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1. Introduction

The idea of the interpolative class of contractions was first introduced by Karap-
inar et al. [1], who also implemented a few fixed point results in a partial metric space.
Karapinar [2] revisited Kannan's contraction principle via the notion of interpolation.

Karapinar updated Kannan’s interpolative contraction in [2] and used an interpolative
approach to determine the Hardy-Rogers findings in [3]. Additionally, he created a novel
interpolative contraction technique in [4].

Aydi et al. [5,6] introduced interpolative and w-interpolative Reich-Rus-type con-
tractions and also proved some relevant fixed point findings for these mappings. Altun
et al. [7] presented various proximal interpolative proximal contractions and found certain
best proximity point results while taking into account the aforementioned mappings.

Hussain [8-10] recently expanded this idea of Karapinar and published a few findings
pertaining to these kinds of novel contractions. Nazam et al. [11-13] introduced (Y,
®)-orthogonal interpolative contractions very recently and made a few observations in
the literature.

The idea of interpolation has been used by many mathematicians to obtain various
analogues of classical fixed point theorems. Keeping in mind the aforementioned in-
vestigations, we develop a new concept of convex interpolative contraction and derive
some results.

Let F represent the group of functions g : (0,+00) — R fulfilling the following
requirements:

(F1) g is increasing, meaning that for every u > v > 0, = g(u) < g(v);

(F2) each sequence {v,,} C (0, +0c0), such that,

lim v, =0 <—

 im lim g(v,) = —oo.

n—+o00

Jleli and Samet [14] introduced the concept of F-metric space as follows:

Definition 1 ([14]). Let D : X x X — [0, +00) be a mapping and X be a non-empty set. Suppose
that there exists (g, u) € F x [0, +00) such that
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(D1). (,0) eXxX,D(},0)=0 < ;=14
(D2).D (7,¢) =b (¢,7) forall (;,¢) € X x X;
(D3). Forevery (7,¢) € X x X,2 < N € N, for each (1;);eny C X with (u,un) = (5, ¢),

we have
N-1

D(uy,un) >0 = g(D(uy,un)) < g( ; d(uj, i) + p

The pair (X, D) is called an F-metric space.

Example 1 ([14]). Let N be a set and D be an F-metric defined by

G0, (0 € (03] x [0,3]
U6 = { -], i (,0)  0,3] % [0,3],

forall (,£) € N x Nwith f(v) = 1In(v) and p = In(3), and D is not a metric, but on N, it is an
F-metric space.

Definition 2 ([14]). Assume that (X, D) is an F-metric space. Let {}, } represent a sequence in X.
(1) If imy, yy—s00 P (Jn, Jm) = 0, we say that {;,, } is F-Cauchy.
(ii) We say that (X, D) is F-complete if every F-Cauchy sequence in X is F-convergent to a
specific element in X.

Jleli and Samet [14] established an analogue of the Banach Contraction Principle
as follows:

Theorem 1. Let h : X — X be a mapping defined on an F-metric space (X, D). Assume that the
subsequent criteria are met:
(i) (X, D) is F-complete;
(ii) There exists k € (0,1) such that
D(h(y),h(£)) <kD(},¢), (1,£) € X x X.

Then h has a unique fixed point ;* € X. In addition, jy € X, the sequence {},} C X defined by
Jn+1 = h(jn), n € N, is F-convergent.

In 2012, Samet et al. [15] introduced the concept of a-admissible mapping as follows:

Definition 3. Let S: X — Xand o : X x X — [0, +-00). We say that S is a-admissible if for all
7,0 € X, witha(3,£) > 1 we have «(S7, S¢) > 1.

The idea of x-admissible mapping was then modified by Salimi et al. [16] as follows.
Definition 4 ([16]). Let S : X — Xand a,n : X x X — RT be two functions. We say that
S is w-admissible mapping with respect to n if for all j, € X, with a(},£) > n(3,£) we have
«(Sy,S0) > n(Sy,S¢).

Definition 5 ([17]). Let (X,d) be a metric space and o, : X x X — [0, +00) be two functions.
The mapping S : X — X is said to be a-n-continuous on (X, d) if for a sequence {}, }, we have

Jim gy = . &G Jut1) = 1 (ns Juga) foralln € N == Spy — 5.
For more details, see [18,19].
If limy 0 S"7 = v implies that limy, ;0 S5"7 = Sv, then a mapping S : X — X is

termed as orbitally continuous at v. If S is orbitally continuous for all v, then the mapping
S is orbitally continuous on .
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In Observation 1 [12], the authors proved the following inequality for r > 1, such that
(b+9)" < (bg)¥Vb,q=2
and remarked that the investigations in [9,10,20] did not have the correct proof.

2. Interpolative Convex Reich-Type Contraction

In this section, we offer a novel interpolative convex contraction and establish some
new discoveries for interpolative convex Reich-type a-#-contraction in the context of F-
complete F-metric space.

Definition 6. Let (X, D) be an F-metric space and o, 17 : X x X — [0, +00) be two functions.
The mapping S : X — X is said to be an interpolative convex Reich-type a-y-contraction if there
are constants A € [0,1) and w, B,y € (0,1) such that whenever a(j, ) > 1(j,{), we have

D(S), S0P < A [B(],g)bﬁﬂw -D(¢, S0P . D), Sj)b(lfﬁ*v)ﬂ(%a)} ) )
forall j,¢ € X\Fix(S), wherep,q € [1,00).
Example 2. Let X = {0,1,2,3} be endowed with F-metric space given by

[ G-0%if(,0) eXxX
Pl.H) = { =0, if (7,0) & X x X,

with f(v) = In(v) and p = In(3). Define S : X — X by
50=0,51=1,52=S53=0.
and o, 77 : X x X — [0,4+0) by

1,if 7,0 € X
0, otherwise

3 ifrleX
0, otherwise

0,0 = { and 1,) = {

If ,¢ € X, then clearly a(7,¢) > 1(},£) and so that

0 = P(s2 53)10 <A {D (2’3>P/5+‘7“ D(2, 52)?(1—5—7)+‘7(7—“) D (3, 53)137—17’7}

= A[(l)bﬁﬂrx b (2,0)10(1713*7)%(770() D3, O)PV—W}
br—ar
p(1—p—7)+q(r—a) (9
A [(4) <4> ] '

By taking any value of constants A € [0,1), a, 8,7 € (0,1) and p,q € [1,0). Clearly, (1)
holds for all j, ¢ € X\ Fix(S) and S has two fixed points, 0 and 1; see for more information
and examples [1].

Now, we state the key theorem of this article.

Theorem 2. Let (X, D) be an F-complete F-metric space and S be an interpolative convex Reich-
type a-1j-contraction assuring the following conditions:

(i) S is wa-admissible with respect to 1;

(i) There exists jo € X such that a(jo, Sjo) > 11(jo, Sjo);

(iii) S is a-n-continuous mapping.

Then, S attains a fixed point in X.
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Proof. Let jo in X such that «(jo, Sjo) > #(jo, Sjo)- For jo € X, we construct a sequence
{jn}or_; such that j; = Sjo, ;2 = Sj1 = S?jp. Continue this approach until for every n €
N, Jn11 = Sju = S"T1jg. Because of (i), S is a-admissible in terms of 7 after that a(jo, j1) =
«(70,S10) > 1(jo, Sjo) = 11 (Jo, 1)- By carrying out this procedure further, we have

“(]Yl—lljn) Z 77(]7’1—115]71—1) = ’7(]?’1—1/]71)/ foralln € N. (2)

On the condition that j,11 = j; a few n € N, afterward, j, = ;* is a fixed point of S. Thus,
we presume J; # J,4+1 with

D(S71-1,5/m) = B(n,Sjn) > 0, foralln € N.
Since S is an interpolative convex Reich-type a-77-contraction, for any n € N, we obtain

D(Sjn-1,S1n)P

D(jp_1,1n)PPH9 . D(jy_1, Sju_1)PO—A=7)Ha(r—4) -D(]n,S]n)PV—‘W},
In)
)

D(]n/]n—H)b

IN

A
A{D 1, Jn)PPT%. (]n_lljn)b(l—ﬁ—v)w(“r—a) ‘D(]n/]n+1)m_‘”},
A

D ]1’1 1/]1’1 b 1 ’)/)Jrq(Y D(]ﬂ/]n+1)p77q7:|/

and we obtain
D(jn, Jne1) P < AD(g,_y, ) PA-1H07, -

Afterward, we decide that {D(},,—1, Jn) } represents decreasing terms. As a result, there is a
positive term ¢ s.t. lim, 0o P(j,—1,Jn) = 0. Take note that ¢ > 0; we deduce using (3) that
we have

D, jns1) < ADP(n-1,10) < A"D(jo,71)-

which provides
m—1 n

m>mn, Y B jit1) < 7—DP(o )
i=n
Subsequently, as we know A belongs to (0,1), we have
. n
Jim ——D(jo,j1) =0

There exists some N, € N thus

n

A
N<n= 0< 1—)\5(]0’]1) <é

Let € > Obe fixed and (g, u) € F x R satisfy (D3). By (F3), for each 6 > 0, there is some
N such that
0 < v < ¢ implies that g(v) < g(€) —a. (4)

By (4) and (F7), we obtain

m—1 n
8 [ Y. PUijit)| < g[lA_ /\D(]of]l)] <gle)—pw ®)

i=n

where D(j,, jm) > 0and m,n € N are such that m > n > N. Consequently, combining (5)
and (D 3), we have

§P0m )] < 8| Y- PUirgis1) | + 1 < g(e),
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then, by (F7), we obtain
D(jm, jn) <€,m>n> N.

This shows that {}, } is an F-Cauchy sequence. Thus, there exists j* € X such that j, is
JF-convergent to j*, because (X, D) is an F-complete metric space: that is,

lim D(j,, %) = 0. (6)

n—oo

S is a-n-continuous and has the property a(j,—1,7n) > 171 (Ju—1,Jn) for every n € N. Now,
applying a limit as n approaches infinity to 7,11 = S;, — S;7*, we have j* = 57*. We will
now demonstrate that ;* is a fixed point of S. We use contradiction to argue by assuming
that D(S;*,7*) > 0 and (D3) gives us

2(B(S7",1)) < g(B(S", S1)P + DSy, "))+, m € N.
Using (F7) and the contractive condition, we obtain
AD (¥, ju )PP
(S <g| B (8 p-p-n+atr—w) T,
~D(]n,]n+1)p7*‘77 +D(Jnt1,7%)

for every n € N. Using (6) information and (F,), we obtain

lim g (AD(G*, 1) PEH 4 D(s1,17) ) + 1 = oo,

n—oo

which results in a contradiction. In light of the fact that B(S;*,;*) = 0, hence, ;* is a fixed
pointof S. O

Theorem 3. The mapping S also has a fixed point in X if we replace the hypothesis (iii) of Theorem 2
with the following:

(iv) If {Jn } is a sequence in X such that a(Ju, Jn+1) = §(Jn, Jn+1) with im0 1n = 7%, then
&(Jn, 1) = 1 (jn, %) holds for all n € N.

Proof. In a manner similar to the proof of Theorem 2, we obtain «(j,,7*) > 1(ju,j*) for
every n € N. By (D3), we obtain

g5, 17)) < g(®(S1*, Sin) + D, 1)) + 1.

(1) and (F7) give us

g®r. ) < g((BS1,Sm)P) + DSy ")) + 1
D(y*, )PP At
8 (A

D(j*, 55 )PA=F-1)+a(r—a)
Using the information in (6)

IN

+ D(Jm]*)) + .
.B(]n,]n+1)b”r—q“r

lim D(j,,7*) =0 = JEEOD(]”H’]*)'

n—o0

we obtain
g(BG*, 55%)) < g®(*,51%)) + .
Using () gives that
lim ¢(D(j*, 51%)) + p = —oo,

n—oo
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which results in a contradiction. In light of the fact that D(;*, S;*) = 0, it is an established
point j* that possesses a fixed point of 5. [

Example 3. Assume X = R to F-metric space D: X x X — R" by

f (j-0?%if(j,f) eNxN
BUA) = { ] —¢],if (7,¢) € Nx N,

with ¢ = In(100) and f(v) = In(v). Define S : X — X by

[ 1-4,ifjeN
S]_{o, ifj ¢ N

and o, : X x X — [0, +0) by

2,if 7,0 € [0,00)

1, if 7,4 € [0, 00)
0, otherwise '

0, otherwise

a(y, ) = { and 757(7,4) = {

Case 1: If ; = ¢. Evidently, DB(},¢) = 0.
As a result, Theorem 2’s requirements are all met.
Case2: If j,larein N, but S; ¢ N, S¢ ¢ N, then

N b
(S, 80P =B(1-1,1-7) = {2|]—z|] .

It is evident that S is a-admissible in terms of 7 for whenever «(j, ¢) > #(;,£), which implies

b
RICATLES BI] - a] <A [(; — )PPr2ax. B] —1

2

7

PA=p=7)+q(v—a) ’3

quv]

by taking constants A € [0,1),p,q € [1,00) and &, B,y € (0,1), for all j, ¢ € N\ Fix(S).
Although (i) neither j nor ¢ are in N, which gives

D(S),50)P = 0.

whenever a(7,£) > 1(j,¢), it is evident that S is an a-admissible mapping with respect to 7,
such that

D(s), 5()]? —0< /\[U _ g|bﬁ+ﬂ“ . |]‘P(1—/5—7)+‘7(7—0<) . |g|b7—q7},

where A € [0,1),p,q € [1,0) and &, B, € (0,1), forall j, £ € N\ Fix(S).
(ii). One belongs to N other outside of N

b b b
D(S), S0) :D(l—%,o) :‘1—%’.

It is evident that S is an a-admissible mapping with respect to # whenever a(;,¢) > #1(;,¢),
such that

U_g\bﬁﬂ“.

p(1=p—7)+a(r—n)
D(S],Sﬂ)p:‘l—%’bé)\ ’

3
21

. |g|lﬁ’7q7] ,

by taking constants A € [0,1),p,q € [1,00) and &, B,y € (0,1), for all ;, £ € N\Fix(S).
As a result, Theorem 2’s requirements are all fulfilled. Thus, S is a convex interpolative
Reich-type a-y-contraction as a result.
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Definition 7. Assume that (X, D) is an F-metric space, S is a self-map defined on (X, D) and
a,n: X x X — [0,+00) are two functions. We say that S is a-n-complete if each F-Cauchy
sequence {Jn } satisfying

&(jn, 1) = 1 (Jns Jus1) as each n € N.

F-converges in X.

Remark 1. Theorems 2 and 3 also apply to a-n-complete F-metric space instead of F-complete
F-metric space (see for more information [21]).

3. Convex Interpolative Kannan-Type a-77-Contraction

In this stage, we develop several fixed point theorems in the context of F-complete
F-metric space and provide new convex interpolative Kannan-type contractions. The
following is an explanation of an interpolative convex Kannan-type a-#-contraction:

Definition 8. Let (X, D) is an F-metric space. Let there are two functions a,n : X x X —
[0, +00) and S : X — X. If there are constants A € [0,1) and a, B € (0,1) such that whenever
a(7,€) > n(j,£), we say that S is an convex interpolative convex Kannan-type a-n-contraction.

[B(s7, 0P 1] < AP, 8PP (e, sy, 7)
where p,q € [1,00) forall 1,0 € X withj # §j.
Now, we present and prove our second important theorem.

Theorem 4. Let the mapping S : X — X satisfy the assumptions (i)—(ii) of Theorem 2 and (iii) of
Theorem 3. Then, S attains a fixed point in X.

Proof. It is carried out in a manner similar to that of Theorem 3. The inequalities (7) and
(F1) give us

g(P(sy,)P7) < g(A(BG, 57 )P0 D, 1 )PEHIY) 4 D(S), 1) ) +
Utilizing (6) and the information

lim D(j, ;") = 0= lim D(ju+1,7")-

n—oo

We achieve
gMdG*, S1%)) <gd(G*,51%)) + 1,

This is a contradiction. Therefore, D (j*,Sj*) = 0; as a result, it is a fixed point of S. [

Theorems 2—4 lead to the following corollaries. We can obtain the following results if
we set 77(], ) = 1. These corollaries are results that have been amended and are published
in the literature.

Corollary 1. Let (X, D) be an F-complete F-metric space and S be an interpolative convex Reich-
type a-17-contraction satisfying:

(i) S is an a-admissible;

(ii) There is a jo € X such that a(jo, Sjo) > 1;

(iii) S is continuous.

Then, S has a fixed point in X.

Corollary 2. Let (X, D) be an F-complete F-metric space and S be an interpolative convex Reich-
type a-17-contraction satisfying:
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(i) S is an a-admissible;

(ii) There is a jo € X such that «(jo, Sj0) > 1;

(i1i) If { jn } is a sequence in X such that a(jn, Jn1) > 1 withlimy, e 1o = J* then a(jy, *) >
1 satisfying for every n € N. Then, S has a fixed point.

Corollary 3. Let (X, D) be an F-complete F-metric space and S be a convex interpolative Kannan-
type contraction satisfying:

(i) S is an a-admissible;

(ii) There is a jo € X such that «(jo, Sjo) > 1;

(iii) S is continuous.

Then, S has a fixed point in X.

Corollary 4. Let (X, D) be an F-complete F-metric space and S be a convex interpolative Kannan-
type contraction satisfying:

(i) S is an a-admissible;

(ii) There is a jo € X such that «(jo, Sjo) > 1;

(iii) If {jn } is a sequence in X such that &(jn, jy+1) > 1 with imy_e0 1n = J* implies that
a(Jn, %) > 1 satisfies for every n € N. Then, S has a fixed point in X.

4. Findings

Our findings lead to some conclusions on Suzuki contractions in orbitally S-complete
and continuous maps in F-metric space.

Theorem 5. Let S be a continuous self-map on X and (X, D) be an F-complete F-metric space. If
there exist v € [0,1) and a, B,y € (0,1) such that

D(1,8)) <B(,0) = D (S1, S0 <r[P(, 0P - [D(y, )PP IHO=0 [p(g, s0))P77,

where p, q € [1,00), for every j,£ € X.

Then, S has a fixed point in X.
Proof. Set two functions ,7 : X x X — [0, +c0) by

a(7,0) =D(,¢) and 5(;,¢) =D(},¢), forall ¢ € X,
and B,v € (0,1),and r € [0,1). It is clear that
n(,0) <a(y,0), forallj, ¢ € X,
that is, Theorem 2’s criteria (i) through (iii) are satisfied. Let
1(1,51) < a(j,£) then D (5, 57) < D(},4),
it suggests a contractive condition
D(S), S0P < r[D, OFFH D, Sy, [D(e, 50y

As a result, Theorem 3’s criteria are all satisfied. Hence, S attains a fixed pointinj. [

Theorem 6. Suppose a continuous map S and that (X, D) is an F-complete F-metric space. Assume
r€[0,1) and a, B € (0,1) are present and in such a way that

D(},5)) <P(,6) = P (55,5001 <r[p(y, 5)P P [p(¢, 50)PFHa

wherep,q € [1,00), forall j, ¢ € X. Then, S attains a fixed point.
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Corollary 5. Suppose a continuous map S and let (X, D) be an F-complete F-metric space. Assume
r € [0,1) in such a way that

b(1,57) =B, £) = D (5,5¢) = rD(, 1),
forall 7,0 € X. Then, S possesses a fixed point.

Theorem 7. Suppose S is a self-map and (X, D) is an F-metric space in X. Surmise the following
claims are true:

(i) (X, D) is an orbitally S-complete F-metric space;

(ii) There exists r € [0,1) and a, B,y € (0, 1) such that

D(S1, 50 < 1[D(, )PP [D(), 5p))P 1T 1p(g, S0y,

where q € [1,00) forall j,{ € O(w) for some w € X, where O(w) is an orbit of w, where O(w) is
an orbit of w, and p, q are in [1,00) for every j,¢ € O(w) and for some w € X;

(iii) If {jn } is a sequence where {7, } C O(w) along lim,—co Ju = J*, then j* € O(w).
Then, S has a fixed point.

Proof. Setw,n: X x X — [0,400) by a(j,¢) =3 0onO(w) x O(w) and a(}, ) = 0 otherwise
and 7(j,¢) = 1forall j, ¢ € j (see Remark 6 [21]). Then, (X, D) is an a-y-complete F-metric
and S is a-admissible with regard to 7. Let a(y, ) > 1(j,{); later, j, ¢ € O(w), afterward,
from (ii), give us

D(S), S0P < r[D(;, )PP [D(;, 5) P10 [p (g, s0)]PT,

That is, S is an interpolative convex a-y-contraction of the Reich type. Let a sequence {}, }
apply, which reads a(ju, 1u+1) > 1(Jn, Ju+1) and limy 0 ju = j*. Therefore, {j»} C O(w).
The expression is taken from (iii) j* € O(w), &(jn, 7*) > 1 (jn,J*). As a result, Theorem 3’s
criteria are all fulfilled. S therefore has a fixed point. [

Theorem 8. Similar to Theorem 7’s hypotheses, this satisfies
D(Sy, S0P < r[P(), 5])}h(1—ﬂ)+ﬂ(1—“)'[p(g’ So)ppHae
Therefore, S attains a fixed point.

Theorem 9. Let S be a self-map and (X, D) be an F-complete F-metric space. Suppose the subse-
quent claims are true:
(i) Forall ¢ € O(w), there exists r € [0,1) and «, B,y € (0,1),p,q € [1,00) such that

D(S1, S0 < r[D(, PP [D(y, 8) P F ) [p(e, seypr,

for some w € X;
(ii) S is orbitally continuous.
Then, S possesses a fixed point.

Proof. Define o, : X x X — [0,400) by «(},¢) = 3 on O(w) x O(w) and «(},¢) = 0
otherwise and 7(j,¢) = 1 (see Remark 1.1 [22]); we know S is an a-7-continuous map.
Assume «(7,¢) > 15(;,£); afterward, j,{ € O(w). Therefore, S;,5¢ € O(w): that is,
«(Sy,S¢) > 1(S7,5¢). In light of this, S is therefore a mapping that is x-admissible. We have
from (i)

b(s), SHP < r[D(],g)]W*"?“_[D(]’ S])]p(l_’g_ﬂ”h_“).[D(f, 55)]197—117.
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That is to say, S is a Reich-type interpolative convex a-#-contraction. As a result, Theorem 2’s
entire premise is true. S therefore attains a fixed point. [

Theorem 10. In Theorem 9, if the assumption (i) is replaced with
D(8),SOPH1 < #[D(y, $))P PN (4, s0) PP,
then S also attains a fixed point.

Corollary 6. Let (X, D) be an F-complete F-metric space and S be a self-map. Assume that the
following conditions hold:
(i) There exist v € [0,1) such that for every 1, £ € O(w),

D(Sy,50) <r(D(,¢)

for some w € X;
(ii) S is orbitally continuous.
Then, S possesses a fixed point.

5. Application

Recent research has shown that the local and nonlocal fractional differential equations
are useful tools for simulating a wide range of phenomena in a variety of scientific and
architectural domains. Numerous fields, including viscoelasticity, etc., make use of the
fractional-order differential equations. For more information, see [23-25]. Bai [26], using
the monotone iterative method, looked into whether the periodic boundary value prob-
lem for the nonlinear impulsive fractional differential equation involving the sequential
fractional derivative has any solutions. Alexandru et al. [27] achieved the existence and
unique solution for the system of fractional equations with sequential Caputo derivatives,
two positive parameters, along with the general Riemann-Stieltjes integral nonlocal bound-
ary conditions. Hammad et al. [28] analyzed the existence and uniqueness of solutions
to a system of fractional defferential equations (FDEs) by using Riemann-Liouville (R-L)
integral boundary conditions. Using the fractional generalized derivative in the sense
of Riemann involving a boundary condition, we want to demonstrate the existence and
uniqueness of a bounded solution.

The left Riemann-Liouville fraction of a Lebesgue integrable function g with regard to
an increasing function % is provided by [29].

!/

alp g(v) = I‘(ltx) /:(h(v) —h(w))* ! f(w)h (w)dw, where a > 0. (8)

With regard to the identical rising function , the related left Riemann Liouville fractional
derivative of g is given by [29]

D) = (775 ) 150

1 d\" 1 v n—a— !
~ (7o) T L ) =)™ sl (@) ©)

where « is the largest integer, # > 0 and n = a + 1. The fractional integral and fractional
derivative are combined in the following theorem.

Theorem 11 ([30]). Let & > 0,n = —[—a],¢ € Llc,d] and ,I;g € AC}[c,d]. Then

alpDy8(v) = g(v) — kZ ce(h(v) — h(a))* .
=1
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We are thinking about the ensuing boundary value problem
Bhl(v) +g(v,4(v)) =0, with £(c) = £(d) =0, where1 < a < 2. (10)

Lemmal. Letw > 0, n = —[—a],g € L[c,d] and  Ig € AC}[c,d] exist if and only if { is a
solution to the boundary value problem (10),

where the Greens’ function

R(w,v) =

_1 h(d)
T(x) (G-

satisfies the following:

e N(w,v)>0.
1 (h(d)—h(c)\* !
o max N = s (M)

Proof. Applying the integral (8) to (10), we obtain

BPR(E) = = oI} 8(0,4(0)) = ~ gy [ (1(0) — ()" (@) (w)ds

using Theorem 11, we obtain

{(2) = a1 (@) —h(e))* " Fealh(o) b)) P g5 | (o) — h(w)" " gl

Therefore

(o) = /C-d (h(d) = h(w))(h(2) — h(c))*" :

I'(a). (h(d) —h(c))
_F(loc) [ (@) = h(@))* ™ g, () (w)deo
Hence )
) = [ R(@,0) g(ew, L(@)H (@)do, where
Ny = 1] (PO — ) ) e < w o
o) = s |

T(a) ((h(d)—h(w))(h(v)—h(c)))“‘1, v<w<d

(h(d)—h(c))
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It is obvious that R(w,v) > 0forw > v. O

For ¢ < w < v, itis clear that X(w,v) > 0 when w > v.

((d) = h(e))"" - < (h(w)’f,ﬂi));h(d)_h(c)) w1 )]
(ntey + H i )

(h(ew) — 1(e)) (h(a) — hic)
R (1) R 1) B

It follows that R(w, v) > 0, where w < v and for v < w,

!

W1 @b\
av_F(oc)<(h(d)—h(c))) (« = 1)(h(0) = h(c))" "h
thus, R(w, v) is rising in proportion to v.

Now w < v

(v) >0,

/ a—1
?TI: _n (vr((Z) DN l_(h(v) —h(w))* 2+ (i((?)_z((f;) (h(v) — h(C))a_Z]

I'(w—1) \h(d)—h(c) h(d) — h(c) h(d) — h(c
K (v) h(v) — h(c)\* 2 .
< ey () 0@k
h(

yields

or the critical point

ot =1 (ML)

Therefore, the maximum value of h(w, v) is
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1 (h(d)—h(c)\**
N < .
Mo = g (55
The Riemann-Stieltjes integrable function of w with respect to w and g is denoted as
follows: a continuous function g : [0,1] x R — R. Assume that C; is the linear space of all
continuous functions defined on I = [0, 1] and that

D(w,v) = ||w —v|[% = max |w(v) — v(v)|* for every w,v € C,.
ve

So, (C;, D) is a metric space that is F-complete.

We take into account the following situations:

(a) There exists r € [0,1), { : R? — R is a function for each ¢,d € R with {(c,d) >
¢(c,d), such that

|g(w, w(w))dw — g(w, v(w))dwP < |w(w) — v(w)|?ErT¥)

(
[(

|0(w) — vv(w) PP,

g

w) — Sw(w)|2(b(1*7*w)+q(w*ﬁ))

where p,q > [1,00), B,v, @ € (0,1);
(b) For every wy € C;, there exists such that

!

¢(10). [ 8ol m@ @de) > ¢ (w0, [ R m@)H @),

satisfies for each v € I.
(c) There exists a wq, v1 € C; for each w, v € C;, such that

¢(w(v),v(v)) = {(w(v),v(v))
d !
implies @(/C N(v, w)g(w, w1 (w))h (w)dw,/

[

d i
N(v,w)g(w,v1(w))h (w)dw>

/

([ Moo ) @i, [ Ko w5t ),

holds for all values of v € .
(d) Any group of points w in a sequence {wy, } of points in C; will have

C(wn, wn+1) > g(wl’l/ wn+l)r nlgl;lo infé(wn/ w) > nlgl;lo mfc(wn/ w)
Theorem 12. Assume that the conditions (a)—(d) are met. So, (10) has at least one w € Ci solution.

Proof. We know that w € C; is a solution of the fractional-order integral equation if and
only w € C; is a solution of (10),

b !
w(v) = )\/ N(v,5)g(s,w(s))h (s)ds forallv € I,
a
where 0 < A < 1. Defineamap S : C; — C; by

Sw(v) = A/b N(v,s)g(s,w(s))h/(s)ds forallv € I.
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Then, solving problem (10) is identical to discovering w* € C;, which is a fixed point of S.
Let w,v € C;, be such that for all v € I, {(w(v),v(v)) > 0. Using (a), we obtain

, P
Sue) = So@ = |1 [ RE9)ls(6009) - gls, v ()as
< W[ NGl 3w(s)) — s, o) ()5
< AL [ ) s)rsfo(s) — o(s) P74
|w(s) — Sw(s )‘Z(P(lf%w)w(wfﬁ))
lv(s) —vu(s )\2(”“’ 9%)
a—1
< (M) ) - ) — o) 27
Hw(s) _ Sw(s)||§£P(1—'Y—u7)+‘7(lf;—ﬁ)) . ||U(S) _ SU(S)H%WA)_W)
< rllw(s) — v(s) |27

2(p—qad)

w(s) — Sw(s) | ZPEDFI@=ED y(s) — Su(s) |12
Thus,

[w(s) = v(s) 24P
D(Sw,Sv)P < { -|w(s) — Sw(s)|2(p(17'rfz@)+q(wfﬁ))
Jo(s) — Su(s) P9

holds for each w, v € C; such that {(w(v),v(v)) > &w(v),v(v)) for each v € I.
We define « : C; x C; — [0,00) by

tx(w,v):{ 2, if{(w(v),v(v) 20, v e }

otherwise
1
L if&(w(v),0(0)) 2 0, v e,
and 1 (w, v) { 0, otherwise
Then, for all w,v € C;, a(w,v) > 5(w, v), we have

lw(s) — U(S)|2(pv+qﬁ)
D(Sw, Sv)? <r¢ -|w(s) — Sw(s)|2(p(lf%w)+q(w—/3))
[u(s) = Su(s) P71

Obviously, a(w, v) > 5(w,v) for every w,v € C;. If a(w,v) > 5(w,v) for each w,v € C;,
then {(w(v), v(v)) = §(w(v), v(0)).

From (c), we have {(Sw(v), Sv(v)) > &(Sw(v), Sv(v)) and so a(Sw, Sv) > n(Sw, Sv).

Thus, S is an a-admissible map concerning 7.

From (b), there subsists w; € C; parallel to a(wy, Swy) = 17(wy, Swy).

By (d), we know that any group of points in a sequence {w; } of points in C; with w
will have

& (W, Wyy1) = (W, Wyi1),

and

r}ijr;oinfa(wn,w) = nlgl(}o inf n(wy, w).

By using Theorem 2, it can be shown that S attains a fixed point in Cl-. Finally, w* is a
solution to the equation Sw* = w* in C; (10). O
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6. Conclusions

In the context of F-metric space, this study focuses on a novel notion of convex inter-
polative contraction of the Reich and Kannan type that is more inclusive than standard
metrics. Results for the Suzuki-type fixed point are driven in the F-metric space. This
work expands the idea of interpolative contractions and yields a few significant theorems.
This study will add fresh information to the body of knowledge. In order to demon-
strate our theorems and as an application, we find a solution to the fractional differential
equation problem. These new studies and uses would increase the effectiveness of the
new arrangement.
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