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Abstract

:

The most important advantage of conjugate gradient methods (CGs) is that these methods have low memory requirements and convergence speed. This paper contains two main parts that deal with two application problems, as follows. In the first part, three new parameters of the CG methods are designed and then combined by employing a convex combination. The search direction is a four-term hybrid form for modified classical CG methods with some newly proposed parameters. The result of this hybridization is the acquisition of a newly developed hybrid CGCG method containing four terms. The proposed CGCG has sufficient descent properties. The convergence analysis of the proposed method is considered under some reasonable conditions. A numerical investigation is carried out for an unconstrained optimization problem. The comparison between the newly suggested algorithm (CGCG) and five other classical CG algorithms shows that the new method is competitive with and in all statuses superior to the five methods in terms of efficiency reliability and effectiveness in solving large-scale, unconstrained optimization problems. The second main part of this paper discusses the image restoration problem. By using the adaptive median filter method, the noise in an image is detected, and then the corrupted pixels of the image are restored by using a new family of modified hybrid CG methods. This new family has four terms: the first is the negative gradient; the second one consists of either the HS-CG method or the HZ-CG method; and the third and fourth terms are taken from our proposed CGCG method. Additionally, a change in the size of the filter window plays a key role in improving the performance of this family of CG methods, according to the noise level. Four famous images (test problems) are used to examine the performance of the new family of modified hybrid CG methods. The outstanding clearness of the restored images indicates that the new family of modified hybrid CG methods has reliable efficiency and effectiveness in dealing with image restoration problems.
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1. Introduction


CG parameters are widely utilized for dealing with a great variety of different optimization problems.



Many researchers have focused on modifying CG parameters in order to augment the corresponding CG strategies. Those newly proposed approaches have enhanced the performance of the conventional CG methods.



The CG algorithm has been applied numerous areas such as neural networks, image processing, medical science, operational research, engineering problems, etc.



Thus, the different problems generated in these applications can be formulated in various forms, such as unconstrained, constrained, multi-objective optimization problems, nonlinear systems, etc.



Therefore, this study concentrates on an unconstrained optimization problem defined as


   min  x ∈  R n    f  ( x )  ,  



(1)




where the function   f :  R n  → R   is continuously differentiable. CG methods have very powerful convergence abilities and fair storage needs.



Among the most important advantages of the CG method are its low memory requirements and convergence speed [1].



Thus, many authors have analyzed CG methods in order to solve large minimization optimization problems and other applications [2].



Accordingly, many authors have suggested several modificationsof the classical methods that deal with optimization problems, e.g, the Newton method [3], the quasi-Newton method [4], the semi-gradient method [5], the hybrid gradient meta-heuristic algorithm [6,7], and the CG-method [8,9,10,11].



Different versions of the Newton method are widely employed to solve multiple different optimization problems because of their fast convergence rates, e.g., [12,13,14,15,16,17].



However, these methods are very expensive since they require a calculation of the exact or approximate Jacobian matrix for each iteration. Therefore, it is best to avoid utilizing these methods when solving large-scale optimization problems.



Hence, the use of the CG technique has been more widespread compared to other conventional methods because of its simplicity, lower storage requirements, efficiency, and optimal convergence features [1,18,19].



Accordingly, the reason for selecting this topic for analysis depends on the following bases.



Conjugate gradient methods (CGs) are associated with a very strong global convergence theory for a local minimizer and they have low memory requirements. Moreover, in practice, combining the CG method with a line search strategy showed merit in dealing with an unconstrained minimization problem [20,21,22,23,24,25].



Additionally, CG parameters have shown remarkable superiority in solving problems involving systems of nonlinear equations (see, for example, [26,27,28,29,30,31,32,33,34,35]). According to previous successful uses of CG techniques to solve different applications problems, many authors have adapted CG methods such that they are capable of dealing with image restoration problems (see, for example, [25,35,36,37,38,39,40,41,42,43]).



Many researchers have shown that the CG method can also be used as a mathematical tool for training deep neural networks. (see, for example, [44,45,46,47,48]).



Generally, the iterative formula used to generate the sequence solutions of Problem (1) is defined in the following form


   x    k + 1    =  x   k   +  α   k    d   k   ,  



(2)




where   x   k    is the current point,    α   k   > 0   is the step size obtained using a line search technique, and   d   k    is the search direction decided by the conjugate parameter   β   k   .



The sequence of the step size   α   k    and the search direction   d   k    can be generated through various approaches. These approaches depend on many concepts that have been implemented for designing different formulas of   α   k   ,   d   k   , and   β   k   .



The short and simple formula used to determinethe search direction is defined as follows:


   d   k   = −  g   k   +  β   k    d    k − 1    ,  d   0   = −  g   0   ,  



(3)




where    g   k   = g  (  x   k   )   ,   β   k    is known as the CG parameter and   g (  x   k   )   represents the gradient vector of the function f at   x   k   .



A core difference between all the proposed CG methods is the form of the parameter   β   k   .



The proposal of new CG parameters of the classical CG methods has led to improvements in said methods’ performance in dealing with many problems in different applications.



The classical CG methods include the HS-CG method proposed by the authors of [9]; the FR-CG parameter proposed by the authors of [8]; the PRP-CG method proposed by Polak and Ribiere [11], Polyak [49]; the LS-CG method proposed by Liu and Storey [10]; and the DY-CG method proposed by Dai and Yuan [50]. The   β   k    value of these CG algorithms contains one term.



These CG parameters are listed in the following formulas:


   β   k   H S   =    y   k  T   g  k + 1      d   k  T   y   k     ,  



(4)




where    y   k   =  g  k + 1   −  g   k    .


   β   k   F R   =    | |   g  k + 1     | |  2     | |   g   k     | |  2    ,  



(5)






   β   k   P R P   =    y   k  T   g  k + 1      | |   g   k     | |  2    ,  



(6)






   β   k   L S   =    g  k + 1  T   y   k     −  d   k  T   g   k     ,  



(7)






   β   k   D Y   =      ∥   g  k + 1    ∥   2     y   k  T   d   k     ,  



(8)




where   ∥ . ∥   is the Euclidean norm and the values of the parameter   y   k    are computed as follows:    y   k   =  g  k + 1   −  g   k    .



Recently, many novel formulas for determining the parameter   β   k    have been suggested, with those corresponding to CG methods including two or three terms (see [21,22,25,51,52])



In several papers, CG methods studied using convergence analysis have been reported (see [42,53]).



For example, Hager and Zhang [54] presented the following CG-method, which contains three terms:


   β   k   H  Z *    = max  {  β  H Z   ,   r   k   }   



(9)




where    β   k   H Z   =    (  y   k  T   g k  )   (  d  k − 1  T   y   k   )  −  2 | |   y   k     | |  2   (  d  k − 1  T   g   k   )     (  d  k − 1  T   y   k   )  2    ,    r   k   =   − 1    | |   d    k − 1     | | min { r ,  | |   g    k − 1     | | }     .  



In their numerical experiments, the authors of [54] set   r = 0.01  .



If employed appropriately, remarkable results can be when obtained using the CG method to solve the many different problems posed in several applications.



Hence, the modifications and additions to and recommendations for conventional CG techniques are undertaken to develop an updated version of the CG method or a novel technique with widespread applications.



These propositions and modifications have either one term or multiple terms.



For example, Jiang et al. [25] recently proposed a family of combination 3-term CG techniques for solving nonlinear optimization problems and aiding image restoration.



The authors of [25] combined the parameter   β   k   D Y    with each parameter in the set   {  β   k   H S   ,  β   k   P R P   ,  β   k   L S   }   to obtain a family of CG methods. They define the direction as follows:


   d   k   =      −  g   k       for   k = 1  ,        −  g  k + 1   +  ( 1 −  λ   k   )   β    k    n e w    d   k   − γ  λ   k     (  g  k + 1  T   g   k   )      ∥   g   k    ∥   2     g   k         Otherwise .         



(10)




where   0 < γ < 1   and    λ   k   =    |   g  k + 1  T   d   k    |     ∥   g    k + 1     ∥ ∥   d   k    ∥     . The authors of [25] used the convex combination technique developed by [35]. In addition to their proposal in Formula (10), they have suggested a new CG parameter, which was defined as follows:


   β   k  N  =   (  g  k + 1  T   y   k   )      ∥   g   k    ∥   2  − ξ  (  g   k  T   d   k   )    ,  



(11)




where   0 < ξ < 1  . Then, they combined their new parameter   β   k  N   with the parameter   β   k   D Y    to get a new algorithm that solves Problem (1) and can be used in image restoration; furthermore, they performed a convergence analysis of this family of combination 3-term CG methods.



Huo et al. [55] proposed a new CG method containing three parameters in order to solve Problem (1). Moreover, under reasonable assumptions, the author of [55] established the global convergence of their method.



Tian et al. [56] suggested a new hybrid three-term CG approach without using a line search method. The authors of [56] designed the new hybrid descent three-term direction in the following form:


   d  k + 1  N  = −  g  k + 1   +  β  k + 1  N   s   k   −  σ  k + 1  N   y   k   ,  d   0   =  g   0   ,  










   β  k + 1  N  =    g  k + 1  T   (  y   k   − γ  s   k   )    max {  y   k  T   s   k   , ∥  g   k    ∥ 2  }   ,  










   σ  k + 1  N  =    g  k + 1  T   s   k     max {  y   k  T   s   k   , ∥  g   k    ∥ 2  }   ,  








where, when    y   k  T   s   k   =   ∥  g   k   ∥  2  = 0   is met, the stopping criterion is satisfied, and the optimal solution    x *  =  x   k     is obtained. They proceeded to provide some remarks regarding their proposed directions. In addition, the authors of [56] successfully performed a convergence analysis of their newly proposed CG method (under certain conditions). The numerical outcomes demonstrate that the three-term CG method is more efficient and reliable in terms of solving large-scale unconstrained optimization problems compared to other methods.



Jian et al. [57] proposed a new spectral SCGM approach, i.e., the core study of the authors in [57], which consisted of designing a spectral parameter and a conjugate parameter using the SCGM method. They proved the global convergence of the suggested SCGM method. The approach proposed by the authors of [57] for yielding the spectral parameter is as follows:


   ϕ    k    J Y J L L   = 1 +    |   g   k  T   d    k − 1     |    −  g    k − 1   T   d    k − 1      .  



(12)







The authors clearly showed that    ϕ    k    J Y L L   ≥ 1   when the prior   d    k − 1     is in a descent.



In addition, they proposed a new conjugate parameter, which was defined as follows:


   β    k    J Y J L L   =    ∥   g   k     ∥  2  −   (  g   k  T   d    k − 1    )  2    max { ∥  g    k − 1     ∥ 2  ,  d    k − 1   T   (  g   k   −  g    k − 1    )  }   .  



(13)







Subsequently, they presented a convergence-analysis-based proof of the SCGM method. Using the SCGM method, the authors of [57] solved an unconstrained optimization problem with many dimensions.



There are other studies that employ the same convex combination concept with different combination parameters (see, for example, [58]).



Yuan et al. [52] proposed a research direction of the CG method containing the following formula:


   d   k   = −  g   k   +  β   k   M H Z    d  k − 1   ,  d   0   = −  g   0   ,  



(14)




where the authors in [52] defined the parameter   β   k   M H Z    as follows:


   β   k   M H Z   =    (  y   k  T   g   k   )   (  d  k − 1  T   y   k   )  −  2 | |   y   k     | |  2   (  d  k − 1  T   g   k   )    max { σ ∥  y   k    ∥ 2  ∥  d   k    ∥ 2  ,   (  d  k − 1  T   y   k   )  2  }   ,  



(15)




where   σ > 0.5   is a constant. The authors of [52] presented a convergence analysis proof of   β   k   M H Z    with some conditions.



Abubakar et al. [20] proposed the following CG-method (a new modified LS method (NMLS)):


   d   0   =  g   0   ,   d   k   =      −  g   k       if    g   k  T   y    k − 1    ≤ 0  ,   for   k > 0  ,       d   k  ′      otherwise ,   for   k > 0  ,       



(16)




where   d   k  ′   is defined as follows


   d   0   =  g   0   ,   d   k  ′  =      −  γ   k    g   k   +  β   k   M L S    d   k       if    g   k  T   d    k − 1    > 0  ,   for   k > 0  ,       −  g   k   +  β   k   L S    d   k        otherwise ,   for   k > 0  ,       



(17)




where    y    k − 1    =  g   k   −  g    k − 1     ,    γ   k   = 1 +  β   k   L S      g   k  T   d    k − 1       ∥   g   k     ∥  2      and the parameter   β   k   L S    is defined by (7) and   β   k   M L S    is defined by


   β   k   M L S   =  ( 1 −    g   k  T   s    k − 1      −  g   k  T   y    k − 1      )   β   k   L S   − t    ∥   y  k − 1     ∥  2    (  g   k  T   y    k − 1    )   , t ≥ 0 .  











The convergence analysis of this method was carried out by Abubakar et al. [20]. In addition, the numerical results, which were obtained by solving the corresponding unconstrained minimization problems, were implemented in applications in motion control



Alhawarat et al. [59] proposed a new CG method that depends on a convex group between two various search directions of the CG method; then, they employed this method to solve an unconstrained optimization problem involving image restoration. Their proposed method presented incredible results. The numerical results of the method proposed in [59] show that the convex combination allows the new CG method to provide more efficient results than the other compared methods.



Therefore, the convex combination technique plays a critical role in improving the performance of any new version of a CG method. The above arguments indicate that merging two or more parameters of the classical CG methods offers promising results.



Accordingly, such promising results encouraged us to continue this pattern of improving the performance of the classical CG techniques.



Many modifications and performance enhancements of the CG parameters have recently been proposed by numerous authors. Such recently developed GC parameters include two terms: the first one denotes the negative gradient vector, while the second term indicates the parameter proposed by the cited authors (see, for example, [21,22,25].



A brief review of the ideas presented in the literature has inspired us to design a new convex hybrid CG technique. This new convex combined technique has four terms, the first of which is a negative gradient vector, while the other three terms are the proposed parameters multiplied by   d   k   .



Therefore, the major contributions of this paper include the following aspects.



	
The presentation of some suggestions for and modifications to some classical CG parameters with new parameters;



	
Three new parameters   β   k   N j    for CG techniques, which are are combined together, where   j = 1 , 2 , 3  ;



	
Through the above procedures, a new suggested CG approach has been designed, which we dubbed “Convex Group Conjugated Gradient”, which has been shortened to CGCG;



	
The performance of a convergence analysis of the new CGCG approach;



	
Numerical investigations are offered, which were executed by solving a set of test minimization problems;



	
The adaptation of the CGCG algorithm yielded a family of modified CG methods that can be used to deal with image restoration problems;



	
By applying the adaptive median filter method, the noise in an image is detected;



	
According to the noise level in the corrupted image, a change in the size of the filter window is considered for improving the performance of this family of CG methods;



	
Four corrupted images (test problems) with salt-and-pepper noise (at 30–90% levels) are used to examine the performance of the new family of modified hybrid CG methods.






The rest of the current study is arranged as follows. In the next section, the CGCG method and convergence analysis proof are presented. Section 3 presents the numerical experiments concerning the set of optimization test problems solved using the CGCG method and five other traditional CG methods.



Section 4 offers a brief discussion about image processing, including some applications of the adaptive CGCG method (a member of the family of CG methods) in image restoration. Section 5 presents the numerical experiments conducted with the proposed family of CG methods, which concern the solution to an image restoration problem. The last section provides some concluding remarks.




2. CGCG Method


The proposed CGCG method involves modifications to and suggestions for several classical CG-methods, which are listed in (4)–(8). In addition, this CGCG method contains new parameters, which are presented in this paper.



Therefore, the details of the newly proposed CGCG-method are listed in Algorithm 1 and used to solve Problem (1). The convergence analysis proof of the CGCG algorithm is also presented in this section. In addition, the CGCG method is adapted and modified in order to yield the family of CG-methods listed in Algorithms 2–4. These algorithms can be used in image restoration problems, as we will see in Section 4.



	Algorithm 1 A Convex Group Conjugated Gradient Method (CGCG).



	Input:    f :  R n  → R  ,   f ∈  C 1   ,   δ ∈ ( 0 , 0.5 )   and   σ ∈ ( δ , 1 )  ,   k = 0  , an initial point    x   k   ∈  R n    and   ε > 0  .

Output:    x *   is the optimal solution.

  1: Set    d   0   = −  g   0     and   k : = 0  .

  2: while    ∥   g    k + 1     ∥   > ε   . do

  3:    Compute   α   k    to fulfill (31) and (32).

  4:    Calculate a new point    x    k + 1    =  x   k   +  α   k    d   k    .

  5:    Compute    f   k   = f  (  x    k + 1    )   ,    g    k + 1    =  g (  x    k + 1      )   

  6:    Set   k = k + 1  .

  7: end while

  8: return   x *  , the optimal solution.










	Algorithm 2 CGCG-HS2 Algorithm



	Step 1: Inputs: Original image (O_img), Noise Ratio(N.R)  = { 30 % , 50 % , 70 % , 90 % }  ,   α = 100   and W_max   = { 3 × 3 , 5 × 5 , 7 × 7 , 9 × 9 }  .

Step 2: Destroy the original (O_img) by using noise (salt and pepper) to obtain a noised image (N_img).

Step 3: Apply adaptive median filter algorithm (A.M.F .A) for each level and W_max.

Step 4: Detect pixels of the noised image (N_img).

Step 5: Use Formulas (53) and (55) to remove the Noise from the corrupted pixels.

Step 6: Output: Repaired Image (R_img)    =  (O_img)








	Algorithm 3 CGCG-HS1 Algorithm



	Step 1: Inputs: Original image (O_img), Noise Ratio(N.R)  = { 30 % , 50 % , 70 % , 90 % }  ,   α = { 500 , 350 }   and W_max   = 5 × 5  .

Step 2: Destroy the original (O_img) using a high noise level (salt and pepper) to obtain a noised image (N_img).

Step 2a: If N.R   < 60 %  .

Step 2b: Set   α = 500  .

Step 2b: Otherwise, set   α = 350  .

Step 3: Apply adaptive median filter algorithm (A.M.F .A) for each level W_max   = 5 × 5  .

Step 4: Detect noisy pixels in the noised image (N_img).

Step 5: Use Formulas (53) and (55) to remove the noise from the corrupted pixels.

Step 6: Output: Repaired Image (R_img)    =  (O_img)








	Algorithm 4 CGCG-HZ Algorithm



	Step 1: Inputs: Original image (O_img), Noise Ratio(N.R)  = { 30 % , 50 % , 70 % , 90 % }  ,   α = { 500 , 350 }   and W_max   = 5 × 5  .

Step 2: Destroy the original (O_img) using a high noise level (salt and pepper) to obtain a noised image (N_img).

Step 2a: If N.R   < 60 %  .

Step 2b: Set   α = 500  .

Step 2b: Otherwise, set   α = 350  .

Step 3: Apply adaptive median filter algorithm (A.M.F .A) for each level with W_max   = 5 × 5  .

Step 4: Noisy pixels of the Noise image (N_img) are detected.

Step 5: Use Formulas (53) and (56) to remove the Noise from the corrupted pixels.

Step 6: Output: Repaired Image (R_img)    =  (O_img)






Thus, to solve Problem (1), the next iterative form is utilized to generate a new candidate solution:


   x    k + 1    =  x   k   +  α   k    d   k   ,  



(18)




where   x   k    is the current point and   α   k    is the step size in the search direction   d   k   .



The new proposed CG approach is defined in the following paragraph.



To achieve the global convergence of a hybrid CG technique, one must choose the step length   α   k    carefully. Additionally, the selection of a suitable search direction   d   k    must be considered.



The purpose of this procedure is to guarantee that the following sufficient descent condition is satisfied:


   g    k + 1   T   d    k + 1    ≤ − C   ∥  g    k + 1    ∥  2  ,  



(19)




for   C ≥ 0  .



Consequently, the following fundamental property is called an angle property. This property and other proposed parameters are critical in developing the proposed method:


  c o s  θ   k   =    g    k + 1   T   d   k      ∥   g    k + 1     ∥ ∥   d   k    ∥    ,  



(20)




where the angle   θ   k    is between   d   k    and   g    k + 1    .



Hence, we benefit by obtaining the value of   θ   k   , which will be used to design a new mixed CG method containing four terms. The three terms that represent the core of our proposed method are inspired by the classical conjugate gradient parameters, which are defined in Formulas (4)–(8).



Therefore, we connect the three terms using the following parameter:


   λ   k   =    |   g    k + 1   T   d   k    |     ∥   g    k + 1     ∥ ∥   d   k    ∥     



(21)







In addition, we define the following parameter to represent an option for the CG parameter.


   χ   k   =     |   τ ^   λ   k    − τ |     2  n ¯    ,  



(22)




where  τ ,   τ ^   are fixed real numbers such that   0 <  τ ^  < τ < 1   and    n ¯  ≥ 2   is an integer.



Then, the three CG parameters are defined as follows:


   β   k   N 1   = max  { 0 , L  a   k   }  ,  



(23)




where


  L  a   k   =    (  y   k  T   g    k + 1    )   (  d   k  T   y   k   )  −  2 | |   y   k     | |  2   (  d   k  T   g    k + 1    )     (  d   k  T   y   k   )  2   ,  



(24)






   β   k   N 2   = max     χ   k     ∥  g    k + 1    ∥  2    (  g    k + 1   T   d   k   )   , L  b   k    ,  



(25)




where


  L  b   k   =    (  y   k  T   g    k + 1    )   (  d   k  T   y   k   )  −  | |   y   k     | |  2   (  g    k + 1   T   d   k   )     r    ∥  d   k    ∥   2    ∥  y   k   ∥  2    ,  



(26)




where   0.5 ≤ r < ∞   is a fixed number,


   β   k   N 3   = max  { ▵  χ   k   , L  c   k   }  ,  



(27)




where


  ▵  χ   k   =     0    if    g    k + 1   T   d   k   < 0  ,        χ   k      otherwise ,       



(28)






  L  c   k   =    2 ∥   y   k     ∥  2   (  g    k + 1   T   d   k   )    s    k + 1       n  ( ▵ f + ε )    (  d   k  T   y   k   )  2    ,  



(29)




where    ▵ f = |   f    k + 1    −  f   k    |   ,   0 < ε < 1  ,    s    k + 1    =  ∥  x    k + 1    −  x   k   ∥    at the iteration k and n indicates the number of variables of a test problem.



According to the above relations and formulas, the new search direction is defined as follows:


   d    k + 1    = −  g    k + 1    +  β   k   N 1    d   k   +  ( 1 −  λ   k   )   β   k   N 2    d   k   −  λ   k    β   k   N 3    d   k   ,  d   0   = −  g   0   ,  



(30)







Thus, the newly proposed CG approach includes four terms; we name this suggested method “Convex Group Conjugated Gradient”, which is abbreviated as (CGCG).



To render the CGCG method globally convergent, we use the following line search technique:


  f  (  x   k   +  α   k    d   k   )  ≤ f  (  x   k   )  + δ  α   k    g   k  T   d   k   ,  



(31)




and


  g   (  x   k   +  α   k    d   k   )  T   d   k   ≥ σ  g   k  T   d   k   ,  



(32)




where   δ ∈ ( 0 , 0.5 )   and   σ ∈ ( δ , 1 )   are constants.



According to the search direction (30) and the Wolfe conditions (31) and (32), we present the explicit steps of the (CGCG) technique, as follows.



Now, we present some numerical facts relating to the above parameters, allowing us to discuss the global convergence and descent properties of the CGCG method.



The purpose of the following remark is to facilitate the convergence analysis proof of the CGCG method.



Remark 1. 

When both sides of (30) are multiplied by the   g    k + 1   T  , we obtain the following:


    g    k + 1   T   d    k + 1    = −   ∥  g    k + 1    ∥  2  +  β   k   N 1    (  g    k + 1   T   d   k   )  +  ( 1 −  λ   k   )   β   k   N 2    (  g    k + 1   T   d   k   )  −  λ   k    β   k   N 3    (  g    k + 1   T   d   k   )  .   



(33)







Then, the fourth term of (33) satisfies the following inequality for each iteration k:


    λ   k    β   k   N 3    (  g    k + 1   T   d   k   )  ≥ 0 .   



(34)







Since   0 ≤  λ   k   ≤ 1  , and if the first branch of (28) is satisfied, then    β   k   N 3    (  g    k + 1   T   d   k   )  = 0  ; otherwise,    β   k   N 3    (  g    k + 1   T   d   k   )  > 0   since   L  c   k   ≥  χ   k     and it is clear that   0 <  χ   k   <  1 4   .



The third term of (33) can be reformulated as follows:


    ( 1 −  λ   k   )   β   k   N 2    (  g    k + 1   T   d   k   )  =       ( 1 −  λ   k   )   χ   k     ∥  g    k + 1    ∥  2      if       χ   k     ∥  g    k + 1    ∥  2     g    k + 1   T   d   k     ≥ L  b   k    ,            ( 1 −  λ   k   )   (  y   k  T   g    k + 1    )   (  d   k  T   y   k   )   (  g    k + 1   T   d   k   )  −  | |   y   k     | |  2    (  g    k + 1   T   d   k   )  2     r ∥   d   k     ∥  2    ∥  y   k   ∥  2       otherwise ,        



(35)







The second term of (33) can be reformulated as follows:


    β   k   N 1    (  g    k + 1   T   d   k   )  =     0    if   L  a   k   ≤ 0  ,            (  y   k  T   g    k + 1    )   (  d   k  T   y   k   )   (  g    k + 1   T   d   k   )  −  2 | |   y   k     | |  2    (  g    k + 1   T   d   k   )  2     (  d   k  T   y   k   )  2      otherwise ,        



(36)







We set the second term of Formula (35) as follows:


   M u =    ( 1 −  λ   k   )   (  y   k  T   g    k + 1    )   (  d   k  T   y   k   )   (  g    k + 1   T   d   k   )  −  | |   y   k     | |  2    (  g    k + 1   T   d   k   )  2     r ∥   d   k     ∥  2    ∥  y   k   ∥  2    .   











The following inequality    u T  v ≤  1 2    ( | | u | |  2  +   ∥ v ∥  2   )    is applied to the first expression of the   M u   numerator, with   u =  d   k    g  k + 1  T   y   k    ,   v =  y   k    g     k + 1    T   d   k    .



Then,


   M u ≤    ( 1 −  λ   k   )   1 2    ∥   d   k     ∥  2   ∥   g  k + 1     ∥  2   ∥   y   k     ∥  2   + ∥   y   k     ∥  2    (  g    k + 1   T   d   k   )  2  − 2   ∥  y   k   ∥  2    (  g    k + 1   T   d   k   )  2      r ∥   d   k     ∥  2    ∥  y   k   ∥  2    ≤    ( 1 −  λ   k   )    ∥  g  k + 1   ∥  2    2 r     








then,


   M u ≤    ( 1 −  λ   k   )    ∥  g  k + 1   ∥  2    2 r   .   



(37)







Similarly, the second branch of Formula (36) is rewritten as follows:


     M u  ^  =    (  y   k  T   g    k + 1    )   (  d   k  T   y   k   )   (  g    k + 1   T   d   k   )  − 2   ∥  y   k   ∥  2    (  g    k + 1   T   d   k   )  2     (  d   k    y   k   )  2   ≤    1 2    ∥   g  k + 1     ∥  2    (  d   k  T   y   k   )  2  − 3   ∥  y   k   ∥  2    (  g     k + 1    T   d   k   )  2      (  d   k  T   y   k   )  2   ≤  1 2    ∥  g  k + 1   ∥  2  .   











Therefore,


     M u  ^  ≤  1 2    ∥  g  k + 1   ∥  2  .   



(38)









Note: As we have mentioned above, the four results that are listed in Formulas (34)–(38) of Remark 1 are applied in the convergence analysis of the suggested method described in Section 2.



The convergence analysis and descent property of the CGCG technique are presented in the following section.



2.1. Convergence Analysis


The convergence analysis of Algorithm 1 is presented as follows. First, two useful hypotheses are listed as follows.



Hypothesis 1. 

Let a function   f ( x )   be continuously differentiable.





Hypothesis 2. 

In a few neighborhoods N of the level group,   𝓁 = { x ∈  ℜ n  : f  ( x )  ≤ f  (  x   0   )  }  , the gradient vector   g ( x )   of the function   f ( x )   is Lipschitz-continuous.





Therefore, there is a fixed   L < ∞   that satisfies the following inequality   ∥ g ( x ) − g ( y ) ∥ ≤ L ∥ x − y ∥  ,   ∀ x , y ∈ N  .



The following lemma shows that the search direction   d    k + 1     defined by Formula (30) is a descent direction.



Lemma 1. 

Let   {  x   k   }   be the sequence obtained using Algorithm 1. If    d   k  T   y   k   ≠ 0  ; then,


   g  k + 1  T   d    k + 1    ≤ − C   ∥  g    k + 1    ∥  2  ,  



(39)




where   0 ≤ C < 1  .





Proof. 

If   k = 0  , it follows from (30) that    g   1  T   d   1   = −   ∥  g   1   ∥  2  < 0  , for   k ≥ 1  , proving that (39) is true.



According to (34) and Remark 1, the following cases exist that can be used to prove that Formula (39) is true.



Case I: When    β   k   N 1   = 0   and    β   k   N 2   = L  b   k     and based on (37), then Formula (33) is as follows


   g    k + 1   T   d    k + 1     ≤ − ∥   g    k + 1      ∥  2  +  ( 1 −  λ   k   )  L  b   k    (  g    k + 1   T   d   k   )   ≤ − ∥   g    k + 1      ∥  2  +    ( 1 −  λ   k   )    ∥  g    k + 1    ∥  2    2 r   ≤   ∥  g    k + 1    ∥  2   ( − 1 +  1  2 r   )  ,  








we set   C = − 1 +  1  2 r    .



Then,


   g    k + 1   T   d    k + 1    ≤ − C   ∥  g    k + 1    ∥  2  ,  



(40)




where   0 ≤ C < 1  .



Therefore, (39) is met.



Case II: When    β   k   N 1   = 0   and    β   k   N 2   =  χ   k      ∥   g    k + 1      ∥  2    (  g    k + 1   T   d   k   )    , then Formula (33) is as follows.


   g    k + 1   T   d    k + 1     ≤ − ∥   g    k + 1      ∥  2  +  ( 1 −  λ   k   )   χ   k    ∥   g    k + 1      ∥  2  ≤   ∥  g    k + 1    ∥  2   ( − 1 +  χ   k   )  ,  








we set   C = − 1 +  χ   k    , with   0 <  χ   k   <  1 4   . Then,


   g    k + 1   T   d    k + 1    ≤ − C   ∥  g    k + 1    ∥  2  ,  



(41)




where   0 < C < 1  . Therefore, (39) is met.



Case III: When    β   k   N 1   = L  a   k     and    β   k   N 2   =  χ   k      ∥   g    k + 1      ∥  2    (  g    k + 1   T   d   k   )    , and based on (38), then Formula (33) is as follows:


   g    k + 1   T   d    k + 1     ≤ − ∥   g    k + 1      ∥  2  +  1 2   ∥   g  k + 1     ∥  2  +  ( 1 −  λ   k   )   χ   k    ∥   g    k + 1      ∥  2  ≤   ∥  g    k + 1    ∥  2   ( −  1 2  +  χ   k   )  ,  








we set   C = −  1 2  +  χ   k     where   0 <  χ   k   <  1 4   .



Then,


   g    k + 1   T   d    k + 1    ≤ − C   ∥  g    k + 1    ∥  2  ,  



(42)




where   0 < C < 1  ; thus, (39) is met.



Case IV: When    β   k   N 1   = L  a   k     and    β   k   N 2   = L  b   k    , and based on Formulas (37) and (38), then Formula (33) is as follows:


   g    k + 1   T   d    k + 1     ≤ − ∥   g    k + 1      ∥  2  +  1 2   ∥   g    k + 1      ∥  2  +  1  2 r    ( 1 −  λ   k   )   ∥   g    k + 1      ∥  2  ≤   ∥  g    k + 1    ∥  2   ( −  1 2  +  1  2 r   )  ,  








we set   C = −  1 2  +  1  2 r    .



Then,


   g    k + 1   T   d    k + 1    ≤ − C   ∥  g    k + 1    ∥  2   



(43)




where   0 ≤ C < 1  ; thus, (39) is met.



Hence, the above four cases show that (39) is true. □





Below, some hypotheses and a useful lemma are presented, where the obtained result was essentially proven by the author of [60] and the author of [61,62].



Lemma 2. 

Let   x   0    be a starting point that satisfies Hypothesis 1. Regard any algorithm to be of Form (18), such that the   d   k    satisfies (19) and the   α   k    satisfies conditions (31) and (32).



Hence, the following inequality is met.


     ∑  k = 0  ∞     (  g    k   T   d   k   )  2    ∥   d   k     ∥  2    < ∞    



(44)









Theorem 1. 

Suppose that Hypotheses 1 and 2 are met and that the following is satisfied:     ∑  k = 0  ∞    1   ∥   d   k     ∥  2    = + ∞  . Then, the sequence   {  g    k + 1    }   generated using the CGCGC method satisfies the next result.


    lim  k → ∞   inf  ∥  g    k + 1    ∥  = 0 ,   



(45)









Proof. 

Proof by contradiction: assume that (45) is incorrect; hence, for some   ξ > 0  .



Then, the next result is correct.


   ∥   g    k + 1     ∥ ≥ ξ .   



(46)







According to (46) and (19), the following result is obtained


   g     k + 1    T   d    k + 1    ≤ − C   ∥  g    k + 1    ∥  2  ≤ −  ξ 2  ,  



(47)




and then


    (  g     k + 1    T   d    k + 1    )    ∥   d    k + 1     ∥    ≤   −  ξ 2     ∥   d    k + 1     ∥    ;  










     (  g     k + 1    T   d    k + 1    )  2    ∥   d    k + 1      ∥  2    ≥   ξ 4    ∥   d    k + 1      ∥  2    ,  








By summing the final expression, we obtain


    ∑  k = 0  ∞     (  g     k + 1    T   d    k + 1    )  2    ∥   d    k + 1      ∥  2    ≥  ∑  k = 0  ∞    ξ 4    ∥   d    k + 1      ∥  2    = ∞ .   



(48)







Since (48) is in contradiction with (44), (45) is true as long as   k → ∞  . □





Computational Cost Analysis of CGCG Method


In general, any modified version of the conjugate gradient method has low memory requirements and convergence speed [1] but converges much faster than the steepest descent method [19,63].



Since the quasi-Newton methods engender a need to keep a   n × n   matrix   H   k    (the inverse of the approximate Hessian   B   k   ) or   L   k    (the Cholesky factor of   B   k   ) in a computer’s memory, a Quasi-Newton method needs   O (  n 2  )   data units [64].



On the other hand, by using the CGCG method, we can compute the values of the gradient vector only; therefore, the CGCG method has an   O ( n )   memory requirement, i.e.,   O ( n )   complexity for each iteration.






3. Numerical Investigations


Numerical investigations are applied to test the effectiveness and robustness of the CGCG approach by solving a set of unconstrained optimization problems.



Therefore, the performance of Algorithm 1 (CGCG) is tested by solving the 76 benchmark test problems with variable dimensions between 100 to 800,000. These test problems were taken from [65,66].



These test problems have recently been used by many authors to test the efficiency and effectiveness of their proposed algorithms (see, for example, [25,58]).



These test problems are processed on a personal computer (a laptop) with an Intel(R) Core(TM) i5-3230M CPU@2.60GHz and 2.60 GHz with 4.00 GB of RAM using the Windows 10 operating system.



This CGCG method, which is listed in Algorithm 1, is proposed to obtain a new set of CG methods, as the CGCG method contains four terms.



The performance of the CGCG method is examined in this section. Therefore, 76 test problems are used to complete this task. In addition, five classical CG methods are used to solve these 76 test problems. These five classical CG methods are the HS-CG method defined by (4), the FR-CG method defined by (5), the LS-CG method defined by (7), the DY-CG method defined by (8), and the HZ-CG method defined by (9).



The numerical results of all six CG methods are documented in Table 1, Table 2 and Table 3.



Next, the performance of all six algorithms is compared. The six methods are programmed in the MATLAB language (version 8.5.0.197613 (R2015a)).



The numerical comparisons present the advantages and disadvantages of each of the six algorithms. Therefore, three criteria are used to evaluate the performance of all six algorithms. These three criteria are “Itr”, denoting the number of iterations; “EFs”, denoting the functional evaluations; and “CPUT”, denoting the time.



We use the following termination form when running the six algorithms


  ε = 10.00 ×  10  − 6   ,  



(49)




or Itr   > 3000  , i.e., if the number of iterations exceeds 3000.



Accordingly, when    ∥ g   (  x   k   )    ∥  2  ≤ ε   or Itr   ≥ 3000  , the algorithm stops. The standard for determining the success of the algorithm in solving a test problem is as follows. If Itr   ≤ 3000   and    ∥ g   (  x   k   )    ∥  2  ≤ ε  , the algorithm has succeeded in solving the problem; otherwise, it has failed to solve the problem, which is denoted by “F” as shown in Table 1, Table 2 and Table 3.



Moreover, to display the test results clearly, we use a performance profile tool developed by Dolan and Moré [67]. More details about the performance profile and how it is used can be found in [67,68,69,70].



The significant feature of the performance profile constitutes its presentation of all results that are listed on one table in one figure by plotting an accumulative distribution function    ρ   s    ( τ )    for the many algorithms.



The numerical outcomes recorded in Table 1, Table 2 and Table 3 and all three graphs, which are depicted in Figure 1 and Figure 2, display the performance of all six algorithms.



The results in Table 1 present the number of iterations (Itr) for all six CG parameters. It is clear that the CGCG algorithm (Algorithm 1) was capable of solving all the test problems (76 benchmark test problems).



Hence, the CGCG method satisfies the following condition (success standard): Itr   < 3000   and    ∥ g   (  x   k   )    ∥  2  ≤ ε  , for all test problems. The second-best performance was exhibited by the HZ method.



According to the graph on the left of Figure 1 with   τ = 10  , the success rates of the six algorithms are ordered as follows:   100 %  ,   97 %  ,   68 %  ,   89 %  ,   54 %  , and   74 %  , for CGCG, HZ, DY, LS, FR, and HS, respectively.



The seam notice for the remaining Table 2 and Table 3 for the FEs and the CPU time, respectively.



The performance of the six algorithms examined via performance profiles is shown in Figure 1 and Figure 2. By utilizing the performance profile theory, we generated three performance levels, which are shown Figure 1 and Figure 2.



These two figures are based on the results listed in Table 1, Table 2 and Table 3 for the Itr, EFs, and CPU time for all 76 test problems, respectively.



It is clear from the two figures that the CGCG algorithm has the characteristics of efficiency, reliability, and effectiveness in solving the 76 test problems compared to the other five methods.



The performance of the six algorithms can be summarized by referencing Figure 1 and Figure 2, as follows. The performance of the six methods with respect to the Itr criterion is shown as follows.



At   τ = 1  , the success rates of the 6 algorithms are arranged as follows:   75 %  ,   41 %  ,   34 %  ,   26 %  ,   14 %  , and   13 %   for the LS, CGCG, HZ, HS, FR, and DY methods, respectively, corresponding to the left graph in Figure 1.



At   τ = 2  , the success rates of the six algorithms are ordered as follows:   92 %  ,   83 %  ,   83 %  ,   58 %  ,   49 %  , and   28 %   for the CGCG, HZ, LS, HS, DY, and FR, respectively, as shown in the left graph in Figure 1.



At   τ = 3  , the success rates of the six algorithms are ordered as follows:   96 %  ,   89 %  ,   84 %  ,   64 %  ,   58 %   and   39 %   for the CGCG, HZ, LS, HS, DY, and FR, respectively, as shown in the left graph in Figure 1.



At   τ = 4  , the success rates of the six algorithms are ordered as follows:   97 %  ,   93 %  ,   86 %  ,   68 %  ,   61 %  , and   45 %   for the CGCG, HZ, LS, HS, DY, and FR methods, respectively, shown in the left graph in Figure 1.



At   τ = 5  , the success rates of the six algorithms are ordered as follows:   99 %  ,   97 %  ,   87 %  ,   70 %  ,   62 %  , and   47 %   for the CGCG, HZ, LS, HS, DY, and FR methods, respectively, as shown in the left graph of Figure 1.



At   τ = 6  , the success rates of the six algorithms are ordered as follows:   99 %  ,   97 %  ,   88 %  ,   71 %  ,   66 %   and   47 %   for the CGCG, HZ, LS, HS, DY, and FR methods, respectively, as shown in the left graph in Figure 1.



At   τ = 7  , the success rates of the six algorithms are ordered as follows:   99 %  ,   97 %  ,   88 %  ,   72 %  ,   67 %  , and   50 %   for the CGCG, HZ, LS, HS, DY, and FR methods, respectively, as shown in the left graph in Figure 1.



At   τ = 8  , the success rates of the six algorithms are ordered as follows:   99 %  ,   97 %  ,   88 %  ,   74 %  ,   67 %  , and   51 %   for the CGCG, HZ, LS, HS, DY, and FR methods, respectively, as shown in the left graph in Figure 1.



At   τ = 9  , the success rates of the six algorithms are ordered as follows:   100 %  ,   97 %  ,   89 %  ,   74 %  ,   68 %  , and   53 %   for the CGCG, HZ, LS, HS, DY, and FR methods, respectively, as shown in the left graph in Figure 1.



At   τ = 10  , the success rates of the six algorithms are ordered as follows:   100 %  ,   97 %  ,   89 %  ,   74 %  ,   68 %  , and   54 %   for the CGCG, HZ, LS, HS, DY, and FR methods, respectively, as shown in the left graph in Figure 1.



The performance of the six methods with respect to the FEs criterion is shown as follows.



At   τ = 1  , the success rates of the six algorithms are ordered as follows:   36 %  ,   30 %  ,   28 %  ,   25 %  ,   8 %  , and   8 %  , for the CGCG, HS, HZ, DY, LS, and FR, methods, respectively, as shown in the right graph of Figure 1.



At   τ = 2  , the success rates of the six algorithms are ordered as follows:   84 %  ,   79 %  ,   55 %  ,   54 %  ,   33 %  , and   20 %  , for the CGCG, HZ, DY, HS, FR, and LS methods, respectively, in the right-hand graph in Figure 1.



At   τ = 3  , the success rates of the six algorithms are ordered as follows:   92 %  ,   92 %  ,   64 %  ,   61 %  ,   39 %   and   38 %  , for the CGCG, HZ, HS, DY, FR and LS, for the right graph of Figure 1.



At   τ = 4  , the success rates of the six algorithms are ordered as follows:   99 %  ,   96 %  ,   66 %  ,   63 %  ,   61 %   and   45 %  , for the CGCG, HZ, HS, DY, LS and FR for the right graph of Figure 1.



At   τ = 5  , the success rates of the six algorithms are ordered as follows:   99 %  ,   96 %  ,   68 %  ,   67 %  ,   64 %   and   45 %  , for the CGCG, HZ, HS, LS, DY and FR for the right graph of Figure 1.



At   τ = 6  , the success rates of the six algorithms are ordered as follows:   99 %  ,   97 %  ,   74 %  ,   70 %  ,   64 %   and   47 %  , for the CGCG, HZ, LS, HS, DY and FR for the right graph of Figure 1.



At   τ = 7  , the success rates of the six algorithms are ordered as follows:   99 %  ,   97 %  ,   76 %  ,   70 %  ,   66 %   and   51 %  , for the CGCG, HZ, LS, HS, DY and FR for the right graph of Figure 1.



At   τ = 8  , the success rates of the six algorithms are ordered as follows:   100 %  ,   97 %  ,   82 %  ,   72 %  ,   66 %   and   53 %  , for the CGCG, HZ, LS, HS, DY and FR for the right graph of Figure 1.



At   τ = 9  , the success rates of the six algorithms are ordered as follows:   100 %  ,   97 %  ,   83 %  ,   72 %  ,   66 %   and   53 %  , for the CGCG, HZ, LS, HS, DY and FR for the right graph of Figure 1.



At   τ = 10  , the success rates of the six algorithms are ordered as follows:   100 %  ,   97 %  ,   83 %  ,   72 %  ,   67 %  ,   53 %  , for the CGCG, HZ, LS, HS, DY, and FR for the right graph of Figure 1.



In addition, for Figure 2 and at   τ = 10  , the success rates of the six algorithms are ordered as follows   100 %  ,   97 %  ,   68 %  ,   84 %  ,   55 %   and   72 %   for the CGCG, HZ, DY, LS, FR, and HS methods, respectively.



In general, all the graphs show that the curve of the function    ρ   s    ( τ )    is almost maximal for the CGCG method. Therefore, the comparison results indicate that the CGCG approach is competitive with, and in all cases superior to, the five other CG methods in terms of efficiency, reliability, and effectiveness with regard to solving the set of test problems.




4. Image Processing


This section constitutes the second part of our numerical experiments. This section aims to render the CGCG algorithm capable of dealing with image-processing problems.



Images are often corrupted by various sources (factors) that may be responsible for the introduction of an artifact in a photo.



Therefore, the number of degraded pixels in a photo corresponds to the amount of noise that has been introduced into the image.



The main sources of noise in a digital image are as follows: [71,72].



	
Some environmental conditions may impact the efficiency of an imaging sensor during image acquisition.



	
Noise may be introduced into an image through an inappropriate sensor temperature and low light levels.



	
In addition, an image can deteriorated (corrupted) due to interference in the transmission channel.



	
Similarly, the image may be deteriorated (corrupted) due to dust particles that may exist on the scanner screen.






Images are often deteriorated by batch fuzz due to noisy sensors or transmission channels that lead to the corruption of a number of pixels in the picture.



A batch fuzz is one of the numerous popular noise samples in which only a portion of the pixels is degraded, i.e., the information of the pixels is entirely lost.



Generally, different photos with several implementations require treatment using a fine noise funnel technique to obtain credible effects and thus restore the original picture.



To restore an original photo that has been deteriorated by batch noise, a two-phase scheme is used, in which the first phase entails determining the fuzz-affected pixels in the corrupted photo, which is executed using the adaptive median filter algorithm [73,74,75,76,77].



In the first stage, the adaptive median filter algorithm determines the noise in the corrupted image, as follows. The filter compares each pixel in the distorted image to the surrounding pixels. If one of the pixel values varies significantly from the majority of the surrounding pixels, the pixel is treated as noise. More details about the adaptive median filter algorithm and salt-and-pepper noise removal by median type are available in [73,74,75,76,78,79].



The second phase of the scheme involves restoring the original image by using any algorithm that solves optimization problems.



Chan et al. [73] have applied the two-phase scheme to restore a corrupted image.



Many authors have used these two phases to render CG algorithms cable of restoring images corrupted by impulse noise (see, for example [25,42,43]).



The two-phase scheme can be briefly described as follows.



By applying the first stage, we use the adaptive median filter to select the corrupted pixels [73].



In the second phase, assume that the corrupted photo, denoted by  δ , has a size of   τ −   by   − ϱ   and   δ I = { 1 , 2 , … , τ } × { 1 , 2 , … , ϱ }  , constituting the index group of the photo  δ .



The set   ℵ ⊂ δ I   denotes the set of indices of the noise pixels detected from the first phase, and   | ℵ |   is the number of elements of ℵ.



Let   V  i , j    be the set of the four closest neighbors of the pixel at pixel location   ( i , j ) ∈ δ I  , i.e., let    V  i , j   =  {  ( i , j − 1 )  ,  ( i , j + 1 )  ,  ( i − 1 , j )  ,  ( i + 1 , j )  }   , and   y  i , j    be the observed pixel value (gray level) of the photo at pixel location   ( i , j )  .



Therefore, in the second stage, the noise from the corrupted pixels is removed by solving the following non-smooth problem:


   min u   ∑  ( i , j ) ∈ ℵ     |   u  i , j   −  y  i , j    | +   β 2    S  i , j   +   S ˜   i , j     ,  



(50)




where     S  i , j   =  ∑   ( n , m )  ∈  V  i , j    ∖ N     φ α   (  u  i , j   −  y  n , m   )    ,     S ˜  =  ∑   ( n , m )  ∈  V  i , j   ∩ ℵ    φ α   (  u  i , j   −  y  n , m   )    , and  φ  is a potential edge-preserving function.



Some of these functions were defined in [73], as follows.


   φ   α    ( t )  =       | t |  α     for   1 < α ≤ 2  ,           α +  t 2       for   α > 0  .       



(51)







In this paper, we use the second branch of (51), employing different values of the  α , and   u =   [  u  i , j   ]   i , j   ∈ ℵ   is a column vector of length   | ℵ |   ordered lexicographically.



However, it is time consuming and costly to determine the minimizer point of a non-smooth problem (50) exactly.



The authors of [80] canceled the non-smooth term and presented the subsequent smooth unconstrained optimization problem:


   min u   F α   ( u )  : =  ∑  ( i , j ) ∈ ℵ    2  ∑   ( i , j )  ∈  V  i , j   ∖ ℵ    φ   α    (  u  i , j   −  y  i , j   )  +  ∑   ( m , n )  ∈  V  i , j   ∩ ℵ    φ   α    (  u  i , j   −  u  m , n   )   .  



(52)







Clearly, the greater the fuzz ratio, the greater the size of (52).



Cai et al. [80] revealed that degraded pictures may be repaired efficiently by utilizing the CG parameters to find the minimizer of Problem (52); however, in reality, the fuzz ratio is heightened or actually corresponds to   90 %  .



Newly proposed algorithms of CG parameters for solving this problem (image restoration) can be found in [25,42,81].



Now, we concentrate on using the two-stage procedure to clear salt-and-pepper fuzz that represents a particular state of batch noise.



The adaptive median filter approach that is described by the authors of [76] will be used as the first stage to detect noisy pixels.



Therefore, the CGCG method is modified to obtain three CGCG algorithms, which are adapted to solve Problem (52); hence, this case represents the second stage.



The following iterative form is used to generate the candidate solutions of Problem (52).


   u  k + 1   =  u   k   +  α   k    d   d   ,  



(53)




where   α   k    represents the step size computed by a line search method, and   d   k    is the search direction, which is defined as follows.


   d    k + 1    = −  g    k + 1    +  β   k    d   k   +  ( 1 −  λ   k   )   β   k   N   2     d   k   −  λ   k    β  N   3     d   k   ,  



(54)




where    β   k   ∈  {  β  H S   ,  β  H  Z *    }   .



This combination allows for the acquisition of integrated algorithms that inherit the features of the parameters defined in Formulas (4), (9), (25), and (27).



Therefore, the two Formulas (53) and (54) can be run iteratively through one of the following cases.



Case 1: If    β   k   =  β  H S    , then the CGCG-SH algorithm is used.



Case 2: If    β   k   =  β  H  Z *     , then the CGCG-HZ algorithm is used.



The selected size of the filter window for the adaptive median filter method has a key role in the phases uncovering the noisy pixels in the corrupted image.



Chan et al. [73] presented several volumes of the filter window (W) as noted by the fuzz level as follows:



When the noise level is less than   25 %  , then the maximum of the window is    W  m a x   ×  W  m a x   = 5 × 5  . When the noise level is between   25 %   and   40 %  ,    W  m a x   ×  W  m a x   = 7 × 7  ; if the noise level is between   40 %   and   60 %  ,    W  m a x   ×  W  m a x   = 9 × 9  ; if the noise level is between   60 %   and   70 %  ,    W  m a x   ×  W  m a x   = 13 × 13  ; if the noise level is between   70 %   and   80 %  ,    W  m a x   ×  W  m a x   = 17 × 17  ; if the noise level is between   80 %   and   85 %  ,    W  m a x   ×  W  m a x   = 25 × 25  ; and if the noise level is between   85 %   and   90 %  ,    W  m a x   ×  W  m a x   = 39 × 39  .



In addition, the value of  α  in Problem (52) may be significant for finding the minimizer of Problem (52). Cai et al. [80] set   α = 100  .



Accordingly, we suggest two diffident values of the filter window (W) and the parameter  α , as follows.



Procedure: A We set    W  m a x   ×  W  m a x   = 5 × 5  , and if the noise ratio is less than or equal to   60 %  , then we set   α = 500  . Otherwise we set   α = 350  .



Consequently, by using Procedure: A and both Case 1 and Case 2, we design two algorithms for solving Problem (52). These tow algorithms are the CGCG-HS1 algorithm and CGCG-HZ algorithm; the research directions of the two algorithms are defined by


   d    k + 1    = −  g    k + 1    +  β  H S    d   k   +  ( 1 −  λ   k   )   β   k   N   2     d   k   −  λ   k    β  N   3     d   k   ,  



(55)




and


   d    k + 1    = −  g    k + 1    +  β  H  Z *     d   k   +  ( 1 −  λ   k   )   β   k   N   2     d   k   −  λ   k    β  N   3     d   k   ,  



(56)




respectively.



Procedure: B If the noise ratio is equal to   30 %  , we set    W  m a x   ×  W  m a x   = 3 × 3  ; if the noise ratio equals   50 %  , we set    W  m a x   ×  W  m a x   = 5 × 5  ; if the noise ratio is equal to   70 %  , we set    W  m a x   ×  W  m a x   = 7 × 7  ; and if the noise ratio is equal to   90 %  , we set    W  m a x   ×  W  m a x   = 9 × 9  . Additionally, we set   α = 100   for any noise level.



According to Procedure: B, we used Formula (55) to solve all images problems; this algorithm is abbreviated as CGCG-HS2.



We assess the performance of these three incorporated algorithms in solving image restoration problems by utilizing the peak signal-to-noise ratio [82].



The peak signal-to-fuzz proportion (PSNR) is defined as follows:


  P S N R = 10 l o  g 10    255 2    1  N M    ∑  ( i , j )      x  ( i , j )   r e s   −  x  ( i , j )   o r i    2    ,  



(57)




where   x  ( i , j )   r e s    and   x  ( i , j )   o r i    are the pixel values of the fixed picture and the original one, respectively.



The examined pictures are Lena (  512 × 512  ), Hill (  512 × 512  ), Man (  512 × 512  ), and Boat (  512 × 512  ).



The stopping standard used is defined by the following conditions.



If one of the two conditions is met,   I t r > 200   or


     F   α    (   U   k   −  F   α    (  U    k − 1    ) )     F   α    U   k     ≤  10  − 4   .  



(58)







The above procedures can be summarized as the following algorithms.



For further clarification of the working mechanism of the three proposed algorithms listed in Algorithms 2–4, the steps applied are shown in Figure 3.



In addition, Figure 4 depicts a graphical abstract of the operational scheme of the three proposed algorithms with real examples.




5. Numerical Results


In this section, we use the same operating environment that is used in Section 3.



Therefore, three criteria are used in this section; these standards are the Itr CPU time (Tcpu) and the PSNR values for the restored images listed in Table 4.



In addition, the graphs of the original, noisy, and repaired pictures are shown in Figure 5, Figure 6, Figure 7 and Figure 8.



The noise levels of the salt-and-pepper noise are as follows:   30 %  ,   50 %  ,   70 %  , and   90 %  .



The fifth row of Table 4 offers the totals of the three standards, i.e., Itr, Tcpu, and PSNR, for the repaired pictures. These pictures were processed by three algorithms: CGCG-HS1, CGCG-HZ, and CGCG-HS2.



These three criteria show that the CGCG-HS1 algorithm has achieved the best results for the PSNR compared to the CGCG-HS2 and CGCG-HZ algorithms.



With respect to time (Tcpu) and the number of iterations (Itr), the CGCG-HZ algorithm is the best, as it restores all corrupted images of all noises levels within 441.33 s with 288 iterations versus 525.62 s and 324 iterations achieved by applying the CGCG-HS1 algorithm and 525.738 s and 332 iterations achieved using CGCG-HS2 method. However, the CGCG-HS1 algorithm is the best for PSNR, as it its time span is 479.58 against 479.02 and 479.35 for CGCG-HZ and CGCG-HS2, respectively.



In general, the performance of the CGCG-HS1 and CGCG-HZ algorithms is better than the performance of the CGCG-HS2 algorithm. This means that the value of the parameter  α  plays a key role in minimizing the objective function    F   α    ( u )    in (52); additionally, the size of the filter window in the adaptive median filter method is very significant when scanning a deteriorated image. The outstanding clarity of the restored images proves the new family of modified hybrid CG methods can be used to solve many problems in different applications.




6. Conclusions and Future Work


A novel four-term CG parameter has been designed and tested in this study. The newly proposed algorithm is abbreviated as CGCG, which stands for “Convex Group Conjugated Gradient”.



The CGCG algorithm solved an unconstrained optimization problem.



The convergence analysis proof of the CGCG approach has been shown. Through solving a set 76 benchmark test problems using the six algorithms, the numerical results indicate that the CGCG algorithm outperforms the five classical CG algorithms. The CGCG algorithm has been adapted into a new family of modified CG methods used to deal with image restoration problems. The median filter method was first applied to detect the noise in a corrupted image. According to the noise level in the corrupted image, we changed the size of the filter window to improve the performance of this proposed family of CG methods. The salt-and-pepper technique was used to corrupt an image as a test problem, where levels of noise are 30–90%. Therefore, four well-known images (test problems) were corrupted with salt-and-pepper noise (at levels from 30 to 90%) to examine the performance of the new family of modified hybrid CG methods.



The superior clarity of the restored images indicates that the new family of modified hybrid CG methods has efficiency, reliability, and effectiveness in dealing with image restoration problems.



Therefore, this new family of modified hybrid CG methods can be adapted to deal with other problems in different applications. In future research, it will be valuable to combine the CGCG method with a meta-heuristic technique in order to possess the features of both techniques. Through this hybridization, we will obtain a hybrid CG meta-heuristic algorithm for dealing with global optimization problems, including unconstrained, constrained, and multi-objective problems.



It is also useful to develop the CGCG approach to deal with a nonlinear system of monotone equations.



Furthermore, the CGCG approach could be modified to deal with the symmetric system of nonlinear equations, image restoration, and deep neural networks used for trains.




7. List of Test Problem


These test problems were taken from [65,66].



COSINE function (CUTE): Pr = 1–3


   f  ( x )  =  ∑  i = 1   n − 1   c o s  ( − 0.5  x  i + 1   +  x    i   2  )  ,   x   0   =  [ 1 , … , 1 ]    











DIXMAAN function (CUTE): Pr = 4–26


  f  ( x )  = 1 +  ∑  i = 1  n  α  x    i   2     i n    k 1   +  ∑  i = 1   n − 1   β  x    i   2   (  x  i + 1   +  x  i + 1  2  )     i n    k 2   +  ∑  i = 1   2 m   γ  x    i   2   x     i + m    4     i n    k 3   +  ∑  i = 1  m  δ  x   i    x    i + 2 m       i n    k 4   ,  m = n / 3 ,  






















	
	 α 
	 β 
	 γ 
	 δ 
	  k 1  
	  k 2  
	  k 3  
	  k 4  



	A
	1
	0
	0.125
	0.125
	0
	0
	0
	0



	B
	1
	0.0625
	0.0625
	0.0625
	0
	0
	0
	1



	C
	1
	0.125
	0.125
	0.125
	0
	0
	0
	0



	D
	1
	0.26
	0.26
	0.26
	0
	0
	0
	0



	E
	1
	0
	0.125
	0.125
	1
	0
	0
	1



	F
	1
	0.0625
	0.0625
	0.0625
	1
	0
	0
	1



	G
	1
	0.125
	0.125
	0.125
	1
	0
	0
	1



	H
	1
	0.26
	0.26
	0.26
	1
	0
	0
	1



	I
	1
	0
	0.125
	0.125
	2
	0
	0
	2



	J
	1
	0.0625
	0.0625
	0.0625
	2
	0
	0
	2



	K
	1
	0.125
	0.125
	0.125
	2
	0
	0
	2



	L
	1
	0.26
	0.26
	0.26
	2
	0
	0
	2





where    x   0   =  [ 2 , … , 2 ]   .



DIXON3DQ function (CUTE): Pr = 27


   f  ( x )  =   (  x   1   − 1 )  2  +  ∑  i = 1   n − 1     (  x   i   −  x    i + 1    )  2  +   (  x   n   − 1 )  2  ,   x   0   =  [ − 1 , … , − 1 ]    











DQDRTIC function (CUTE): Pr = 28–31


   f  ( x )  =  ∑  i = 1   n − 2    (  x    i   2  + c  x     i + 1    2  + d  x     i + 2    2  )  ,  c = 100 ,  d = 100 ,  x   0   =  [ 3 , … , 3 ]  .   











EDENSCH function (CUTE): Pr = 32–34


   f  ( x )  = 16 +  ∑  i = 1   n − 1      (  x   i   − 2 )  4  +   (  x   i    x    i + 1    − 2  x    i + 1    )  2  +   (  x    i + 1    + 1 )  2   ,   x   0   =  [ 0 , … , 0 ]  .   











EG2 function (CUTE): Pr = 35


   f  ( x )  =  ∑  i = 1   n − 1   s i n  (  x   1   +  x    i   2  − 1 )  + 0.5 s i n  (  x    n   2  )  ,    x   0   =  [ 1 , … , 1 ]  .   











FLETCHCR function (CUTE): Pr = 36–38


   f  ( x )  =  ∑  i = 1   n − 1   c   (  x    i + 1    −  x   i   + 1 −  x    i   2  )  2  ,  c = 100 ,   x   0   =  [ 0 , … , 0 ]  .   











HIMMELBG function (CUTE): Pr = 39–40


   f  ( x )  =  ∑  i = 1   n / 2    ( 2  x  2 i − 1  2  + 3  x  2 i  2  )  e x p  ( −  x  2 i − 1   −  x  2 i   )  ,    x   0   =  [ 1.5 , … , 1.5 ]  .   











LIARWHD function (CUTE): Pr = 41–42


   f  ( x )  =  ∑  i = 1  n  4   ( −  x   1   +  x    i   2  )  2  +  ∑  i = 1  n    (  x   1   − 1 )  2  ,    x   0   =  [ 4 , … , 4 ]  .   











Extended Penalty function: Pr = 43–44


   f  ( x )  =  ∑  i = 1   n − 1     (  x   i   − 1 )  2  +    ∑  i = 1  n   x    i   2  − 0.25  2  ,    x   0   =  [ 1 , 2 , … , n ]  .   











QUARTC function (CUTE): Pr = 45–47


   f  ( x )  =  ∑  i = 1  n    (  x   i   − 1 )  4  ,    x   0   =  [ 2 , … , 2 ]  .   











TRIDIA function (CUTE): Pr = 48–49


   f  ( x )  =   (  x   1   − 1 )  2  +  ∑  i = 1  n  i   ( 2  x   i   −  x    i − 1    )  2  ,    x   0   =  [ 1 , … , 1 ]  .   











Extended Wood function: Pr = 50


   f  ( x )  =  ∑  i = 1  n   ( 100   (  x  4 i − 2   −  x  4 i − 3  2  )  2  +   ( 1 −  x  4 i − 3   )  2  + 90   (  x  4 i   −  x  4 i − 1  2  )  2  +   ( 1 −  x  4 i − 1   )  2  + 10   (  x  4 i − 2   +  x  4 i   − 2 )  2  + 0.1   (  x  4 i − 2   −  x  4 i   )  2  )  ,    











   x   0   =  [ − 3 , − 1 , − 3 , − 1 , − 3 , − 1 , … , − 3 , − 1 ]   .



BDEXP function (CUTE): Pr = 51–53


   f  ( x )  =  ∑  i = 1  n   (  x   i   +  x  i + 1   )  e x p  ( −  x    i + 2     (  x   i   +  x  i + 1   )  )  ,    x   0   =  [ 1 , … , 1 ]  .   











BIGGSB 1 function (CUTE): Pr = 54


   f  ( x )  =   (  x   1   − 1 )  2  +  ∑  i = 1   n − 1     (  x  i + 1   −  x   i   )  2  +   ( 1 −  x   n   )  2  ,    x   0   =  [ 0 , … , 0 ]  .   











SINE function: Pr = 55–57


   f  ( x )  =  ∑  i = 1   n − 1   s i n  ( − 0.5  x  i + 1   +  x    i   2  )  ,    x   0   =  [ 1 , … , 1 ]  .   











FLETCBV3 function (CUTE): Pr = 58


  f  ( x )  =  p 2    (  x   1   +  x   n   )  2   ∑  i = 1   n − 1    p 2    (  x   i   −  x    i + 1    )  2  −  ∑  i = 1  n     p (  h 2  + 2 )   h 2    x   i   +   c p   h 2   c o s  (  x   i   )   ,  








where   p = 1 /  10 8   ,   h = 1 / ( 1 + n )  ,   c = 1   and    x   0   =  [ h , 2 h … , n h ]   .



NONSCOMP function (CUTE): Pr = 59–60


   f  ( x )  =   (  x   1   − 1 )  2  +  ∑  i = 1  n  4   (  x   i   −  x     i − 1    2  )  2  ,    x   0   =  [ 3 , 3 , … , 3 ]  .   











POWER function (CUTE): Pr = 61


   f  ( x )  =  ∑  i = 1  n    ( i  x   i   )  2  ,    x   0   =  [ 1 , 1 , … , 1 ]  .   











Raydan 1 function: Pr = 62–63


   f  ( x )  =  ∑  i = 1  n   i 10   ( e x p  (  x   i   )  −  x   i   )  ,    x   0   =  [ 1 , 1 , … , 1 ]  .   











Raydan 2 function: Pr = 64–66


   f  ( x )  =  ∑  i = 1  n   ( e x p  (  x   i   )  −  x   i   )  ,    x   0   =  [ 1 , 1 , … , 1 ]  .   











Diagonal 1 function: Pr = 67–68


   f  ( x )  =  ∑  i = 1  n   ( e x p  (  x   i   )  − i  x   i   )  ,    x   0   =  [ 1 / n , 1 / n , … , 1 / n ]  .   











Diagonal 2 function: Pr = 69–70


   f  ( x )  =  ∑  i = 1  n   ( e x p  (  x   i   )  −   x   i   i  )  ,    x   0   =  [ 1 / 1 , 1 / 2 , … , 1 / n ]  .   











Diagonal 3 function: Pr = 71–72


   f  ( x )  =  ∑  i = 1  n   e x p  (  x   i   )  − i s i n  (  x   i   )   ,    x   0   =  [ 1 , … , 1 ]  .   











Extended Rosenbrock function: Pr = 73–74


   f  ( x )  =  ∑  i = 1   n / 2   100    x    2 i    −  x     2 i − 1    2   2  +   ( 1 −  x    2 i − 1    )  2  ,    x   0   =  [ − 1.2 , 1 , … , − 1.2 , 1 ]  .   











TRIDIA function (CUTE): Pr = 75–76


   f  ( x )  =   (  x   1   − 1 )  2  +  ∑  i = 2  n  i   ( 2  x   i   −  x    i − 1    )  2  ,    x   0   =  [ 1 , … , 1 ]  .   
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Figure 1. Representation of the curve of the function    ρ   s    ( τ )    for 6 methods with respect to Itr and FEs criteria. 
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Figure 2. Representation of the curve of function    ρ   s    ( τ )    of six methods regarding CPU time criterion. 
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Figure 3. Flowchart of the proposed algorithms CGCG-HS1, CGCG-HS2, and CGCG-HZ. 
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Figure 4. A graphical abstract of the wormking mechanism of CGCG-HS1, CGCG-HS2, and CGCG-HZ. 
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Figure 5. Initial pictures (1st row), the noisy photos with 30% salt-and-pepper fuzz (2nd row), and the pictures repaired by CGCG-HS1 (3rd row), CGCG-HZ (4th row), and CGCG-HS2 (5th row). 
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Figure 6. Initial Photos (1st row), the noisy photos with 50% salt-and-peppernoise (2nd row), and the repaired images by CGCG-HS1 (3rd row), CGCG-HZ (4th row), and CGCG-HS2 (5th row). 
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Figure 7. Initial pictures (1st row), the noisy pictures with 70% salt-and-pepper noise (2nd row), and the repaired pictures by CGCG-HS1 (3rd row), CGCG-HZ (4th row), and CGCG-HS2 (fifth row). 
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Figure 8. Initial pictures (1st row), the noisy pictures with 90% salt-and-pepper noise (2nd row), and the repaired pictures by CGCG-HS1 (3rd row), CGCG-HZ (4th row), and CGCG-HS2 (5th row). 
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Table 1. The Number of Iterations (Itr).
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	Pr
	n
	CGCG
	HZ
	DY
	LS
	FR
	HS
	Pr
	n
	CGCG
	HZ
	DY
	LS
	FR
	HS





	1
	6000
	32
	40
	270
	238
	33
	F
	39
	70,000
	2
	2
	2
	2
	2
	2



	2
	100,000
	39
	79
	F
	F
	F
	F
	40
	240,000
	2
	2
	2
	2
	2
	2



	3
	800,000
	26
	21
	F
	101
	F
	101
	41
	6000
	83
	140
	52
	45
	48
	30



	4
	6000
	22
	21
	13
	27
	22
	28
	42
	30,000
	197
	200
	166
	89
	147
	45



	5
	90,000
	24
	19
	25
	49
	26
	38
	43
	4000
	35
	93
	52
	1462
	F
	1501



	6
	24,000
	18
	13
	18
	39
	79
	28
	44
	10,000
	17
	17
	20
	563
	17
	57



	7
	48,000
	22
	18
	18
	52
	16
	29
	45
	4000
	57
	58
	65
	75
	54
	57



	8
	2700
	18
	18
	30
	43
	37
	24
	46
	80,000
	86
	134
	133
	123
	172
	111



	9
	27,000
	19
	17
	22
	65
	23
	23
	47
	500,000
	144
	151
	203
	190
	268
	176



	10
	12,000
	21
	21
	54
	28
	47
	42
	48
	300
	635
	823
	1178
	977
	1712
	623



	11
	90,000
	27
	59
	20
	60
	19
	36
	49
	2000
	2108
	1450
	F
	2762
	F
	2374



	12
	2400
	449
	409
	562
	429
	789
	264
	50
	150,000
	356
	587
	F
	219
	F
	191



	13
	48,000
	1178
	1111
	1831
	1977
	F
	1217
	51
	5000
	2
	2
	2
	2
	2
	F



	14
	15,000
	770
	709
	F
	1038
	F
	534
	52
	50,000
	2
	2
	2
	2
	2
	F



	15
	60,000
	647
	1089
	F
	1415
	F
	1354
	53
	500,000
	2
	2
	2
	2
	2
	F



	16
	12,000
	576
	2007
	F
	615
	1161
	499
	54
	300
	1663
	1878
	1132
	2159
	F
	1845



	17
	90,000
	856
	591
	F
	1627
	F
	1226
	55
	100,000
	35
	55
	F
	2629
	F
	F



	18
	6000
	502
	342
	F
	636
	F
	378
	56
	250,000
	56
	97
	F
	2030
	F
	F



	19
	150,000
	442
	812
	F
	2058
	2810
	1501
	57
	500,000
	120
	149
	F
	523
	F
	F



	20
	360
	1616
	1079
	1512
	2486
	F
	1501
	58
	100
	2047
	F
	F
	1326
	F
	2566



	21
	3000
	407
	412
	F
	553
	F
	418
	59
	5000
	73
	193
	F
	94
	2312
	401



	22
	15,000
	529
	556
	442
	515
	F
	562
	60
	80,000
	53
	80
	F
	264
	233
	F



	23
	12,000
	467
	762
	F
	533
	F
	445
	61
	150
	2202
	2704
	1745
	2907
	F
	2345



	24
	120,000
	620
	721
	1515
	921
	F
	589
	62
	500
	243
	241
	400
	235
	573
	168



	25
	2400
	296
	349
	F
	395
	F
	306
	63
	5000
	960
	1169
	F
	F
	F
	F



	26
	24,000
	459
	420
	F
	552
	F
	390
	64
	2000
	12
	12
	12
	663
	9
	F



	27
	150
	2002
	2455
	1317
	2848
	F
	1132
	65
	20,000
	10
	10
	11
	481
	25
	23



	28
	9000
	87
	81
	90
	118
	158
	72
	66
	500,000
	17
	12
	32
	548
	108
	F



	29
	90,000
	108
	63
	71
	124
	87
	91
	67
	800
	637
	719
	2037
	1916
	F
	F



	30
	5000
	61
	60
	55
	59
	54
	67
	68
	2000
	1061
	749
	F
	F
	F
	F



	31
	150,000
	114
	115
	125
	152
	166
	124
	69
	8000
	686
	1025
	651
	709
	F
	F



	32
	7000
	40
	51
	54
	58
	124
	68
	70
	50,000
	1731
	1983
	F
	F
	F
	F



	33
	40,000
	43
	43
	53
	69
	100
	172
	71
	500
	583
	291
	1481
	641
	F
	2214



	34
	500,000
	44
	43
	194
	167
	201
	299
	72
	2000
	1687
	857
	F
	F
	F
	F



	35
	100
	862
	1574
	133
	199
	170
	103
	73
	500
	162
	178
	297
	67
	146
	48



	36
	1000
	75
	50
	113
	124
	F
	47
	74
	1000
	112
	123
	103
	61
	89
	43



	37
	50,000
	99
	138
	164
	246
	F
	F
	75
	500
	64
	55
	316
	102
	387
	83



	38
	200,000
	239
	307
	350
	296
	F
	F
	76
	8000
	95
	96
	401
	111
	738
	77
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Table 2. The Number of Function Evaluations (FEs).
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	Pr
	n
	CGCG
	HZ
	DY
	LS
	FR
	HS
	Pr
	n
	CGCG
	HZ
	DY
	LS
	FR
	HS





	1
	6000
	92
	100
	878
	1050
	103
	F
	39
	70,000
	15
	15
	15
	15
	15
	15



	2
	100,000
	113
	201
	F
	F
	F
	F
	40
	240,000
	13
	13
	13
	13
	13
	13



	3
	800,000
	99
	85
	F
	536
	F
	408
	41
	6000
	256
	364
	203
	272
	193
	177



	4
	6000
	83
	90
	70
	163
	81
	172
	42
	30,000
	751
	670
	552
	647
	603
	237



	5
	90,000
	87
	82
	87
	367
	91
	179
	43
	4000
	267
	721
	347
	15,993
	F
	1528



	6
	24000
	78
	76
	81
	255
	216
	168
	44
	10,000
	83
	83
	85
	6096
	84
	451



	7
	48,000
	85
	81
	81
	312
	80
	152
	45
	4000
	188
	174
	170
	331
	223
	170



	8
	2700
	77
	75
	92
	292
	108
	129
	46
	80,000
	308
	376
	311
	557
	624
	342



	9
	27,000
	80
	87
	86
	467
	86
	138
	47
	500,000
	498
	475
	423
	815
	823
	468



	10
	12,000
	81
	81
	132
	147
	135
	217
	48
	300
	1406
	1770
	1246
	3472
	3811
	990



	11
	90,000
	95
	183
	86
	394
	95
	174
	49
	2000
	4677
	3108
	F
	9941
	F
	3775



	12
	2400
	969
	878
	621
	1509
	1725
	444
	50
	150,000
	959
	1427
	F
	1075
	F
	572



	13
	48,000
	2547
	2365
	1896
	6952
	F
	1865
	51
	5000
	11
	11
	11
	11
	11
	F



	14
	15,000
	1741
	1483
	F
	3753
	F
	876
	52
	50,000
	16
	16
	16
	16
	16
	F



	15
	60,000
	1428
	2321
	F
	5006
	F
	2098
	53
	500,000
	12
	12
	12
	12
	12
	F



	16
	12,000
	1252
	4374
	F
	2261
	2581
	784
	54
	300
	3730
	3963
	1181
	7450
	F
	2904



	17
	90,000
	1866
	1273
	F
	5728
	F
	1926
	55
	100,000
	134
	184
	F
	11,605
	F
	F



	18
	6000
	1157
	722
	F
	2305
	F
	635
	56
	250,000
	164
	268
	F
	9226
	F
	F



	19
	150,000
	1010
	1732
	F
	7527
	6240
	2445
	57
	500,000
	314
	399
	F
	2562
	F
	F



	20
	360
	3603
	2302
	1566
	8988
	F
	2360
	58
	100
	4714
	F
	F
	3219
	F
	4587



	21
	3000
	955
	914
	F
	2053
	F
	697
	59
	5000
	173
	409
	F
	462
	5308
	1259



	22
	15,000
	1143
	1183
	516
	1853
	F
	891
	60
	80,000
	154
	190
	F
	1156
	550
	F



	23
	12,000
	1072
	1651
	F
	1852
	F
	699
	61
	150
	4790
	5752
	1826
	10,182
	F
	3578



	24
	120,000
	1358
	1564
	1584
	3292
	F
	932
	62
	500
	505
	487
	467
	846
	1772
	299



	25
	2400
	659
	751
	F
	1550
	F
	491
	63
	5000
	2146
	2550
	F
	F
	F
	F



	26
	24,000
	979
	942
	F
	1855
	F
	636
	64
	2000
	63
	63
	63
	7281
	65
	F



	27
	150
	4519
	5309
	1358
	9937
	F
	1759
	65
	20,000
	72
	72
	78
	5272
	93
	155



	28
	9000
	250
	245
	266
	718
	429
	293
	66
	500,000
	107
	77
	225
	6011
	614
	F



	29
	90,000
	302
	208
	203
	688
	222
	298
	67
	800
	4542
	5666
	18,079
	18,920
	F
	F



	30
	5000
	187
	188
	164
	268
	199
	195
	68
	2000
	7534
	4414
	F
	F
	F
	F



	31
	150,000
	338
	333
	281
	651
	569
	371
	69
	8000
	1478
	2190
	881
	2701
	F
	F



	32
	7000
	121
	256
	149
	295
	360
	377
	70
	50,000
	3967
	4354
	F
	F
	F
	F



	33
	40,000
	112
	150
	209
	425
	642
	894
	71
	500
	4126
	1067
	12,906
	5205
	F
	18,987



	34
	500,000
	179
	160
	1012
	1259
	1040
	2107
	72
	2000
	13,364
	4084
	F
	F
	F
	F



	35
	100
	2514
	4234
	449
	1164
	565
	394
	73
	500
	547
	495
	811
	460
	509
	258



	36
	1000
	367
	185
	793
	944
	F
	175
	74
	1000
	378
	386
	366
	444
	296
	209



	37
	50,000
	723
	1156
	1371
	2360
	F
	F
	75
	500
	134
	125
	372
	404
	813
	167



	38
	200,000
	2238
	2895
	3007
	2885
	F
	F
	76
	8000
	228
	205
	463
	404
	1622
	159
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Table 3. The CPUT.
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	Pr
	n
	CGCG
	HZ
	DY
	LS
	FR
	HS
	Pr
	n
	CGCG
	HZ
	DY
	LS
	FR
	HS





	1
	6000
	0.13
	0.10
	0.991
	0.93
	0.13
	F
	39
	70,000
	0.21
	0.24
	0.29
	0.19
	0.30
	0.21



	2
	100,000
	2.22
	2.76
	F
	F
	F
	F
	40
	240,000
	0.62
	0.68
	0.61
	0.53
	0.69
	0.62



	3
	800,000
	19.65
	12.15
	F
	80.67
	F
	60.77
	41
	6000
	0.03
	0.09
	0.11
	0.06
	0.19
	0.02



	4
	6000
	0.41
	0.33
	0.42
	0.85
	0.49
	0.70
	42
	30,000
	2.41
	2.71
	1.74
	1.70
	2.71
	0.72



	5
	90,000
	4.64
	4.31
	4.51
	17.83
	6.16
	9.63
	43
	4000
	17.49
	46.16
	18.48
	812.32
	F
	82.43



	6
	24,000
	1.30
	1.34
	1.24
	3.94
	4.25
	2.57
	44
	10,000
	27.26
	24.97
	22.13
	1627.78
	26.26
	115.85



	7
	48,000
	2.77
	2.45
	2.41
	9.22
	3.00
	4.47
	45
	4000
	0.39
	0.35
	0.39
	0.52
	0.47
	0.31



	8
	2700
	0.18
	0.18
	0.23
	0.72
	0.37
	0.29
	46
	80,000
	11.58
	13.59
	10.06
	15.68
	22.40
	11.88



	9
	27,000
	1.52
	1.47
	1.43
	7.99
	1.79
	2.37
	47
	500,000
	97.81
	104.77
	96.01
	163.74
	183.61
	95.10



	10
	12,000
	0.65
	0.66
	1.04
	1.18
	1.35
	1.62
	48
	300
	0.17
	0.19
	0.17
	0.55
	0.46
	0.08



	11
	90,000
	5.37
	10.18
	4.49
	20.07
	6.52
	9.25
	49
	2000
	1.43
	0.96
	F
	2.02
	F
	1.00



	12
	2400
	1.67
	1.59
	1.16
	2.81
	3.86
	0.68
	50
	150,000
	21.70
	29.56
	F
	15.78
	F
	9.46



	13
	48,000
	65.39
	68.58
	53.76
	204.81
	F
	52.20
	51
	5000
	0.03
	0.03
	0.10
	0.07
	0.27
	F



	14
	15,000
	18.09
	13.91
	F
	37.72
	F
	8.69
	52
	50,000
	0.34
	0.37
	0.39
	0.28
	0.34
	F



	15
	60,000
	55.80
	80.29
	F
	182.95
	F
	74.44
	53
	500,000
	2.50
	3.17
	3.56
	2.51
	2.86
	F



	16
	12,000
	10.79
	34.13
	F
	18.51
	23.95
	6.03
	54
	300
	0.42
	0.38
	0.21
	0.44
	0.60
	0.24



	17
	90,000
	103.80
	69.11
	F
	309.50
	359.16
	101.07
	55
	100,000
	2.20
	3.19
	F
	151.62
	272.38
	F



	18
	6000
	5.01
	2.99
	F
	10.05
	25.60
	2.48
	56
	250,000
	10.05
	16.87
	F
	484.03
	983.93
	F



	19
	150,000
	87.50
	164.52
	F
	694.51
	633.25
	228.25
	57
	500,000
	40.05
	49.90
	F
	266.80
	2010.13
	F



	20
	360
	1.54
	1.76
	0.821
	4.20
	F
	1.12
	58
	100
	0.82
	F
	F
	0.43
	1.54
	0.63



	21
	3000
	2.64
	2.62
	F
	4.28
	F
	1.48
	59
	5000
	0.13
	0.29
	F
	0.30
	3.73
	0.73



	22
	15,000
	11.71
	12.91
	4.44
	14.98
	F
	7.04
	60
	80,000
	1.54
	1.66
	F
	8.66
	5.27
	F



	23
	12,000
	9.52
	12.55
	F
	13.64
	F
	4.42
	61
	150
	0.78
	0.51
	0.24
	0.51
	F
	0.29



	24
	120,000
	105.00
	115.81
	106.79
	208.11
	F
	60.85
	62
	500
	0.12
	0.06
	0.11
	0.11
	0.27
	0.07



	25
	2400
	1.27
	1.55
	F
	2.17
	F
	0.71
	63
	5000
	1.66
	1.27
	F
	F
	F
	F



	26
	24,000
	16.33
	14.79
	F
	23.12
	F
	8.78
	64
	2000
	0.02
	0.03
	0.03
	1.59
	0.09
	F



	27
	150
	0.61
	0.55
	0.17
	0.45
	F
	0.13
	65
	20,000
	0.19
	0.18
	0.19
	10.16
	0.24
	0.31



	28
	9000
	0.30
	0.22
	0.22
	0.48
	0.34
	0.23
	66
	500,000
	7.26
	4.92
	13.53
	336.84
	36.76
	F



	29
	90,000
	3.40
	1.75
	1.33
	4.29
	1.56
	2.09
	67
	800
	0.92
	0.99
	3.19
	3.17
	F
	F



	30
	5000
	0.42
	0.46
	0.37
	0.52
	0.44
	0.44
	68
	2000
	3.05
	1.60
	F
	F
	F
	F



	31
	150,000
	21.53
	22.64
	15.09
	37.37
	34.91
	23.84
	69
	8000
	2.74
	3.28
	1.45
	3.68
	F
	F



	32
	7000
	0.46
	1.02
	0.51
	1.26
	1.11
	1.43
	70
	50,000
	41.47
	40.49
	27.65
	F
	F
	F



	33
	40,000
	2.40
	3.23
	3.51
	9.20
	11.58
	16.90
	71
	500
	0.61
	0.20
	2.04
	0.70
	F
	2.53



	34
	500,000
	44.34
	42.78
	241.73
	257.40
	207.06
	462.33
	72
	2000
	6.51
	1.95
	F
	F
	F
	F



	35
	100
	0.30
	0.41
	0.05
	0.12
	0.11
	0.03
	73
	500
	1.16
	1.10
	1.92
	0.90
	1.47
	0.54



	36
	1000
	0.08
	0.08
	0.17
	0.13
	F
	0.03
	74
	1000
	3.33
	3.51
	3.25
	3.37
	2.89
	1.63



	37
	50,000
	6.17
	8.02
	9.47
	13.19
	F
	F
	75
	500
	0.28
	0.30
	0.85
	0.71
	2.14
	0.42



	38
	200,000
	69.75
	80.96
	80.44
	70.40
	F
	F
	76
	8000
	67.61
	63.67
	107.70
	105.84
	560.69
	40.32
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Table 4. Results regarding the performance of CGCG-HS1, CGCG-HS2, and CGCG-HZ Algorithms for repairing corrupted pictures.






Table 4. Results regarding the performance of CGCG-HS1, CGCG-HS2, and CGCG-HZ Algorithms for repairing corrupted pictures.





	
Image

	
Noise Ratio

	
CGCG-HS1

	
CGCG-HZ

	
CGCG-HS2




	
Tcpu

	
Itr

	
PSNR

	
Tcpu

	
Itr

	
PSNR

	
Tcpu

	
Itr

	
PSNR






	
lena

	
30%

	
16.13

	
14

	
37.22

	
14.42

	
12

	
37.21

	
16.4649116

	
19

	
36.9968113




	
lena

	
50%

	
27.90

	
17

	
34.58

	
19.64

	
13

	
34.60

	
28.99923381

	
17

	
34.58358745




	
lena

	
70%

	
39.52

	
23

	
31.37

	
28.87

	
20

	
31.37

	
33.2962394

	
20

	
31.4504158




	
lena

	
90%

	
47.87

	
26

	
26.33

	
41.13

	
26

	
26.22

	
54.66880879

	
26

	
26.11239207




	
hill

	
30%

	
16.76

	
19

	
34.92

	
15.67

	
15

	
34.87

	
16.72475127

	
16

	
34.89737541




	
hill

	
50%

	
28.86

	
21

	
32.67

	
23.17

	
14

	
32.57

	
30.66004241

	
21

	
32.66618695




	
hill

	
70%

	
33.09

	
18

	
29.69

	
29.01

	
17

	
29.68

	
35.82486906

	
23

	
29.8987122




	
hill

	
90%

	
46.69

	
25

	
25.64

	
40.18

	
23

	
25.55

	
49.82943146

	
27

	
25.65882636




	
man

	
30%

	
21.91

	
15

	
31.69

	
16.64

	
12

	
31.63

	
14.54189568

	
16

	
31.5757247




	
man

	
50%

	
29.92

	
20

	
29.30

	
21.72

	
12

	
29.23

	
26.76981277

	
20

	
29.30118531




	
man

	
70%

	
38.22

	
24

	
26.45

	
33.67

	
20

	
26.38

	
35.66918655

	
22

	
26.46714801




	
man

	
90%

	
48.01

	
26

	
22.52

	
40.87

	
24

	
22.52

	
51.93510837

	
28

	
22.52534104




	
boat

	
30%

	
17.32

	
16

	
33.66

	
17.25

	
14

	
33.62

	
18.76662682

	
18

	
33.65937063




	
boat

	
50%

	
26.25

	
14

	
31.15

	
24.19

	
16

	
31.12

	
27.75435595

	
14

	
31.14532822




	
boat

	
70%

	
39.57

	
21

	
28.30

	
29.92

	
19

	
28.26

	
35.84634329

	
20

	
28.30099363




	
boat

	
90%

	
47.59

	
25

	
24.09

	
44.98

	
31

	
24.20

	
47.62695771

	
25

	
24.11558254




	

	
Total

	
525.62

	
324

	
479.58

	
441.33

	
288

	
479.02

	
525.38

	
332

	
479.35
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