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Abstract: In this paper, a three-dimensional subspace method is proposed, in which the search
direction is generated by minimizing the approximation model of the objective function in a three-
dimensional subspace. The approximation model of the objective function is not unique, and
alternatives can be chosen between a symmetric quadratic model and a conic model by specific criteria.
Moreover, the idea of a WLY conjugate gradient method is applied to characterize the change of
gradient direction between adjacent iteration points. The strategy of initial stepsize and nonmonotone
line search are adopted, and the global convergence of the presented algorithm is established under
mild assumptions. In numerical experiments, we use a collection of 80 unconstrained optimization
test problems to show the competitive performance of the presented method.

Keywords: unconstrained optimization; subspace; conic model; global convergence

1. Introduction

Considering the following unconstrained optimization problem:

min
x∈<n

f (x), (1)

with an initial point x0, the following iterative formula is often used to solve (1):

xk+1 = xk + αkdk, (2)

where xk is the kth iteration point, αk ∈ < is the stepsize determined by a line search
procedure, and dk is the search direction obtained by special ways.

The search direction of the conjugate gradient (CG) methods is obtained by

dk+1 = −gk+1 + βkdk, k = 0, 1, ..., (3)

where d0 = −g0, gk+1 = ∇ f (xk+1) and βk ∈ < is a scalar called the conjugate gradient
parameter. Corresponding to different choices for the parameter βk, various nonlinear
conjugate gradient methods have been proposed. Some classical CG methods include
HS method (Hestenes and Stiefel [1]), FR method (Fletcher and Reeves [2]), PRP method
(Polak et al. [3]), CD method (Fletcher [4]), LS method (Liu and Storey [5]) and DY method
(Dai and Yuan [6]).

Among these mentioned CG methods, the PRP, HS and LS methods share the common
numerator gT

k+1yk, where yk = gk+1 − gk. When the step xk+1 − xk is small, the factor
yk tends to zero, so βk becomes small and the next search direction is essentially the
steepest descent direction which can avoid jamming. Hence, these methods have better
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numerical performance than those lacking in gT
k+1yk. However, the PRP, HS and LS methods

possess weak convergence properties. Based on the PRP method, Wei et al. [7] proposed a
new formula

βWYL
k =

gT
k+1y∗k
gT

k gk
,

where y∗k = gk+1 −
‖gk+1‖
‖gk‖

gk and ‖.‖ denotes the Euclidean norm. When step xk+1 − xk is
small, y∗k also tends to zero so that the WYL method can also avoid jamming. Moreover,
y∗k can avoid the drawback: if the gradients of xk+1 and xk are significantly different, the
structure of yk makes the smaller one between gk+1 and gk nearly insignificant so that
the method cannot make full use of the information. Furthermore, the WYL method not
only has nice numerical performance but also has global convergence properties. More
applications and properties of y∗k can be found in [7–13].

The procedure for determining the stepsize αk used in (2) is usually called line search,
which can be classified into an exact one and an inexact one. One of the most used inexact
line search is the so-called standard Wolfe line search [14]:

f (xk + αkdk) ≤ f (xk) + δαkgT
k dk, (4)

∇ f (xk + αkdk)
Tdk ≥ σgT

k dk, (5)

where 0 < δ < σ < 1. Obviously, it is a monotone procedure that seeks a suitable αk,
making the function value decrease to some extent. Zhang and Hager [15] proposed a
nonmonotone version (ZH line search) that modifies condition (4) to

f (xk + αkdk) ≤ Ck + δαkgT
k dk, (6)

where C0 = f (x0), Q0 = 1, Ck+1 and Qk+1 are updated by

Ck+1 =
ηkQkCk + f (xk+1)

Qk+1
, Qk+1 = ηkQk + 1, (7)

where ηk ∈ [ηmin, ηmax] and 0 ≤ ηmin ≤ ηmax ≤ 1. The choice of ηk controls the degree
of nonmonotonicity. Such a line search can not only overcome some drawbacks in the
monotone line search, but is particularly efficient for unconstrained problems in numerical
experiments [15]. In addition to ZH line search, there are many other efficient nonmonotone
line search procedures, which can be found in [16–25].

The subspace technique is one of the effective means for solving large-scale optimiza-
tion problems, which is receivinging more and more attention. Yuan reviewed various
subspace techniques that have been used in constructing numerical methods for solv-
ing nonlinear optimization problems in [26,27]. There are many optimization methods
adopting the subspace technique, such as the limited-memory quasi-Newton method [28],
the subspace trust region methods [29,30], the subspace SQP method [31], and more re-
search can be found in [32–38]. Moreover, the combination between subspace technique
and conjugate gradient method has been extensively studied. In the earliest research
(see [39]), Yuan and Stoer computed the search direction dk+1 by minimizing the approxi-
mation quadratic model in the two dimensional subspace spanned by gk+1 and sk, namely
Ωk+1 = Span{gk+1, sk} where sk = xk+1 − xk, and proposed the subspace minimization
conjugate gradient method (SMCG), in which dk+1 is formed by

dk+1 = tgk+1 + µsk, (8)
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where t and µ are undetermined parameters. Based on the above idea, Andrei [40] extended
the subspace to Ωk+1 = Span{gk+1, sk, yk} and exploited the acceleration scheme, finally
presenting a three-term conjugate gradient method (TTS), in which

dk+1 = −gk+1 + µsk + νyk,

and µ, ν are also scalar parameters. Inspired by Andrei, Yang et al. [41] changed the sub-
space into Ωk+1 = Span{gk+1, sk, sk−1}, and put forward the subspace three-term conjugate
gradient method (STT). For the same subspace, Li et al. [42] added more parameters to the
computation of search direction so that

dk+1 = tgk+1 + µsk + νsk−1,

and adopted the strategy of nonmonotone line search, eventually proposing the subspace
minimization conjugate gradient method with nonmonotone line search (SMCG_NLS).
Huo et al. [13] combined the idea of the WYL method with subspace method, then con-
structed the subspace Ωk+1 = Span{gk+1, sk, y∗k}, in which

dk+1 = tgk+1 + µsk + νy∗k ,

and finally proposed a new three-dimensional subspace conjugate gradient method (TSCG).
On the other hand, Dai and Kou [43] also focused on the analysis of Yuan and Stoer,

but they paid more attention to the estimate of the parameter ρk+1 = gT
k+1Bk+1gk+1 during

the calculation of dk+1. They combined the Barzilai–Borwein [44] idea and provided some
efficient Barzilai–Borwein conjugate gradient methods (BBCG). It is remarkable that the
idea of BBCG to estimate ρk+1 is employed in this paper.

It is noteworthy that all of the above mentioned subspace minimization conjugate
gradient methods obtain the search direction by minimizing the approximate quadratic
model of objective function in the presented subspace. However, Sun and Yuan [45,46] have
pointed out that, when the current iterative point is not close to the minimizer, the quadratic
model may lead to a poor prediction of the minimizer if the objective function possesses
strong non-quadratic behavior. Furthermore, a quadratic model does not take into account
more information instead of the gradient value in the current iteration, which means that
it does not have enough degrees freedom for incorporating all of the information in the
iterative procedure.

Thus, the research for approximate nonquadratic model is of the essence. Up to
now, many nonquadratic models have been applied to optimization problems, such as
conic model, tensor model and regularization model. The conic model can incorporate
more function information than the quadratic model, and its application in unconstrained
optimization was first studied by Davidon [47]. A typical conic model for unconstrained
optimization is

φk+1(s) =
gT

k+1s

1 + bT
k+1s

+
1
2

sT Bk+1s
(1 + bT

k+1s)2
,

which is an approximation to f (xk + s) − f (xk), and Bk+1 is a symmetric positive defi-
nite matrix approximating to the Hessian of f (x) at xk+1 which satisfies the secant equa-
tion Bk+1sk = yk. The vector bk+1 is normally called the horizontal vector satisfying
1 + bT

k+1s > 0. Such a conic model has been investigated by many scholars. Sorensen [48]
discussed a class of conic methods called “optimization by collinear scaling” for uncon-
strained optimization and shown that a particular member of this algorithm class has a
Q-superlinear convergence. Ariyawansa [49] modified the procedure of Sorensen [48] and
established the duality between the collinear scaling DFP and BFGS methods. Sheng [50]
further discussed the interpolation properties of conic model method. Di and Sun [51]
proposed a trust region method for conic models to solve unconstrained optimization
problems. The trust region methods based on conic model have brought about a great
number of research.
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Li et al. [52] paid attention to the combination of subspace method and conic model.
They considered the following conic approximation model:

φk+1(d) =
gT

k+1d

1 + bT
k+1d

+
1
2

dT Bk+1d
(1 + bT

k+1d)2
(9)

where

bk+1 = − 1− γk+1

γk+1gT
k+1sk

gk+1,

γk+1 =
−gT

k sk√
∆k+1 + fk − fk−1

,

∆k+1 = ( fk − fk+1)
2 − (gT

k+1sk)(gT
k sk).

In the two-dimensional subspace Ωk+1 = Span{gk+1, sk}, they minimized the above
conic model to compute the search direction, and finally developed a subspace minimiza-
tion conjugate method based on the conic model (SMCG_Conic). Sun et al. [53] extended
the subspace to Ωk+1 = Span{gk+1, sk, sk−1} and presented a three-dimensional subspace
minimization conjugate gradient method based on a conic model (CONIC_CG3).

The adoption of a nonquadratic model does not mean abandoning the quadratic
model; here we refer to the analysis of Yuan [54], in which a quantity uk is defined by

uk =

∣∣∣∣∣2( fk − fk+1 + gT
k+1sk)

sT
k yk

− 1

∣∣∣∣∣,
which shows the extent of how the objective function f (x) is close to a quadratic on the
line segment between xk and xk+1. Dai et al. [55] indicate that if the following condition

uk ≤ c1 or max{uk, uk−1} ≤ c2 (10)

holds, where 0 < c1 < c2 are two small constants, then they think that f (x) is very close to
a quadratic on the line segment between xk and xk+1. If the condition (10) is satisfied, then
the choice of the quadratic approximation model is preferable; otherwise, the conic model
is more suitable. The utilization of such a quantity can be found in [56,57].

Since the combination of subspace technique and conic model has been investigated,
we come up with the idea of whether we can make further studies. SMCG_Conic and
CONIC_CG3 are efficient methods that possess good theoretical and numerical results, but
they only considered the two-dimensional subspace Span{gk+1, sk} and three-dimensional
subspace Span{gk+1, sk, sk−1}, respectively. Hence, we expect to extend the application of
conic model in the subspace conjugate gradient method. In addition, the WYL method with
the ingredient y∗k has good performance both in theory and numerical experiment, and the
subspace method TSCG based on quadratic model and subspace Span{gk+1, sk, y∗k} also
is an efficient method. In this paper, we investigates a new application of WYL method
and subspace method based on the conic model by extending SMCG_Conic to subspace
Span{gk+1, sk, y∗k}. Furthermore, we adopt the initial stepsize strategy and nonmonotone
line search, under which we establish the sufficient descent property and global conver-
gence property. Since our method is based on three-dimensional subspace and conic model,
it has efficient performance in numerical experiment and can solve more problems than
subspace method based on two-dimensional subspace and quadratic model.

This paper is organized as follows: in Section 2, the search directions on the subspace
Ωk+1 based on two different models are derived, and the criteria for how to choose the
approximate model and search direction are presented. In Section 3, we obtain the step-
size by the strategies of initial stepsize and nonmonotone line search, and elaborate the
generated algorithm. In Section 4, we give the proofs for some important lemmas of the
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search direction, then state the convergence performance of the generated algorithm under
suitable assumptions. In Section 5, we compare the numerical results of our algorithm with
another two methods.

2. The Search Direction

For an optimization method, the search direction attaches great importance to the
iterative formula, and the computation of search direction is always the first job. Hence, the
main content of this section is to construct the formula for the search direction. Since the ap-
proximation model is selected between conic model and quadratic model, the computation
will be divided into two parts.

2.1. Conic Model

In this subsection, we will give the computation of the search direction in the case that
conic model is used.

When (10) is violated, the conic model is more suitable to approximate the objective
function, so we compute the search direction by minimizing the conic model in subspace
Ωk+1 = Span{gk+1, sk, y∗k}. We consider the subproblem

min
d∈Ωk+1

φk+1(d), (11)

where φk+1(d) is the same as (9).
The discussion will be divided into three parts depending on the three different

dimensions of the subspace Ωk+1.

Situation 1: dim(Ωk+1) = 3.
In this situation, the search direction is

dk+1 = tgk+1 + µsk + νy∗k . (12)

By substituting (12) into (11) and using the secant equation, the problem (11) turns into

min
(t,µ,ν)

φk+1(u) =
aTu

1 + cTu
+

1
2

uT Ak+1u
(1 + cTu)2 , (13)

where

Ak+1 =

 ρk+1 gT
k+1yk ωk

gT
k+1yk sT

k yk yT
k y∗k

ωk yT
k y∗k τk

, a =

‖gk+1‖2

gT
k+1sk

gT
k+1y∗k

, c =

bT
k+1gk+1
bT

k+1sk
bT

k+1y∗k

, u =

 t
µ
ν

,

and ρk+1 = gT
k+1Bk+1gk+1, ωk = gT

k+1Bk+1y∗k , τk = y∗k
T Bk+1y∗k .

To solve (13), we first figure out the zero solution of the function

∇φk+1(u) =
1

1 + cTu

(
I − cuT

1 + cTu

)(
a +

Ak+1u
1 + cTu

)
,

and obviously I − cuT

1+cTu is invertible, so the problem is reduced to a + Ak+1u
1+cTu = 0. After

calculation, we can deduce that, when Ak+1 is positive definite and 1 + cT A−1
k+1a 6= 0, the

solution of (13) is

uk+1 =
−A−1

k+1a

1 + cT A−1
k+1a

. (14)
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By using the relationship A−1
k+1 =

A∗k+1
|Ak+1|

, where

A∗k+1 =

X θ1 θ2
θ1 θ θ3
θ2 θ3 Y

 (15)

is the adjugate matrix of Ak+1, and X, θ1, θ2, θ, θ3, Y denote the cofactor of A11
k+1, A21

k+1,

A31
k+1, A22

k+1, A32
k+1, A33

k+1, respectively, in which Aij
k+1 denotes the ij-th element of Ak+1 and

X = (sT
k yk)τk − (yT

k y∗k )
2,

θ1 = (yT
k y∗k )ωk − (gT

k+1yk)τk,

θ2 = (gT
k+1yk)(yT

k y∗k )− (sT
k yk)ωk,

θ = ρk+1τk −ω2
k ,

θ3 = (gT
k+1yk)ωk − ρk+1(yT

k y∗k ),

Y = ρk+1(sT
k yk)− (gT

k+1yk)
2,

then we finally obtain the solution of (13),

uk+1 =

 tk+1
µk+1
νk+1

 = − 1
Dk+1

X θ1 θ2
θ1 θ θ3
θ2 θ3 Y

‖gk+1‖2

gT
k+1sk

gT
k+1y∗k

 =
1

Dk+1

−q1
−q2
−q3

, (16)

where

|Ak+1| = ρk+1X + θ1gT
k+1yk + θ2ωk,

Dk+1 = |Ak+1|+ q1bT
k+1gk+1 + q2bT

k+1sk + q3bT
k+1y∗k ,

q1 = X‖gk+1‖2 + θ1gT
k+1sk + θ2gT

k+1y∗k ,

q2 = θ1‖gk+1‖2 + θgT
k+1sk + θ3gT

k+1y∗k ,

q3 = θ2‖gk+1‖2 + θ3gT
k+1sk + YgT

k+1y∗k .

So the solution of (11) in the three-dimensional subspace Ωk+1 = Span{gk+1, sk, y∗k} is

dk+1 =
(

gk+1 sk y∗k
)
uk+1.

During evaluation, it is important to find appropriate ways to estimate ρk+1, ωk and τk
in order to avoid matrix–vector multiplication and improve efficiency. Yuan and Stoer [39]
proposed two ways to calculate such quantities containing Bk+1, one of which is to obtain
Bk+1 by using the scaled memoryless BFGS formula. The approach of Dai and Kou [43] is
to combine the Barzilai–Borwein [44] idea by approximating the Hessian by (1/αBB1

k+1)I or

(1/αBB2
k+1)I, where

αBB1
k+1 =

‖sk‖2

sT
k yk

, αBB2
k+1 =

sT
k yk

‖yk‖2 .

For ωk, we utilize the memoryless BFGS formula to obtain Bk+1 so that

ωk = gT
k+1

(
I +

ykyT
k

sT
k yk
−

sksT
k

sT
k sk

)
y∗k

= gT
k+1y∗k +

gT
k+1ykyT

k y∗k
sT

k yk
−

gT
k+1sksT

k y∗k
sT

k sk
. (17)
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Then for τk, we combine the idea of [42,43], and estimate τk by

τk = ζk
‖yk‖2

sT
k yk
‖y∗k‖

2, (18)

where

ζk =

{
max{0.9ζk−1, 1.2}, if αk > 1.0,
min{1.1ζk−1, 1.75}, otherwise,

and ζ0 = 1.5. It is obvious that ζk ∈ [1.2, 1.75].
For the estimate of ρk+1, we adopt the idea of Li et al. [42], because it can guaran-

tee some good properties. Firstly, according to the analysis regarding (14), the positive
definitiveness of Ak+1 is essential, which requires |Ak+1| > 0. It follows that

ρk+1 >
−θ1gT

k+1yk − θ2ωk

X
. (19)

By setting X = mksT
k ykτk with mk , 1− (yT

k y∗k )
2

sT
k ykτk

, and combining (15), we have

ρk+1 >

[
(gT

k+1yk)
2

sT
k yk

+
ω2

k
τk
− 2

gT
k+1ykωkyT

k y∗k
sT

k ykτk

]
/mk , nk, (20)

if and only if mk is positive, which can be guaranteed by (18). In addition, the positive
definitiveness of Ak+1 also requires that its first and second order leading principal minors
are positive, and it means

ρk+1 >
(gT

k+1yk)
2

sT
k yk

. (21)

Secondly, Dk+1 > 0 is also a necessary condition to keep the sufficient descent property,
from which follows

ρk+1 >
Sk

sT
k ykτk

/Mk, (22)

if Mk > 0, where

Sk = −θ1gT
k+1yk − θ2ωk − bT

k+1gk+1(X‖gk+1‖2 + θ1gT
k+1sk + θ2gT

k+1y∗k )

− bT
k+1sk(θ1‖gk+1‖2 −ω2

k gT
k+1sk + ωkgT

k+1ykgT
k+1y∗k )

− bT
k+1y∗k (θ2‖gk+1‖2 + ωkgT

k+1ykgT
k+1sk − (gT

k+1yk)
2gT

k+1y∗k ),

and

Mk = 1−
(yT

k y∗k )
2

sT
k ykτk

+
1− γk+1

γk+1

[
2

gT
k+1y∗k yT

k y∗k
sT

k ykτk
−

gT
k+1sk

sT
k yk

−
(gT

k+1y∗k )
2

gT
k+1skτk

]
.

Likewise, we define the right-hand side of (22) as Nk, i.e. Nk ,
Sk

sT
k ykτk

/Mk.

After the above discussion, we can estimate ρk+1 as follows,

ρk+1 = ζk max{K, Nk, nk}, (23)

where K = K1‖gk+1‖2,

K1 = max

{
‖yk‖2

sT
k yk

,
∣∣∣∣1− γk+1

γk+1

∣∣∣∣‖gk+1‖2

|gT
k+1sk|

}
,

and ζk is the same as that in (18). One of the purposes of K is to ensure (21).
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Before computing dk+1 by (12) and (16), we should verify the following conditions:

∆k+1 ≥ 0, (24)

Mk ≥ ρ0, (25)

ξ1 ≤
sT

k yk

‖sk‖2 ≤
‖yk‖2

sT
k yk

≤ ξ2, (26)

∣∣∣∣1− γk+1
γk+1

∣∣∣∣‖gk+1‖2

|gT
k+1sk|

≤ ξ3, (27)

|Ak+1|
sT

k ykτkρk+1
≥ ξ5, (28)

where ρ0 ∈ (0, 1) and ξ1, ξ2, ξ3, ξ5 are positive constants. The expressions (24) and (25) are
fundamental premises of the conic model (5) and relation (22), respectively. On the basis of
the Barzilai–Borwein [44] idea, (26) might indicate the suitable condition numbers of the
approximation Hessian matrix. Moreover, (27) is vital to guarantee the descent property of
the search direction. As for (28), obviously it makes Ak+1 more positive definite, and is also
important for establishing the sufficient descent property of the search direction.

For convenience, we call (24)–(28) the first conic model conditions. Hence, if the first
conic model conditions hold, then we compute the search direction by (12) and (16).

Situation 2: dim(Ωk+1) = 2 or 1.
Li et al. [52] have made a deep study of the subspace conjugate gradient method based

on the conic model in this case. Here we refer to their works. When dim(Ωk+1) = 2, the
search direction is formed by

dk+1 = tgk+1 + µsk,

which is the same as (8). The solution of t and µ is(
tk+1
µk+1

)
=

1
D̄k+1

(
−c1
−c2

)
, (29)

which is the same as (13) in [52].
In this case, conditions (24) and (26) are still essential, but before obtaining dk+1 by (8)

and (29), the following conditions are also necessary:

m̄k ≥ ρ̄0, (30)∣∣∣∣1− γk+1
γk+1

∣∣∣∣‖gk+1‖2

|gT
k+1sk|

≤ ξ3, if
1− γk+1

γk+1gT
k+1sk

< 0, (31)

‖gk+1‖2‖yk‖‖sk‖
(gT

k+1sk)2
≤ ξ4, if

1− γk+1

γk+1gT
k+1sk

≥ 0, (32)

where ρ̄0 ∈ (0, 1), ξ4 is a positive constant and ξ3 is identical to that in (27). We call (24), (26)
and (30)–(32) the second conic model conditions. If the first conic model conditions do
not all hold but the second conic model conditions hold, we compute the search direction
by (8) and (29).

If the first and second conic model conditions are violated but (33) and (34) hold,

ϑ1 ≤
sT

k yk

‖sk‖2 , (33)

|gT
k+1ykgT

k+1dk|
dT

k yk‖gk+1‖2
≤ ϑ4, (34)
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where ϑ4 ∈ [0, 1) and ϑ1 are positive constants, the HS direction is considered, i.e.,

dk+1 = −gk+1 + βHS
k dk. (35)

We call (33) and (34) the HS conditions.
Therefore, there are two choices of search direction when dim(Ωk+1) = 2: one is to

compute dk+1 by (8) and (29) if the second conic model conditions hold; the other is to
compute dk+1 by (35) if the HS conditions hold. Otherwise, we use the negative gradient
direction −gk+1 as our search direction.

2.2. Quadratic Model

The content of this subsection is to calculate the search direction in the case that the
objective function is approximated by a quadratic model.

When the condition (10) holds, the quadratic approximation model seems to perform
well in approximating the objective function, so we consider the subproblem based on the
quadratic approximation model as follows:

min
d∈Ωk+1

ψk+1(d) = gT
k+1d +

1
2

dT Bk+1d, (36)

and related work can be found in [13]. The corresponding results can be applied to this
situation. We state the concrete results in the following.

Firstly, there are some necessary conditions:

ϑ1 ≤
sT

k yk

‖sk‖2 ≤
‖yk‖2

sT
k yk

≤ ϑ2, (37)

ϑ1 ≤
τk
‖y∗k‖2 ,

4‖yk‖4‖y∗k‖
2

(sT
k yk)2τk

≤ ϑ2, (38)

‖sk‖2

‖gk+1‖2 ≥ ϑ3, (39)

we call (37)–(39) the quadratic model conditions.
When the quadratic model conditions hold,

dk+1 = t1
k+1gk+1 + µ1

k+1sk + ν1
k+1y∗k , (40)

where  t1
k+1

µ1
k+1

ν1
k+1

 = − 1
|Ak+1|

X θ1 θ2
θ1 θ θ3
θ2 θ3 Y

‖gk+1‖2

gT
k+1sk

gT
k+1y∗k

.

When the quadratic model conditions do not all hold but (37) holds,

dk+1 = t2
k+1gk+1 + µ2

k+1sk, (41)

where (
t2
k+1

µ2
k+1

)
=

1
|Āk+1|

(
gT

k+1ykgT
k+1sk − ‖gk+1‖2sT

k yk
‖gk+1‖2gT

k+1yk − ρk+1gT
k+1sk

)
.

Āk+1 =

(
ρk+1 gT

k+1yk
gT

k+1yk sT
k yk

)
.
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When (37) does not holds but the HS conditions hold,

dk+1 = −gk+1 + βHS
k dk.

Otherwise, dk+1 = −gk+1.

To sum up, the generated directions possess several forms as follows:
when the approximation conic model is selected, i.e. (10) is violated,
- dk+1 is calculated by (12) and (16), if the first conic model conditions hold,
- dk+1 is calculated by (8) and (29), if the second conic model conditions hold,
- dk+1 is calculated by (35), if the HS conditions hold;
when the approximation quadratic model is selected, i.e. (10) holds,
- dk+1 is calculated by (12) and (40), if the quadratic model conditions hold,
- dk+1 is calculated by (8) and (41), if only (37) holds,
- dk+1 is calculated by (35), if the HS conditions hold;
otherwise, dk+1 = −gk+1.

3. The Stepsize and Algorithm

In this section, we will present the obtainment of another essential ingredient in the
iterative formula of optimization method, i.e. stepsize. It requires two steps: the first is the
choice of initial stepsize, and the second is the line search procedure. After these discussion,
then we can propose our whole algorithm.

3.1. Strategy for the Initial Stepsize

Firstly, we show how to choose the initial stepsize.
It is generally acknowledged that the initial stepsize is of great significance for an

optimization method, especially for the conjugate gradient method. For Newton and quasi-
Newton methods, the choice of the initial trial stepsize may always be unit step α0 = 1.
However, it is different for methods that do not produce well-scaled search directions,
such as the steepest descent or the conjugate gradient methods. Thus, it is significant
to make a reasonable initial guess of the stepsize by considering the current information
about the objective function and algorithm for such methods [58,59]. Many strategies of
the initial stepsize have been proposed which can be found in the achievements of Hager
and Zhang [60], Nocedal and Wright [58], Dai and Kou [19], Liu and Liu [57].

In the strategy of [19], Dai and Kou presented a condition,

|ϕk+1(α
0
k+1)− ϕk+1(0)|

ε1 + |ϕk+1(0)|
≤ ε2, (42)

where ε1, ε2 are small positive constants, α0
k+1 denotes the initial trial stepsize, and ϕk+1(α) =

f (xk+1 + αdk+1). If condition (42) holds, it implies that the points xk+1 + α0
k+1dk+1 and

xk+1 are not far away from each other, so it is reasonable to use the minimizer of the
quadratic interpolation function for ϕk+1(0), ϕ

′
k+1(0) and ϕk+1(α

0
k+1) as the new initial

stepsize, where ϕ
′
k+1(0) denotes the first derivative of ϕk+1(0).

In this paper, the selection of the initial stepsize has two parts, depending on whether
the negative gradient direction is adopted or not, and is presented via modification of that
in Liu and Liu [56].

When the search direction is negative gradient direction, according to the analysis of
Liu and Liu [57], it is desirable to take the initial trial stepsize by

¯̄αk+1 =

{
max{min{sT

k yk/‖yk‖2, λmax}, λmin}, if gT
k+1sk > 0,

max{min{‖sk‖2/sT
k yk, λmax}, λmin}, if gT

k+1sk ≤ 0,
(43)



Symmetry 2023, 15, 1207 11 of 26

where λmin and λmax are two positive constants controlling the initial stepsize within the
interval [λmin, λmax] which is preferable in numerical experiments.

Andrei [61] thinks that, the more accurate the step length is, the faster convergence
a conjugate gradient algorithm has. It therefore makes sense to verify if the initial trial
stepsize ¯̄αk+1 satisfies (42) or not. If so and dk 6= −gk, ‖gk+1‖2 ≤ 1, we update the initial
stepsize by

α̃k+1 = max{min{ ˜̃αk+1, λmax}, λmin},

where
˜̃αk+1 = min q(ϕk+1(0), ϕ

′
k+1(0), ϕk+1( ¯̄αk+1)),

where q(ϕk+1(0), ϕ
′
k+1(0), ϕk+1( ¯̄αk+1)) denotes the quadratic interpolation function for

ϕk+1(0), ϕ
′
k+1(0) and ϕk+1( ¯̄αk+1).

Therefore, the initial stepsize for the negative gradient direction is

α0
k+1 =

{
α̃k+1, if (42) holds, dk 6= −gk, ‖gk+1‖2 < 1 and ˜̃αk+1 > 0,
¯̄αk+1, otherwise.

(44)

When it comes to the search direction that is not negative gradient direction, the
similarity of the calculation between our direction and that in quasi-Newton methods
implies that the unit stepsize α0

k+1 = 1 might be a reasonable initial trial stepsize. Again we
figure out the minimizer of the quadratic interpolation function

ᾱk+1 = min q(ϕk+1(0), ϕ
′
k+1(0), ϕk+1(1)).

If α0
k+1 = 1 satisfies (42) and ᾱk+1 > 0, we update the initial stepsize by

α̂k+1 = max{min{ᾱk+1, λmax}, λmin}.

Therefore, the initial stepsize for the search direction except negative gradient direction is

α0
k+1 =

{
α̂k+1, if (42) holds and ᾱk+1 > 0,
1, otherwise.

(45)

3.2. The Nonmonotone Line Search

Secondly, we introduce the line search used in our algorithm.
For the variable ηk in ZH line search, Zhang and Hager [15] proved that if ηmax = 1,

then the generated sequence {xk} only has the property that

lim inf
k→∞

‖gk‖ = 0.

Liu and Liu [57] presented a formula of ηk,

ηk =

{
c, mod (k, n) = n− 1,
1, mod (k, n) 6= n− 1,

where 0 < c < 1 and mod(k, n) denotes the residue for k modulo n, and it resulted in a
better convergence.

Referring to the above study, Li et al. [52] and Sun et al. [53] made some modifications
so that the improved line search is more appropriate for their algorithms.
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In order to gain the decent convergence result and performance, this paper modifies
the improved ZH line search used in [53]. To be specific, we set

Ck+1 =

{
fk+1 + min{1, 0.9(Ck − fk+1)}, k < 5,
[ηkQkCk + f (xk+1)]/Qk+1, k ≥ 5,

(46)

Qk+1 =

{
6, k = 4,
ηkQk + 1, k ≥ 5,

(47)

where

ηk =

{
η, mod (k, n) = 0,
1, mod (k, n) 6= 0,

(48)

where η = 0.999.

3.3. Algorithm

In this subsection, we will detail our new three-dimensional subspace method based
on conic model.

First, we incorporate a special restart technique proposed by Dai and Kou [19]. They
defined a quantity

rk =
2( fk+1 − fk)

αk(gT
k dk + gT

k+1dk)
,

where fk+1 = ϕk(αk) and fk = ϕk(0). If rk is close to 1, they think that the line search
function ϕk is close to some quadratic function. According to their analysis, the exact
approach of this quantity is that if there are continuously many iterations such that rk is
close to 1, we restart the algorithm with the negative gradient direction. In addition, if the
number of the iterations since the last restart reaches the MaxRestart threshold, we also
restart out algorithm.

The details of the three-dimensional subspace conjugate gradient method based on
conic model are given in the next algorithm, which is Algorithm 1.

Algorithm 1 WYL_TSCO

Require: initial point x0, initial stepsize α0
0, positive constants ε, ε1, ε2, 0 < δ < σ < 1,

ξ1, ξ2, ξ3, ξ4, ξ5, ϑ1, ϑ2, ϑ3, ϑ4, ρ0, ρ̄0 ∈ (0, 1), λ1, λ2, λmin, λmax
Ensure: optimal x∗

1: Set MaxRestart: = 4n, IterRestart: = 0, IterQuad: = 0, MinQuad: = 3, Numnongrad: = 0, C0 = f0, d0 = −g0
and k: = 0.

2: If ‖g0‖∞ ≤ ε, stop.
3: Calculate the stepsize αk by (5) and (6) with α0

k .
4: Update xk+1 = xk + αkdk . If ‖gk+1‖∞ ≤ ε, stop; otherwise, let IterRestart: = IterRestart +1. If |rk − 1| ≤ 10−8

or | fk+1 − fk − 0.5(gT
k+1sk + gT

k sk)| ≤ 6.0× 10−8, IterQuad: = IterQuad+1; else, IterQuad: = 0.
5: Calculate the search direction dk. If Numnongrad = MaxRestart, or (IterQuad = MinQuad and IterRestart
6=IterQuad), go to 5.6; else if the condition (10) holds, go to 5.1; else, go to 5.3.

5.1: If the quadratic model conditions hold, compute dk+1 by (12) and (40), set Numnongrad: = Numnon-
grad+1; else, go to 5.2.

5.2: If condition (37) holds, compute dk+1 by (8) and (41), set Numnongrad: = Numnongrad+1; else, go
to 5.5.

5.3: If the first conic model conditions hold, compute dk+1 by (12) and (16), set Numnongrad: = Numnon-
grad+1; else, go to 5.4.

5.4: If the second conic model conditions, compute dk+1 by (8) and (29), set Numnongrad: = Numnon-
grad+1; else, go to 5.5.

5.5: If the HS conditions hold, compute dk+1 by (35), set Numnongrad: = Numnongrad +1; else, go to 5.6.
5.6: Compute dk+1 = −gk+1, set Numnongrad: = 0 and IterRestart: = 0.

6: If dk+1 = −gk+1, calculate α0
k+1 by (44); otherwise, calculate α0

k+1 by (45).
7: Update Qk+1 and Ck+1 by (46)–(48).
8: Set k := k + 1, go to Step 3.
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4. Properties of the Proposed Algorithm

The theoretical nature is an important criterion to determine the performance of an
algorithm. In this section, we will give some properties of WYL_TSCO, including the
sufficient descent property and the global convergence.

4.1. Some Lemmas

This subsection will make a deep discussion on our algorithm and prove some prop-
erties of the presented directions before establishing the global convergence. At first, we
propose two assumptions as follows:

Assumption 1. The objective function f (x) is continuously differentiable and bounded from below
on <n.

Assumption 2. The gradient function g(x) is Lipschitz continuous on the level set D = {x ∈
<n : f (x) ≤ f (x0)}, which means that there exists a positive constant L > 0 satisfying

‖g(x)− g(y)‖ ≤ L‖x− y‖, ∀x, y ∈ D,

which implies that ‖yk‖ ≤ L‖sk‖.

With these assumptions, we can prove some properties of the new directions in
the following.

Lemma 1. For the search direction dk+1 calculated by WYL_TSCO, there exists a constant ς1 > 0
such that

gT
k+1dk+1 ≤ −ς1‖gk+1‖2. (49)

Proof. We will discuss in several parts based on different situations and different approxi-
mation models.

Case I: if the negative direction is adopted, i.e. dk+1 = −gk+1, then

gT
k+1dk+1 = −‖gk+1‖2 ≤ −1

2
‖gk+1‖2.

Case II: if dk+1 is determined by (35), i.e., the HS direction, combining (34), then
we have

gT
k+1dk+1 = −‖gk+1‖2 + βHS

k gT
k+1dk

≤ −‖gk+1‖2 +
|gT

k+1ykgT
k+1dk|

dT
k yk

≤ −‖gk+1‖2 + ϑ4‖gk+1‖2

= −(1− ϑ4)‖gk+1‖2.

Case III (conic): if dk+1 is calculated by (8) and (29), Li, Liu and Liu [52] have
proved that

gT
k+1dk+1 ≤ −ς̄‖gk+1‖2,

where

ς̄ = min
{

ρ̄0

(8− 6ρ̄0 max{ξ2, ξ4})
,

1
6c̄

}
,

and c̄ is a positive constant.
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Case IV (conic): when dk+1 is obtained by (12) and (16), we have

gT
k+1dk+1 =

‖gk+1‖2

gT
k+1sk

gT
k+1y∗k

T tk+1
µk+1
νk+1



= − 1
Dk+1

‖gk+1‖2

gT
k+1sk

gT
k+1y∗k

TX θ1 θ2
θ1 θ θ3
θ2 θ3 Y

‖gk+1‖2

gT
k+1sk

gT
k+1y∗k


= −‖gk+1‖4

Dk+1
h(x, y),

where x ,
gT

k+1y∗k
‖gk+1‖2 , y ,

gT
k+1sk
‖gk+1‖2 . Moreover, h(x, y) is a binary quadratic function of x and y

which can be expressed as

h(x, y) = Yx2 + 2θ3xy + θy2 + 2θ2x + 2θ1y + X.

It is easy to acquire the Hessian of h(x, Y)

Hh =

(
2Y 2θ3
2θ3 2θ

)
,

we have Y > 0 because Ak+1 is positive definite, and the determinant of Hh

4Yθ − 4θ2
3 = 4ρk+1|Ak+1|,

is also positive, so h(x, y) has a minimizer, that is

h(x, y)min =
|Ak+1|
ρk+1

.

Therefore, we can derive

gT
k+1dk+1 ≤ −

‖gk+1‖4

Dk+1
h(x, y)min ≤ −

|Ak+1|
Dk+1ρk+1

‖gk+1‖4. (50)

Because ρk+1, Dk+1 and |Ak+1| are all positive, we just need to prove that |Ak+1|
Dk+1ρk+1

‖gk+1‖2

has a lower bound. Since Dk+1 contains ρk+1, we first prove that ρk+1 has an upper bound;
that is the upper bound of Nk, nk and K.

For Nk, we use the Cauchy inequality and can obtain

|Nk| =
∣∣∣∣∣ Sk

sT
k ykτk

∣∣∣∣∣/Mk

≤
[∣∣∣∣1− γk+1

γk+1

∣∣∣∣
(
‖gk+1‖4

|gT
k+1sk|

+ 4
‖gk+1‖4‖yk‖2‖y∗k‖

2

|gT
k+1sk|sT

k ykτk
+ 4
‖gk+1‖2‖yk‖‖y∗k‖|ωk|

sT
k ykτk

+2
‖gk+1‖3‖yk‖

sT
k yk

+ 2
‖gk+1‖3‖y∗k‖|ωk|
|gT

k+1sk|τk
+
‖gk+1‖‖sk‖ω2

k
sT

k ykτk

)

+
‖gk+1‖2‖yk‖2

sT
k yk

+
ω2

k
τk

+ 2
‖gk+1‖‖yk‖2‖y∗k‖|ωk|

sT
k ykτk

]
/Mk,
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combining (17), (18) and using the Cauchy inequality again, we have

|Nk| ≤
1

Mk
‖gk+1‖2

[∣∣∣∣1− γk+1
γk+1

∣∣∣∣
(
‖gk+1‖2

|gT
k+1sk|

+ 4
‖gk+1‖2

|gT
k+1sk|

+ 4
2 + ξ2

ζk

‖gk+1‖
‖yk‖

+2
‖gk+1‖‖yk‖

sT
k yk

+ 2
2 + ξ2

ζk

sT
k yk

‖yk‖2
‖gk+1‖2

|gT
k+1sk|

+
(2 + ξ2)

2

ζk

‖gk+1‖‖sk‖
‖yk‖2

)

+
‖yk‖2

sT
k yk

+
(2 + ξ2)

2

ζk

sT
k yk

‖yk‖2 + 2
2 + ξ2

ζk

]
.

Under condition (26), we have ‖yk‖‖sk‖
sT

k yk
≤
√

ξ2
ξ1

, ‖sk‖
‖yk‖
≤ 1

ξ1
, and

‖gk+1‖‖yk‖
sT

k yk
=
‖gk+1‖‖yk‖|gT

k+1sk|
sT

k yk|gT
k+1sk|

≤ ‖yk‖‖sk‖
sT

k yk

‖gk+1‖2

|gT
k+1sk|

,

and in the same way,
‖gk+1‖
‖yk‖

≤ ‖sk‖
‖yk‖

‖gk+1‖2

|gT
k+1sk|

.

Note that ζk ≥ 1, the above inequality of |Nk| can be simplified to

|Nk| ≤
1

Mk
‖gk+1‖2

[∣∣∣∣1− γk+1
γk+1

∣∣∣∣
(

5 + 4(2 + ξ2)
‖sk‖
‖yk‖

+ 2
‖yk‖‖sk‖

sT
k yk

+ 2(2 + ξ2)
sT

k yk

‖yk‖2

+(2 + ξ2)
2 ‖sk‖2

‖yk‖2

)
‖gk+1‖2

|gT
k+1sk|

+

(
1 + (2 + ξ2)

sT
k yk

‖yk‖2

)2
‖yk‖2

sT
k yk

.

Utilizing conditions (25)–(27) and the expression of K, we can obtain the upper bound
of Nk,

|Nk| ≤
‖gk+1‖2

Mk

[(
(2 + ξ2)

2

ξ2
1

+ 6
(2 + ξ2)

ξ1
+ 2

√
ξ2

ξ1
+ 5

)∣∣∣∣1− γk+1
γk+1

∣∣∣∣‖gk+1‖2

|gT
k+1sk|

+

(
2 + ξ2

ξ1
+ 1
)2 ‖yk‖2

sT
k yk

]

≤ 1
ρ0

(
2
(2 + ξ2)

2

ξ2
1

+ 8
(2 + ξ2)

ξ1
+ 2

√
ξ2

ξ1
+ 6

)
K1‖gk+1‖2

=

(
2
(2 + ξ2)

2

ξ2
1

+ 8
(2 + ξ2)

ξ1
+ 2

√
ξ2

ξ1
+ 6

)
K
ρ0

.
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Next, the upper bound of nk is acquired by the same procedure,

|nk| ≤
1

mk
‖gk+1‖2

(
‖yk‖2

sT
k yk

+
(2 + ξ2)

2

ζk

sT
k yk

‖yk‖2 + 2
(2 + ξ2)

ζk

)

≤ 1
mk
‖gk+1‖2

(
1 + (2 + ξ2)

sT
k yk

‖yk‖2

)2
‖yk‖2

sT
k yk

≤ 1
1− 1

ζk

(ξ1 + ξ2 + 2)2

ξ2
1

K1‖gk+1‖2

≤ 6
(ξ1 + ξ2 + 2)2

ξ2
1

K.

For K1, it is easy to know that

K1 ≤ max{ξ2, ξ3}.

Through the above discussion, now we can give the upper bound of ρk+1,

ρk+1 = ζk max{K, Nk, nk}

≤ 2 max

{(
2
(2 + ξ2)

2

ξ2
1

+ 8
(2 + ξ2)

ξ1
+ 2

√
ξ2

ξ1
+ 6

)
/ρ0, 6

(ξ1 + ξ2 + 2)2

ξ2
1

}
K1‖gk+1‖2

≤ L0‖gk+1‖2,

where

L0 , 2 max

{(
2
(2 + ξ2)

2

ξ2
1

+ 8
(2 + ξ2)

ξ1
+ 2

√
ξ2

ξ1
+ 6

)
/ρ0, 6

(ξ1 + ξ2 + 2)2

ξ2
1

}
max{ξ2, ξ3}.

Since we have found the upper bound of ρk+1, then we now consider Dk+1. According
to (22), Dk can be expressed as

Dk+1 = sT
k ykτkρk+1Mk − Sk = sT

k ykτk(Mkρk+1 −Mk Nk). (51)

Using the formula of Mk and the upper bound of ρk+1, we have

|Dk+1| = Dk+1 ≤ ‖gk+1‖2sT
k ykτk

[
L0 + L0

‖yk‖2‖y∗k‖
2

sT
k ykτk

+ L0

∣∣∣∣1− γk+1
γk+1

∣∣∣∣
(

2
‖gk+1‖‖yk‖‖y∗k‖

2

sT
k ykτk

+
‖gk+1‖‖sk‖

sT
k yk

+
‖gk+1‖2‖y∗k‖

2

|gk+1sk|τk

)
+

Mk|Nk|
‖gk+1‖2

]
.

Note that

‖gk+1‖‖yk‖‖y∗k‖
2

sT
k ykτk

=
‖gk+1‖‖yk‖‖y∗k‖

2|gk+1sk|
sT

k ykτk|gk+1sk|
≤ ‖sk‖
‖yk‖

‖gk+1‖2

|gk+1sk|
,

‖gk+1‖‖sk‖
sT

k yk
=
‖gk+1‖‖sk‖|gk+1sk|

sT
k yk|gk+1sk|

≤ ‖sk‖2

sT
k yk

‖gk+1‖2

|gk+1sk|
,
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so the above inequality of Dk+1 can be simplified to

Dk+1 ≤ ‖gk+1‖2sT
k ykτk

[
2L0 + L0

(
2
‖sk‖
‖yk‖

+
‖sk‖2

sT
k yk

+
sT

k yk

‖yk‖2

)∣∣∣∣1− γk+1
γk+1

∣∣∣∣‖gk+1‖2

|gk+1sk|

+

(
4

ξ2

ξ1
+ 6

√
ξ2

ξ1
+ 16

)
K1

]
.

Finally, using (26) and (27), we can obtain

Dk+1 ≤ ‖gk+1‖2sT
k ykτk

[
2L0 +

(
4

L0

ξ1
+ 4

ξ2

ξ1
+ 6

√
ξ2

ξ1
+ 16

)
K1

]

≤ ‖gk+1‖2sT
k ykτk

[
2L0 +

(
4

L0

ξ1
+ 4

ξ2

ξ1
+ 6

√
ξ2

ξ1
+ 16

)
max{ξ2, ξ3}

]
≤ L1‖gk+1‖2sT

k ykτk, (52)

where

L1 ,

[
2L0 +

(
4

L0

ξ1
+ 4

ξ2

ξ1
+ 6

√
ξ2

ξ1
+ 16

)
max{ξ2, ξ3}

]
.

With (28), (50) and (52), the sufficient descent property of dk+1 under this case can be
established by

gT
k+1dk+1 ≤ −

ξ5

L1
‖gk+1‖2.

Case V (quadratic): when dk+1 is generated by (8) and (41), the proof can be found
in [43], in which Dai and Kou proved that

gT
k+1dk+1 ≤ −

1
2ϑ2
‖gk+1‖2. (53)

Next, if dk+1 is generated by (12) and (40), Yang et al. [13] have drawn that

gT
k+1dk+1 ≤ −

1
16ϑ2

‖gk+1‖2. (54)

Combining (54) with (53), we finally have

gT
k+1dk+1 ≤ −

1
16ϑ2

‖gk+1‖2.

After the above discussion, we can prove that there indeed exists a constant ς1 such that

gT
k+1dk+1 ≤ −ς1‖gk+1‖2,

where

ς1 = min
{

ς̄,
1
2

, 1− ϑ4,
ξ5

L1
,

1
16ϑ2

}
.

The proof is complete.

Lemma 2. Assume that f satisfies Assumption 2. If the search direction dk+1 is calculated by
WYL_TSCO, then there exists a constant ς2 > 0 such that

‖dk+1‖ ≤ ς2‖gk+1‖. (55)

Proof. Similar to Lemma 1, the proof is divided into several cases.
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Case I: if dk+1 is calculated by negative gradient, then there certainly holds

‖dk+1‖ ≤ ‖gk+1‖.

Case II: if the search direction is the HS direction, according to Assumption 2 and the
condition (33), we have

‖dk+1‖ = ‖ − gk+1 + βHS
k dk‖

≤ ‖gk+1‖+
‖gk+1‖‖yk‖‖dk‖

dT
k yk

≤
(

1 +
L
ϑ1

)
‖gk+1‖.

Case III (conic): if dk+1 is calculated by (8) and (29), from [52] we conclude that

‖dk+1‖ ≤
(

10ξ2 + 5ξ1 + 5m
ρ̄0ξ2

1

)
‖gk+1‖,

where m = 2n0ξ̄/ρ̄0 with

n0 = max
{

4− 3ρ̄0, 1 +
2ξ2

ξ1

}
, ξ̄ = max{ξ2, ξ3, ξ4}.

Case IV (conic): if dk+1 is formed by (12) and (16), we have

‖dk+1‖ = ‖tk+1gk+1 + µk+1sk + νk+1y∗k‖

≤ 1
Dk+1

(|q1|‖gk+1‖+ |q2|‖sk‖+ |q3|‖y∗k‖), (56)

so in order to prove Lemma 2 in this case, we first need to obtain a lower bound of Dk+1.
Combining (23), (25) and (51), and the value range of ζk, we can derive

Dk+1 = sT
k ykτk Mk(ζk max{K, Nk, nk} − Nk)

≥ sT
k ykτkρ0(

6
5

max{K, Nk, nk} − Nk)

≥ sT
k ykτkρ0

K
5

.

Then using the above inequality, we can transform (56) into

‖dk+1‖ ≤
5

ρ0KsT
k ykτk

(|q1|‖gk+1‖+ |q2|‖sk‖+ |q3|‖y∗k‖)

≤ 5
ρ0K
‖gk+1‖

[
‖gk+1‖2 + 4

‖gk+1‖2‖yk‖2‖y∗k‖
2

sT
k ykτk

+ 2
‖gk+1‖2‖sk‖‖yk‖

sT
k yk

+4
‖gk+1‖‖sk‖‖yk‖‖y∗k‖|ωk|

sT
k ykτk

+ 2
‖gk+1‖‖y∗k‖|ωk|

τk
+

ρk+1‖sk‖2

sT
k yk

+
‖sk‖2ω2

k
sT

k ykτk
+ 2

ρk+1‖sk‖‖yk‖‖y∗k‖
2

sT
k ykτk

+
ρk+1‖y∗k‖

2

τk

]

≤ 5‖gk+1‖
ρ0

‖gk+1‖2

K

(
(2 + ξ2)

2

ξ2
1

+ 6
(2 + ξ2)

ξ1
+ 4

M0
ξ1

+ 2

√
ξ2
ξ1

+ 5

)

≤ ‖gk+1‖
ρ0K1

(
25ξ2

1 + 5ξ2
2 + 30ξ1ξ2 + 10ξ1

√
ξ1ξ2 + (60 + 20M0)ξ1 + 20ξ2 + 20

ξ2
1

)
.
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Since (26) implies that K1 ≥ ξ1, we finally obtain an upper bound of dk+1, that is

‖dk+1‖ ≤
(

25ξ2
1 + 5ξ2

2 + 30ξ1ξ2 + 10ξ1
√

ξ1ξ2 + (60 + 20M0)ξ1 + 20ξ2 + 20
ρ0ξ3

1

)
‖gk+1‖.

For convenience, we define

L2 ,

(
25ξ2

1 + 5ξ2
2 + 30ξ1ξ2 + 10ξ1

√
ξ1ξ2 + (60 + 20M0)ξ1 + 20ξ2 + 20
ρ0ξ3

1

)
,

namely, ‖dk+1‖ ≤ L2‖gk+1‖.
Case V (quadratic): if dk+1 is formed by (8) and (41), it is similar to Lemma 4 in Li,

Liu and Liu [42]. According to their proof, we can deduce

‖dk+1‖ ≤
20
ϑ1
‖gk+1‖.

If dk+1 is calculated by (12) and (40), it follows from [13] that

‖dk+1‖ ≤
750
ϑ1
‖gk+1‖.

Since ϑ1 > 0, we finally have

‖dk+1‖ ≤
750
ϑ1
‖gk+1‖.

According to the above analysis, the proof of Lemma 2 is completed by setting

ς2 = max

{(
10ξ2 + 5ξ1 + 5m

ρ̄0ξ2
1

)
, 1, 1 +

L
ϑ1

, L2,
750
ϑ1

}
.

4.2. Convergence Analysis

In this subsection, we will give the global convergence of the presented algorithm for
general functions.

Lemma 3. Suppose αk satisfies the line search conditions (5) and (6), and f satisfies Assumption 2, then

αk ≥
(1− σ)|gT

k dk|
L‖dk‖2 . (57)

Proof. According to the line search condition (5), we can easily obtain

(σ− 1)gT
k dk ≤ (gT

k+1 − gk)
Tdk = yT

k dk ≤ ‖yk‖‖dk‖ ≤ L‖sk‖‖dk‖ = αkL‖dk‖2,

because σ− 1 < 0 and gT
k dk < 0, it is obvious that

αk ≥
(1− σ)|gT

k dk|
L‖dk‖2 .

Theorem 1. Suppose the objective function f satisfies Assumptions 1 and 2, and sequence {xk} is
generated by WYL_TSCO, then we have

lim
k→∞
‖gk‖ = 0. (58)
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Proof. According to (57), (49) and (55), it follows

δαkgT
k dk ≤ −

(1− σ)δ

L
(gT

k dk)
2

‖dk‖2 ≤ −
(1− σ)δς2

1
Lς2

‖gk‖2 = −H‖gk‖2,

where H ,
(1−σ)δς2

1
Lς2

, then combining (6), we have

fk+1 ≤ Ck + δαkgT
k dk ≤ Ck − H‖gk‖2. (59)

With the reasonable assumptions that Q0 = 1, Q1 = 2, Q2 = 3, Q3 = 4, Q4 = 5
and η0 = η1 = η2 = η3 = η4 = 1 according to the update formulas (7) and (48), we can
acquire that

Qk+1 = 1 +
k

∑
j=0

j

∏
i=0

ηk−i, k = 0, 1, 2...

Combining (48), we can derive the general formula of Qk+1,

Qk+1 =


1 + ηk/n + n

k/n

∑
i=1

ηi, mod (k, n) = 0,

1 + mod(k, n) + ηbk/nc + n
bk/nc

∑
i=1

ηi, mod (k, n) 6= 0,

where b·c denotes the floor function. Thus, it is easy to obtain an upper bound of Qk+1,

Qk+1 ≤ 1 + mod(k, n) + ηbk/nc+1 + n
bk/nc+1

∑
i=1

ηi

≤ 1 + n + (n + 1)
bk/nc+1

∑
i=1

ηi

≤ 1 + n + (n + 1)
k+1

∑
i=1

ηi

≤ (1 + n)
k+1

∑
i=0

ηi

≤ 1 + n
1− η

= W, (60)

where W = 1+n
1−η .

When k ≥ 5, combining (7), (59) and (60), we obtain

Ck+1 = Ck +
fk+1 − Ck

Qk+1
≤ Ck −

H
W
‖gk‖2,

which means
H
W
‖gk‖2 ≤ Ck − Ck+1. (61)

When k < 5, (6) and (46) imply that

Ck+1 ≤ fk+1 + 0.9(Ck − fk+1) = Ck + 0.1( fk+1 − Ck) < Ck.

Hence Ck is monotonically decreasing. According to Lemma 1.1 in [15], we have
fk+1 ≤ Ck+1 for each k ≥ 5, and (46) indicates that fk+1 ≤ Ck+1 for each k < 5. Thus, with
the assumption that f is bounded below, Ck is certainly bounded from below.
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Summing up the above analysis and (61), we can finally obtain that

∞

∑
k=0

H
W
‖gk‖2 < ∞,

which implies
lim
k→∞
‖gk‖2 = 0.

The proof is completed.

5. Numerical Results

In this section, the results of the numerical experiments are shown below. The un-
constrained test functions were taken from [62] with the given initial points. To prove the
efficiency of the proposed WYL_TSCO algorithm, we compare its numerical performance
with SMCG_Conic and TSCG. The performance profile proposed by Dolan and Moré [63]
is used to evaluate the performance of these methods. The dimension of the test functions
is 10,000. All the programs were written in C code.

SMCG_Conic is also a subspace minimization conjugate gradient algorithm based on the
conic model, and is a pioneering one that combines the subspace technique with a conic model
to seek the search direction. The numerical experiments in [52] show that the performance
of SMCG_Conic is very efficient. Since the biggest difference between WYL_TSCO and
SMCG_Conic is the dimension of the used subspace, the comparison between WYL_TSCO
and SMCG_Conic can not only reflect the high efficiency of our algorithm, but also reveal
the influence on the numerical result generated by the change of dimension for the adopted
subspace in the subspace minimization conjugate gradient algorithm.

As for TSCG, it is an efficient subspace minimization conjugate gradient method, and
it successfully applies the idea of subspace method and WYL method which are employed
in our algorithm as well. However, TSCG only uses the quadratic model to approximate the
objective function. Thus, the comparison between the numerical performance of WYL_TSCO
and TSCG can reveal the influence of the approximation model in the subspace method.

For the initial stepsize of the first iteration, we adopt the adaptive strategy used in [42].
The other parameters of WYL_TSCO are selected as follows.

ε = 10−6, ε1 = 10−3, ε2 = 10−4, δ = 0.001, σ = 0.9999, λmin = 10−30, λmax = 1030,
ξ1 = 0.15× 102, ξ2 = 8.5× 104, ξ3 = 4× 108, ξ4 = 6.5× 107, ξ5 = 0.1, ρ0 = 0.3,
ρ̄0 = 0.9, ϑ1 = 10−7, ϑ2 = 104, ϑ3 = 10−2, ϑ4 = 10−4, λ1 = 10−7, λ2 = 0.05.

SMCG_Conic and TSCG use the original parameters in their paper respectively. In
addition to stopping when the stopping criterion ‖gk‖∞ ≤ ε holds, the algorithm also stops
when the number of iterations exceeds 200,000.

For the 80 test problems from [62], WYL_TSCO successfully solves 100% of them, while
TSCG and SMCG_Conic both successfully solve 76 problems. We compare the numerical results
of problems that are solved successfully by all the three algorithms, the number of which are 72.
The numerical results of the three algorithms are presented in the following figures.

Figure 1 depicts the performance based on the number of iterations for the three
methods. It shows that the performance of WYL_TSCO is similar to that of TSCG, but is a
little inferior to SMCG_Conic’s only when τ < 1.31. However, WYL_TSCO outperforms
TSCG and SMCG_Conic when τ > 1.31.

In Figure 2, we observe that WYL_TSCO and TSCG outperforms SMCG_Conic on the
number of function evaluations, and TSCG is slightly ahead of WYL_TSCG only in the case
of τ < 1.5.

Similar to Figure 1, Figure 3 illustrates that WYL_TSCO is at a little disadvantage
compared with SMCG_Conic only when τ < 1.318, but is competitive with TSCG.
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Figure 1. Performance profile based on the number of iterations.
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Figure 2. Performance profile based on the number of function evaluations.

For the CPU time, Figure 4 shows that WYL_TSCO has an improvement on TSCG and
SMCG_Conic, which shows the high efficiency of WYL_TSCO.
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Figure 3. Performance profile based on the number of gradient evaluations.
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Figure 4. Performance profile based on the CPU time.

For the 80 test problems, the numerical results show that WYL_TSCO and TSCG
may perform a little worse than SMCG_Conic when τ is very small, but they overall have
significant improvements over SMCG_Conic, and WYL_TSCO also is superior to TSCG for
almost all τ. Moreover, WYL_TSCO can solve more problems than TSCG and SMCG_Conic,
which might show the advantage of the three-dimensional subspace method and conic
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model. To sum up, the WYL_TSCO is an efficient algorithm for solving the unconstrained
optimization problem.

6. Conclusions

Combining the idea of WYL method, this paper proposes a three-dimensional subspace
method based on conic models for unconstrained optimization (WYL_TSCO). The sufficient
descent property of the search direction and the global convergence of this method are
obtained under some suitable assumptions. The selection of an approximation model
depends on whether certain criterions are satisfied. Furthermore, the strategies of initial
stepsize and nonmonotone line search are exploited which are beneficial to the convergence
and efficiency. According to the numerical results and theoretical analysis, WYL_TSCO is
very competitive and promising.
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