circle or ellipse). The rounding errors, unfortunately, cannot be avoided
during the sweep-line rasterisation process and geometric transformations of the shapes.

Figure 8. Shapes used for detection of equality; the shapes are denoted by letters (A–P).

Table 3 reports the results of these experiments. The MSCA, with the proposed
characterisation vector, found equal shapes successfully in all cases, regardless of their
rotation and/or scaling. The proposed approach can also be adjusted to detect shapes that
are not perfectly equal by softening the above two conditions. For example, the cardinalities
|V|i and |V|j can be considered the same by allowing some variation and using a tolerance

Symmetry 2023, 15, 1212 13 of 15

larger than 5%. However, these parameters should be determined by the user according to
the specific application.

Table 3. Equality of the objects where letters refer to the shapes from Figure 8.

A B C D E F G H I J K L M N O P

A – 1 × 2 × X 3 × × × × × × × × × × × ×
B × – × × × × × × × × × × × × × ×
C × × – × X × × × × × × × × × X ×
D X × × – × × × × × × × × × × × ×
E × × X × – × × × × × × × × × X ×
F × × × × × – × × × × × × × × × X
G × × × × × × – × × × X × × × × ×
H × × × × × × × – × × × × X × × ×
I × × × × × × × × – × × × × X × ×
J × × × × × × × × × – × X × × × ×
K × × × × × × X × × × – × × × × ×
L × × × × × × × × × X × – × × × ×
M × × × × × × × X × × × × – × × ×
N × × × × × × × × X × × × × – × ×
O × × X × X × × × × × × × × × – ×
P × × × × × X × × × × × × × × × –

1 Not tested. 2 Non-equality of a pair of shapes. 3 Equality of a pair of shapes.

5. Conclusions

A new method for the characterisation of geometric shapes was presented in the paper.
It was based on the sweeping paradigm, used frequently in traditional Computational
Geometry. However, in this work, it was adapted for the raster space. The geometric
shape was swept by following the frontier cells of the rasterised plane. The interior shape’s
points, being in the middle of its boundary and laying on the sweep-line, were determined
during each sweep step and connected in chains. Their construction was controlled by two
sweep-line events. They used the local characteristics of the considered shape to determine
the beginning and ending of each chain. The sweeping process was then repeated using
different slopes of the sweep-line. The chains were filtered, vectorised, and normalised after
that. As a result, a set of polylines was obtained, and various characterisation vectors can
be extracted from it. The proposed approach utilised the local symmetry of the geometric
shapes to recognise their eventual similarity, without the need to detect the symmetry
explicitly. If the extraction of the local symmetrical features was the goal, the algorithm
could also be generalised to produce such an output.

For the proof of concept, the method was implemented within the Multi-Sweep Char-
acterisation Algorithm (MSCA). Its correctness and computational load were demonstrated
by twelve testing shapes of different sizes and complexities (from the most simple circle to
shapes with many concave parts and holes). Single- and multi-threaded implementations
of the MSCA were tested, where the multi-threaded implementation was considerably
faster for larger shapes. Finally, the results of the MSCA were used for finding equal shapes
on the scene. A simple characterisation vector consisting of normalised polylines’ lengths
was constructed for each shape. The proposed approach determined reliably equal shapes
in all cases, regardless of their rotation or scaling.

The MSCA offers many new challenges for further research. Although its theoretical
time complexity is linear in regard to the number of cells of the raster space π, it turned
out to be rather slow for a large number of cells and the shapes containing holes and
many concave shapes. Therefore, it would be worth investigating whether hierarchical
spatial data structures, such as quadtree/octree or kd-trees, would accelerate the algorithm.
For the proof of concept, the MSCA was implemented in 2D. Theoretically, it should also
work in higher dimensions. Therefore, a 3D implementation will be performed in the
future. The parameters of the MSCA were determined empirically in this research. It

Symmetry 2023, 15, 1212 14 of 15

would be important to determine theoretically how to set these parameters optimally. New
characterisation features can be constructed from the obtained chains, e.g., such that it
measures the waviness of count junctions that occur when joining chains from sweep-lines
with various angles. In addition, the result of the MSCA could be combined with other
characterisation methods, for example with shape skeletons. Finally, the sweep-line itself
could be replaced by different investigating elements; conics (i.e., a circle or circular arcs)
should be the first choice.

Author Contributions: Conceptualisation, B.Ž. and D.S.; methodology, D.S. and N.L.; software, A.N.
and L.L.; validation I.K. and A.N.; formal analysis, D.P. and I.K.; investigation, B.Ž., D.P., I.K. and
A.N.; resources, I.K.; data curation, Š.K.; writing—original draft preparation, B.Ž., D.P. and D.S.;
writing—review and editing, D.S., I.K., Š.K. and N.L.; visualisation, A.N. and L.L.; supervision, I.K.
and B.Ž.; project administration, I.K. and D.P.; funding acquisition, I.K. and B.Ž. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the Slovene Research Agency under the Research Project
N2-0181 and the Research Programme P2-0041 and the Czech Science Foundation under the Research
Project 21-08009K.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Testing data, used in this paper, can be accessed at: https://gemma.
feri.um.si/site/assets/files/1165/testingdata.zip.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mortenson, M.E. Geometric Modeling; Wileys: New York, NY, USA, 1985.
2. Hoffmann, C.M. Geometric and Solid Modeling: An Introduction; Morgan Kaufmann Pub.: San Mateo, CA, USA, 1989.
3. Liu, H.; Motoda, H. Feature Selection for Knowledge Discovery and Data Minimg; Kluwer Academic Publishers: New York, NY,

USA, 1998.
4. de Berg, M.; van Kreveld, M.; Overmars, M.; Schwarzkopf, O. Computational Geometry: Algorithms and Applications; Springer:

Berlin, Germany, 1997.
5. Shamos, M.I.; Hoey, D. Geometric intersection problems. In Proceedings of the 17th Annual Symposium on Foundations of

Computer Science (SFCS 1976), Houston, TX, USA, 25–27 October 1976; pp. 208–215.
6. Ferreira, C.R.; Andrade, M.V.A.; Magalhes, S.V.G.; Franklin, W.R.; Pena, G.C. A Parallel Sweep Line Algorithm for Visibility

Computation. In Proceedings of the XIV GEOINFO, Campos do Jordão, Brazil, 24–27 November 2013; pp. 85–96.
7. Kim, D.S.; Lee, B.; Sugihara, K. A sweep-line algorithm for the inclusion hierarchy among circles. Jpn. J. Ind. Appl. Math. 2006,

23, 127–138. [CrossRef]
8. Žalik, B.; Jezernik, A.; Rizman Žalik, K. Polygon trapezoidation by sets of open trapezoids. Comput. Graph-UK 2003, 27, 791–800.

[CrossRef]
9. Rizman Žalik, K.; Žalik, B. A sweep-line algorithm for spatial clustering. Adv. Eng. Softw. 2009, 40, 445-451. [CrossRef]
10. Lukač, N.; Žalik, B.; Rizman Žalik, K. Sweep-hyperplane clustering algorithm using dynamic model. Informatica 2014, 25, 564–580.

[CrossRef]
11. Domiter, V.; Žalik, B. Sweep-line algorithm for constrained Delaunay triangulation. Int. J. Geogr. Inf. Sci. 2008, 22, 449–462.

[CrossRef]
12. Žalik, B. An efficient sweep-line Delaunay triangulation algorithm. Comput. Aided Des. 2005, 37, 1027–1038. [CrossRef]
13. Fortune, S. A sweepline algorithm for Voronoi diagrams. Algorithmica 1987, 2, 153–174. [CrossRef]
14. Murtojärvi, M.; Leppänen, V.; Nevalainen, O.S. Determining directional distances between points and shorelines using sweep-line

technique. Int. J. Geogr. Inf. Sci. 2009, 23, 355–368. [CrossRef]
15. Pavlidis, T. A review of algorithms for shape analysis. Comput. Graph. Image Process. 1978, 7, 243–258. [CrossRef]
16. Loncaric, S. A survey of shape analysis techniques. Pattern Recogn. 1998, 31, 983–1001. [CrossRef]
17. Hossain, M.D.; Chen, D. Segmentation for Object-Based Image Analysis (OBIA) a review of algorithms and challenges from

remote sensing perspective. ISPRS J. Photogramm. 2019, 150, 115–134. [CrossRef]
18. Burger, W.; Burge, M.J. Principles of Digital Image Processing; Springer: London, UK, 2009.
19. Solomon, C.; Brekon, T. Fundamentals of Digital Image Processing; Wiley-Blackwell: Chichester, UK, 2011.
20. Gonzales, R.; Woods, R. Digital Image Processing; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2017.

https://gemma.feri.um.si/site/assets/files/1165/testingdata.zip
https://gemma.feri.um.si/site/assets/files/1165/testingdata.zip
http://doi.org/10.1007/BF03167502
http://dx.doi.org/10.1016/S0097-8493(03)00151-1
http://dx.doi.org/10.1016/j.advengsoft.2008.06.003
http://dx.doi.org/10.15388/Informatica.2014.30
http://dx.doi.org/10.1080/13658810701492241
http://dx.doi.org/10.1016/j.cad.2004.10.004
http://dx.doi.org/10.1007/BF01840357
http://dx.doi.org/10.1080/13658810801909607
http://dx.doi.org/10.1016/0146-664X(78)90115-6
http://dx.doi.org/10.1016/S0031-2023(97)00122-2
http://dx.doi.org/10.1016/j.isprsjprs.2019.02.009

Symmetry 2023, 15, 1212 15 of 15

21. Blum, H. A Transformation for Extracting New Descriptors of Shape. In Models for the Perception of Speech and Visual Form;
Wathen-Dunn, W., Ed.; MIT Press: Cambridge, MA, USA, 1967; pp. 362–380.

22. Leborgne, A.; Mille, J.; Tougne, L. Extracting Noise-Resistant Skeleton on Digital Shapes for Graph Matching. In Advances in
Visual Computing, Proceedings of the 10th International Symposium, ISVC 2014, Las Vegas, NV, USA, 8–10 December 2014; Bebis, G., Li,
B., Yao, A., Liu, Y., Duan, Y., Lau, M., Khadka, R., Crisan, A., Chang, R., Eds.; Lecture Notes in Computer Science 8888 (Part II);
Springer: Cham, Switzerland, 2014; pp. 293–302.

23. Aichholzer, O.; Aurenhammer, F.; Alberts, D.; Gärtner, B. A novel type of skeleton for polygons. J. Univers. Comput. Sci. 1995,
1, 752–761.

24. Aichholzer, O.; Aurenhammer, F. Straight skeletons for general polygonal figures in the plane. In Proceedings of the Annual Inter-
national Conference on Computing and Combinatorics (COCOON’96), Hong Kong, 17–19 June 1996; Cai, J.-Y., Wong, C.K., Eds.;
Lecture Notes in Computer Science 1090; Springer: Berlin/Heidelberg, Germany, 1996; pp. 117–126.

25. Smogavec, G.; Žalik, B. A fast algorithm for constructing approximate medial axis of polygons, using Steiner points. Adv. Eng.
Softw. 2012 52, 1–9. [CrossRef]

26. Giesen, J.; Miklos, B.; Pauly, M.; Wormser, C. The Scale Axis Transform. In Proceedings of the Twenty-Fifth Annual Symposium
on Computational Geometry (SCG’09), Aarhus, Denmark, 8–10 June 2009; Hershberger, J., Fogel, E., Eds.; ACM: New York, NY,
USA, 2009; pp. 106–116.

27. Kirkpatrick, D.G.; Radke, J.D. A framework for computational morphology. In Computational Geometry, Machine Intelligence and
Pattern Recognition; Toussaint, G.T., Ed.; Elsevier: Amsterdam, The Netherlands, 1985; Volume 2, pp. 217–248.

28. Goh, W.-B. Strategies for shape matching using skeletons. Comput. Vis. Image Underst. 2008, 110, 326–345. [CrossRef]
29. Ma, C.; Zhang, S.; Wang, A.; Qi, Y.; Chen, G. Skeleton-Based Dynamic Hand Gesture Recognition Using an Enhanced Network

with One-Shot Learning. Appl. Sci. 2020, 10, 3680. [CrossRef]
30. Liu, J.; Wang, G.; Duan, L.; Abdiyeva, K.; Kot, A.C. Skeleton-based Human Action Recognition with Global Context-Aware

Attention LSTM Networks. IEEE Trans. Image Process. 2018, 27, 1586–1599. [CrossRef] [PubMed]
31. Tasnim, N.; Islam, M.M.; Baek, J.-H. Deep Learning-Based Action Recognition Using 3D Skeleton Joints Information. Inventions

2020, 5, 49. [CrossRef]
32. Papadopoulos, K.; Demisse, G.; Ghorbel, E.; Antunes, M.; Aouada, D.; Ottersten, B. Localized trajectories for 2D and 3D action

recognition. Sensors 2019, 19, 3503. [CrossRef]
33. Wang, C. Research on the Detection Method of Implicit Self Symmetry in a High-Level Semantic Model. Symmetry 2020, 12, 28.

[CrossRef]
34. Khanna, N.N.; Jamthikar, A.D.; Gupta, D.; Piga, M.; Saba, L.; Carcassi, C.; Giannopoulos, A.A.; Nicolaides, A.; Laird, J.R.;

Suri, H.S.; et al. Rheumatoid arthritis: Atherosclerosis imaging and cardiovascular risk assessment using machine and deep
learning-based tissue characterization. Curr. Atheroscler. Rep. 2019, 21, 7. [CrossRef] [PubMed]

35. Dadoun, H.; Rousseau, A.L.; de Kerviler, E.; Correas, J.M.; Tissier, A.M.; Joujou, F.; Bodard, S.; Khezzane, K.; de Margerie-Mellon, C.;
Delingette, H.; et al. Deep learning for the detection, localization, and characterization of focal liver lesions on abdominal US
images. Radiol. Artif. Intell. 2022, 4, e210110. [CrossRef]

36. Yan, X.; Ai, T.; Yang, M.; Yin, H. A graph convolutional neural network for classification of building patterns using spatial vector
data. ISPRS J. Photogramm. Remote Sens. 2019, 150, 259–273. [CrossRef]

37. Bisheh, M.N.; Wang, X.; Chang, S.I.; Lei, S.; Ma, J. Image-based characterization of laser scribing quality using transfer learning.
J. Intell. Manuf. 2022, 34, 2307–2319. [CrossRef]

38. Freeman, H. On the encoding of arbitrary geometric configurations. IRE Trans. Electron. Comput. 1961, EC10, 260–268. [CrossRef]
39. Bribiesca, E. A new chain code. Pattern Recogn. 1999, 32, 235–251. [CrossRef]
40. Sánchez-Cruz, H.; Rodríguez-Dagnino, R.M. Compressing bi-level images by means of a 3-bit chain code. Opt. Eng. 2005, 44, 1–8.
41. Žalik, B.; Mongus, D.; Liu, Y.-K.; Lukač, N. Unsigned Manhattan chain code. J. Vis. Commun. Image Represent. 2016, 38, 186–194.

[CrossRef]
42. Cleary, J.C.; Wyvill, G. Analysis of an Algorithm for Fast Ray Tracing using Uniform Space Subdivision. Vis. Comput. 1988,

4, 65–83. [CrossRef]
43. Žalik, B.; Clapworthy, G.; Oblonšek, Č. An Efficient Code-Based Voxel-Traversing Algorithm. Comput. Graph. Forum 1997,

16, 119–128. [CrossRef]
44. Douglas, B.; Peucker, T. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature.

Cartographica 1973, 10, 112–122. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.advengsoft.2012.05.006
http://dx.doi.org/10.1016/j.cviu.2007.09.013
http://dx.doi.org/10.3390/app10113680
http://dx.doi.org/10.1109/TIP.2017.2785279
http://www.ncbi.nlm.nih.gov/pubmed/29324413
http://dx.doi.org/10.3390/inventions5030049
http://dx.doi.org/10.3390/s19163503
http://dx.doi.org/10.3390/sym12010028
http://dx.doi.org/10.1007/s11883-019-0766-x
http://www.ncbi.nlm.nih.gov/pubmed/30684090
http://dx.doi.org/10.1148/ryai.210110
http://dx.doi.org/10.1016/j.isprsjprs.2019.02.010
http://dx.doi.org/10.1007/s10845-022-01926-z
http://dx.doi.org/10.1109/TEC.1961.5219197
http://dx.doi.org/10.1016/S0031-3203(98)00132-0
http://dx.doi.org/10.1016/j.jvcir.2016.03.001
http://dx.doi.org/10.1007/BF01905559
http://dx.doi.org/10.1111/1467-8659.00128
http://dx.doi.org/10.3138/FM57-6770-U75U-7727

	Introduction
	Related Works
	Sweeping Paradigm
	Characterisation Methods and Skeletons

	Materials and Methods
	Initialisation
	Multi-Sweeping
	Finalisation
	Time Complexity of the Algorithm

	Experiments
	Demonstration of MSCA on Testing Shapes
	Recognition of Equal Objects

	Conclusions
	References

