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Abstract: In this paper, we introduce a novel form of interpolative convex contraction and develop
some new theorems by utilizing the progressive method of interpolative convex contractions. We
also obtain some fixed point results for a Suzuki convex contraction in orbitally S-complete F-metric
spaces. The second purpose of this research is to evaluate the effectiveness of the fixed point approach
in solving fractional differential equations with boundary conditions.
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1. Introduction

The idea of the interpolative class of contractions was first introduced by Karap-
inar et al. [1], who also implemented a few fixed point results in a partial metric space.
Karapinar [2] revisited Kannan’s contraction principle via the notion of interpolation.

Karapinar updated Kannan’s interpolative contraction in [2] and used an interpolative
approach to determine the Hardy–Rogers findings in [3]. Additionally, he created a novel
interpolative contraction technique in [4].

Aydi et al. [5,6] introduced interpolative and ω-interpolative Reich–Rus-type con-
tractions and also proved some relevant fixed point findings for these mappings. Altun
et al. [7] presented various proximal interpolative proximal contractions and found certain
best proximity point results while taking into account the aforementioned mappings.

Hussain [8–10] recently expanded this idea of Karapinar and published a few findings
pertaining to these kinds of novel contractions. Nazam et al. [11–13] introduced (Ψ,
Φ)-orthogonal interpolative contractions very recently and made a few observations in
the literature.

The idea of interpolation has been used by many mathematicians to obtain various
analogues of classical fixed point theorems. Keeping in mind the aforementioned in-
vestigations, we develop a new concept of convex interpolative contraction and derive
some results.

Let F represent the group of functions g : (0,+∞) → R fulfilling the following
requirements:

(F1) g is increasing, meaning that for every u > v > 0, =⇒ g(u) ≤ g(v);
(F2) each sequence {vn} ⊂ (0,+∞), such that,

lim
n→+∞

vn = 0 ⇐⇒ lim
n→+∞

g(vn) = −∞.

Jleli and Samet [14] introduced the concept of F -metric space as follows:

Definition 1 ([14]). Let Ð : X× X → [0,+∞) be a mapping and X be a non-empty set. Suppose
that there exists (g, µ) ∈ F × [0,+∞) such that
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(Ð1). (, `) ∈ X× X, Ð (, `) = 0 ⇐⇒  = `;
(Ð2). Ð (, `) =Ð (`, ) for all (, `) ∈ X× X;
(Ð3). For every (, `) ∈ X× X, 2 ≤ N ∈ N, for each (ui)i∈N ⊂ X with (u1, uN) = (, `),

we have

Ð(u1, uN) > 0 =⇒ g(Ð(u1, uN)) ≤ g(
N−1

∑
i=1

d(ui, ui+1)) + µ.

The pair (X, Ð) is called an F-metric space.

Example 1 ([14]). Let N be a set and Ð be an F-metric defined by

Ð(, `) =
{

(− `)2 , if (, `) ∈ [0, 3]× [0, 3]
|− `|, if (, `) /∈ [0, 3]× [0, 3],

for all (, `) ∈ N×N with f (v) = ln(v) and µ = ln(3), and Ð is not a metric, but on N, it is an
F-metric space.

Definition 2 ([14]). Assume that (X, Ð) is an F-metric space. Let {n} represent a sequence in X.
(i) If limn,m→∞ Ð(n, m) = 0, we say that {n} is F -Cauchy.
(ii) We say that (X, Ð) is F -complete if every F -Cauchy sequence in X is F -convergent to a

specific element in X.

Jleli and Samet [14] established an analogue of the Banach Contraction Principle
as follows:

Theorem 1. Let h : X → X be a mapping defined on an F-metric space (X, Ð). Assume that the
subsequent criteria are met:

(i) (X, Ð) is F-complete;
(ii) There exists k ∈ (0, 1) such that

Ð(h(), h(`)) ≤ kÐ(, `), (, `) ∈ X× X.

Then h has a unique fixed point ∗ ∈ X. In addition, 0 ∈ X, the sequence {n} ⊂ X defined by
n+1 = h(n), n ∈ N, is F -convergent.

In 2012, Samet et al. [15] introduced the concept of α-admissible mapping as follows:

Definition 3. Let S : X → X and α : X× X → [0,+∞). We say that S is α-admissible if for all
, ` ∈ X, with α(, `) ≥ 1 we have α(S, S`) ≥ 1.

The idea of α-admissible mapping was then modified by Salimi et al. [16] as follows.

Definition 4 ([16]). Let S : X → X and α, η : X × X → R+ be two functions. We say that
S is α-admissible mapping with respect to η if for all , ` ∈ X, with α(, `) ≥ η(, `) we have
α(S, S`) ≥ η(S, S`).

Definition 5 ([17]). Let (X, d) be a metric space and α, η : X× X → [0,+∞) be two functions.
The mapping S : X → X is said to be α-η-continuous on (X, d) if for a sequence {n}, we have

lim
n→∞

n = . α(n, n+1) ≥ η(n, n+1) for all n ∈ N =⇒ Sn → S.

For more details, see [18,19].

If limn→∞ Sn  = v implies that limn→∞ SSn  = Sv, then a mapping S : X → X is
termed as orbitally continuous at v. If S is orbitally continuous for all v, then the mapping
S is orbitally continuous on v.
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In Observation 1 [12], the authors proved the following inequality for r ≥ 1, such that

(þ + q)r ≤ (þq)r, ∀ þ, q ≥ 2,

and remarked that the investigations in [9,10,20] did not have the correct proof.

2. Interpolative Convex Reich-Type Contraction

In this section, we offer a novel interpolative convex contraction and establish some
new discoveries for interpolative convex Reich-type α-η-contraction in the context of F-
complete F-metric space.

Definition 6. Let (X, Ð) be an F-metric space and α, η : X × X → [0,+∞) be two functions.
The mapping S : X → X is said to be an interpolative convex Reich-type α-η-contraction if there
are constants λ ∈ [0, 1) and α, β, γ ∈ (0, 1) such that whenever α(, `) ≥ η(, `), we have

Ð(S, S`)þ ≤ λ
[
Ð(, `)þβ+qα ·Ð(`, S`)þγ−qγ ·Ð(, S)þ(1−β−γ)+q(γ−α)

]
, (1)

for all , ` ∈ X\Fix(S), where þ, q ∈ [1, ∞).

Example 2. Let X = {0, 1, 2, 3} be endowed with F-metric space given by

Ð(, `) =
{

(− `)2, if (, `) ∈ X× X
|− `|, if (, `) /∈ X× X,

with f (v) = ln(v) and µ = ln(3). Define S : X → X by

S0 = 0, S1 = 1, S2 = S3 = 0.

and α, η : X× X → [0,+∞) by

α(, `) =
{

1, if , ` ∈ X
0, otherwise

and η(, `) =
{ 1

2 , if , ` ∈ X
0, otherwise

.

If , ` ∈ X, then clearly α(, `) ≥ η(, `) and so that

0 = Ð(S2, S3)þ ≤ λ
[
Ð (2, 3)þβ+qα ·Ð(2, S2)þ(1−β−γ)+q(γ−α) ·Ð (3, S3)þγ−qγ

]
= λ

[
(1)þβ+qα ·Ð (2, 0)þ(1−β−γ)+q(γ−α) ·Ð(3, 0)þγ−qγ

]
= λ

[
(4)þ(1−β−γ)+q(γ−α) ·

(
9
4

)þγ−qγ
]

.

By taking any value of constants λ ∈ [0, 1), α, β, γ ∈ (0, 1) and þ, q ∈ [1, ∞). Clearly, (1)
holds for all , ` ∈ X\Fix(S) and S has two fixed points, 0 and 1; see for more information
and examples [1].

Now, we state the key theorem of this article.

Theorem 2. Let (X, Ð) be an F-complete F-metric space and S be an interpolative convex Reich-
type α-η-contraction assuring the following conditions:

(i) S is α-admissible with respect to η;
(ii) There exists 0 ∈ X such that α(0, S0) ≥ η(0, S0);
(iii) S is α-η-continuous mapping.
Then, S attains a fixed point in X.
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Proof. Let 0 in X such that α(0, S0) ≥ η(0, S0). For 0 ∈ X, we construct a sequence
{n}∞

n=1 such that 1 = S0, 2 = S1 = S2 0. Continue this approach until for every n ∈
N, n+1 = Sn = Sn+1 0. Because of (i), S is α-admissible in terms of η after that α(0, 1) =
α(0, S0) ≥ η(0, S0) = η(0, 1). By carrying out this procedure further, we have

α(n−1, n) ≥ η(n−1, Sn−1) = η(n−1, n), for all n ∈ N. (2)

On the condition that n+1 = n a few n ∈ N, afterward, n = ∗ is a fixed point of S. Thus,
we presume n 6= n+1 with

Ð(Sn−1, Sn) = Ð(n, Sn) > 0, for all n ∈ N.

Since S is an interpolative convex Reich-type α-η-contraction, for any n ∈ N, we obtain

Ð(n, n+1)
þ = Ð(Sn−1, Sn)

þ

≤ λ
[
Ð(n−1, n)

þβ+qα ·Ð(n−1, Sn−1)
þ(1−β−γ)+q(γ−α) ·Ð(n, Sn)

þγ−qγ
]
,

= λ
[
Ð(n−1, n)

þβ+qα ·Ð(n−1, n)
þ(1−β−γ)+q(γ−α) ·Ð(n, n+1)

þγ−qγ
]
,

= λ
[
Ð(n−1, n)

þ(1−γ)+qγ ·Ð(n, n+1)
þγ−qγ

]
,

and we obtain
Ð(n, n+1)

þ(1−γ)+qγ ≤ λÐ(n−1, n)
þ(1−γ)+qγ. (3)

Afterward, we decide that {Ð(n−1, n)} represents decreasing terms. As a result, there is a
positive term $ s.t. limn→∞ Ð(n−1, n) = $. Take note that $ ≥ 0; we deduce using (3) that
we have

Ð(n, n+1) ≤ λÐ(n−1, n) ≤ λnÐ(0, 1).

which provides

m > n,
m−1

∑
i=n

Ð(i, i+1) ≤
λn

1− λ
Ð(0, 1).

Subsequently, as we know λ belongs to (0, 1), we have

lim
n→+∞

λn

1− λ
Ð(0, 1) = 0.

There exists some N,∈ N thus

N ≤ n,⇒ 0 <
λn

1− λ
Ð(0, 1) < δ.

Let ε > 0 be fixed and (g, µ) ∈ F ×R+ satisfy (Ð3). By (F2), for each δ > 0, there is some
N such that

0 < v < δ implies that g(v) < g(ε)− a. (4)

By (4) and (F1), we obtain

g

[
m−1

∑
i=n

Ð(i, i+1)

]
≤ g

[
λn

1− λ
Ð(0, 1)

]
< g(ε)− µ, (5)

where Ð(n, m) > 0 and m, n ∈ N are such that m > n ≥ N. Consequently, combining (5)
and (Ð 3), we have

g[Ð(m, n)] ≤ g

[
m−1

∑
i=n

Ð(i, i+1)

]
+ µ < g(ε),



Symmetry 2023, 15, 1189 5 of 16

then, by (F1), we obtain
Ð(m, n) < ε, m > n ≥ N.

This shows that {n} is an F -Cauchy sequence. Thus, there exists ∗ ∈ X such that n is
F -convergent to ∗, because (X, Ð) is an F-complete metric space: that is,

lim
n→∞

Ð(n, ∗) = 0. (6)

S is α-η-continuous and has the property α(n−1, n) ≥ η(n−1, n) for every n ∈ N. Now,
applying a limit as n approaches infinity to n+1 = Sn → S∗, we have ∗ = S∗. We will
now demonstrate that ∗ is a fixed point of S. We use contradiction to argue by assuming
that Ð(S∗, ∗) > 0 and (Ð3) gives us

g(Ð(S∗, ∗)) ≤ g
(

Ð(S∗, Sn)
þ + Ð(Sn, ∗)

)
+ µ, n ∈ N.

Using (F1) and the contractive condition, we obtain

g(Ð(S∗, ∗)) ≤ g

 λÐ (∗, n)þβ+qα

·Ð (S∗, ∗)þ(1−β−γ)+q(γ−α)

·Ð(n, n+1)
þγ−qγ + Ð(n+1, ∗)

+ µ,

for every n ∈ N. Using (6) information and (F2), we obtain

lim
n→∞

g
(

λÐ(∗, n)
þβ+qα + Ð(n+1, ∗)

)
+ µ = −∞,

which results in a contradiction. In light of the fact that Ð(S∗, ∗) = 0, hence, ∗ is a fixed
point of S.

Theorem 3. The mapping S also has a fixed point in X if we replace the hypothesis (iii) of Theorem 2
with the following:

(iv) If {n} is a sequence in X such that α(n, n+1) ≥ η(n, n+1) with limn→∞ n = ∗, then
α(n, ∗) ≥ η(n, ∗) holds for all n ∈ N.

Proof. In a manner similar to the proof of Theorem 2, we obtain α(n, ∗) ≥ η(n, ∗) for
every n ∈ N. By (D3), we obtain

g(Ð(S∗, ∗)) ≤ g(Ð(S∗, Sn) + Ð(n, ∗)) + µ.

(1) and (F1) give us

g(Ð(S∗, ∗)) ≤ g
((

Ð(S∗, Sn)
þ
)
+ Ð(Sn, ∗)

)
+ µ

≤ g

λ

 Ð(∗, n)þβ+qα

·Ð(∗, S∗)þ(1−β−γ)+q(γ−α)

·Ð(n, n+1)
þγ−qγ

+ Ð(n, ∗)

+ µ.

Using the information in (6)

lim
n→∞

Ð(n, ∗) = 0 = lim
n→∞

Ð(n+1, ∗),

we obtain
g(Ð(∗, S∗)) ≤ g(Ð(∗, S∗)) + µ.

Using (F2) gives that
lim

n→∞
g(Ð(∗, S∗)) + µ = −∞,
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which results in a contradiction. In light of the fact that Ð(∗, S∗) = 0, it is an established
point ∗ that possesses a fixed point of S.

Example 3. Assume X = R to F-metric space Ð : X× X → R+ by

Ð(, `) =
{

(− `)2, if (, `) ∈ N×N
|− `|, if (, `) /∈ N×N,

with µ = ln(100) and f (v) = ln(v). Define S : X → X by

S =

{
1− 

2 , if  ∈ N
0, if  /∈ N

and α, η : X× X → [0,+∞) by

α(, `) =
{

2, if , ` ∈ [0, ∞)
0, otherwise

and η(, `) =
{

1, if , ` ∈ [0, ∞)
0, otherwise

.

Case 1: If  = `. Evidently, Ð(, `) = 0.
As a result, Theorem 2’s requirements are all met.

Case 2: If , ` are in N, but S /∈ N, S` /∈ N, then

Ð(S, S`)þ = Ð(1− 

2
, 1− `

2
) =

[
1
2
|− `|

]þ
.

It is evident that S is α-admissible in terms of η for whenever α(, `) ≥ η(, `), which implies

Ð(S, S`)þ =

[
1
2
|− `|

]þ
≤ λ

[
(− `)2þβ+2qα ·

∣∣∣∣32 − 1
∣∣∣∣þ(1−β−γ)+q(γ−α)

·
∣∣∣∣32 `− 1

∣∣∣∣þγ−qγ
]

,

by taking constants λ ∈ [0, 1), þ, q ∈ [1, ∞) and α, β, γ ∈ (0, 1), for all , ` ∈ N\Fix(S).
Although (i) neither  nor ` are in N, which gives

Ð(S, S`)þ = 0.

whenever α(, `) ≥ η(, `), it is evident that S is an α-admissible mapping with respect to η,
such that

Ð(S, S`)þ = 0 ≤ λ
[
|− `|þβ+qα · ||þ(1−β−γ)+q(γ−α) · |`|þγ−qγ

]
,

where λ ∈ [0, 1), þ, q ∈ [1, ∞) and α, β, γ ∈ (0, 1), for all , ` ∈ N\Fix(S).
(ii). One belongs to N other outside of N

Ð(S, S`)
þ
= Ð(1− 

2
, 0)

þ
=
∣∣∣1− 

2

∣∣∣þ.

It is evident that S is an α-admissible mapping with respect to η whenever α(, `) ≥ η(, `),
such that

Ð(S, S`)þ =
∣∣∣1− 

2

∣∣∣þ ≤ λ

[
|− `|þβ+qα ·

∣∣∣∣32 − 1
∣∣∣∣þ(1−β−γ)+q(γ−α)

· |`|þγ−qγ

]
,

by taking constants λ ∈ [0, 1), þ, q ∈ [1, ∞) and α, β, γ ∈ (0, 1), for all , ` ∈ N\Fix(S).
As a result, Theorem 2’s requirements are all fulfilled. Thus, S is a convex interpolative
Reich-type α-η-contraction as a result.
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Definition 7. Assume that (X, Ð) is an F-metric space, S is a self-map defined on (X, Ð) and
α, η : X × X → [0,+∞) are two functions. We say that S is α-η-complete if each F -Cauchy
sequence {n} satisfying

α(n, n+1) ≥ η(n, n+1) as each n ∈ N.

F -converges in X.

Remark 1. Theorems 2 and 3 also apply to α-η-complete F-metric space instead of F-complete
F-metric space (see for more information [21]).

3. Convex Interpolative Kannan-Type α-η-Contraction

In this stage, we develop several fixed point theorems in the context of F-complete
F-metric space and provide new convex interpolative Kannan-type contractions. The
following is an explanation of an interpolative convex Kannan-type α-η-contraction:

Definition 8. Let (X, Ð) is an F-metric space. Let there are two functions α, η : X × X →
[0,+∞) and S : X → X. If there are constants λ ∈ [0, 1) and α, β ∈ (0, 1) such that whenever
α(, `) ≥ η(, `), we say that S is an convex interpolative convex Kannan-type α-η-contraction.[

Ð(S, S`)þ+q
]
≤ λ[Ð(, S)]þ(1−β)+qα · [Ð(`, S`)]þβ+q(1−α), (7)

where þ, q ∈ [1, ∞) for all , ` ∈ X with  6= S.

Now, we present and prove our second important theorem.

Theorem 4. Let the mapping S : X → X satisfy the assumptions (i)–(ii) of Theorem 2 and (iii) of
Theorem 3. Then, S attains a fixed point in X.

Proof. It is carried out in a manner similar to that of Theorem 3. The inequalities (7) and
(F1) give us

g
(

Ð(S∗, ∗)þ+q
)
≤ g

(
λ
(

Ð(∗, S∗)þ(1−β)+q(1−α) ·Ð(∗, n)
þβ+qα

)
+ Ð(Sn, ∗)

)
+ µ

Utilizing (6) and the information

lim
n→∞

Ð(n, ∗) = 0 = lim
n→∞

Ð(n+1, ∗).

We achieve
g(Ð(∗, S∗)) ≤ g(Ð(∗, S∗)) + µ,

This is a contradiction. Therefore, Ð (∗, S∗) = 0; as a result, it is a fixed point of S.

Theorems 2–4 lead to the following corollaries. We can obtain the following results if
we set η(, `) = 1. These corollaries are results that have been amended and are published
in the literature.

Corollary 1. Let (X, Ð) be an F-complete F-metric space and S be an interpolative convex Reich-
type α-η-contraction satisfying:

(i) S is an α-admissible;
(ii) There is a 0 ∈ X such that α(0, S0) ≥ 1;
(iii) S is continuous.
Then, S has a fixed point in X.

Corollary 2. Let (X, Ð) be an F-complete F-metric space and S be an interpolative convex Reich-
type α-η-contraction satisfying:
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(i) S is an α-admissible;
(ii) There is a 0 ∈ X such that α(0, S0) ≥ 1;
(iii) If {n} is a sequence in X such that α(n, n+1) ≥ 1 with limn→∞ n = ∗ then α(n, ∗) ≥

1 satisfying for every n ∈ N. Then, S has a fixed point.

Corollary 3. Let (X, Ð) be an F-complete F-metric space and S be a convex interpolative Kannan-
type contraction satisfying:

(i) S is an α-admissible;
(ii) There is a 0 ∈ X such that α(0, S0) ≥ 1;
(iii) S is continuous.
Then, S has a fixed point in X.

Corollary 4. Let (X, Ð) be an F-complete F-metric space and S be a convex interpolative Kannan-
type contraction satisfying:

(i) S is an α-admissible;
(ii) There is a 0 ∈ X such that α(0, S0) ≥ 1;
(iii) If {n} is a sequence in X such that α(n, n+1) ≥ 1 with limn→∞ n = ∗ implies that

α(n, ∗) ≥ 1 satisfies for every n ∈ N. Then, S has a fixed point in X.

4. Findings

Our findings lead to some conclusions on Suzuki contractions in orbitally S-complete
and continuous maps in F-metric space.

Theorem 5. Let S be a continuous self-map on X and (X, Ð) be an F-complete F-metric space. If
there exist r ∈ [0, 1) and α, β, γ ∈ (0, 1) such that

Ð(, S) ≤ Ð(, `) =⇒ Ð (S, S`)þ ≤ r[Ð(, `)]þβ+qα · [Ð(, S)]þ(1−β−γ)+q(γ−α) · [Ð(`, S`)]þγ−qγ,

where þ, q ∈ [1, ∞), for every , ` ∈ X.

Then, S has a fixed point in X.

Proof. Set two functions α, η : X× X → [0,+∞) by

α(, `) = Ð(, `) and η(, `) = Ð(, `), for all , ` ∈ X,

and β, γ ∈ (0, 1), and r ∈ [0, 1). It is clear that

η(, `) ≤ α(, `), for all , ` ∈ X,

that is, Theorem 2’s criteria (i) through (iii) are satisfied. Let

η(, S) ≤ α(, `) then Ð (, S) ≤ Ð(, `),

it suggests a contractive condition

Ð(S, S`)þ ≤ r[Ð(, `)]þβ+qα.[Ð(, S)]þ(1−β−γ)+q(γ−α).[Ð(`, S`)]þγ−qγ.

As a result, Theorem 3’s criteria are all satisfied. Hence, S attains a fixed point in .

Theorem 6. Suppose a continuous map S and that (X, Ð) is an F-complete F-metric space. Assume
r ∈ [0, 1) and α, β ∈ (0, 1) are present and in such a way that

Ð(, S) ≤ Ð(, `) =⇒ Ð (S, S`)þ+q ≤ r[Ð(, S)]þ(1−β)+q(1−α) · [Ð(`, S`)]þβ+qα

where þ, q ∈ [1, ∞), for all , ` ∈ X. Then, S attains a fixed point.
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Corollary 5. Suppose a continuous map S and let (X, Ð) be an F-complete F-metric space. Assume
r ∈ [0, 1) in such a way that

Ð(, S) ≤ Ð(, `) =⇒ Ð (S, S`) ≤ rÐ(, `),

for all , ` ∈ X. Then, S possesses a fixed point.

Theorem 7. Suppose S is a self-map and (X, Ð) is an F-metric space in X. Surmise the following
claims are true:

(i) (X, Ð) is an orbitally S-complete F-metric space;
(ii) There exists r ∈ [0, 1) and α, β, γ ∈ (0, 1) such that

Ð(S, S`)þ ≤ r[Ð(, `)]þβ+qα.[Ð(, S)]þ(1−β−γ)+q(γ−α).[Ð(`, S`)]þγ−qγ,

where q ∈ [1, ∞) for all , ` ∈ O(ω) for some ω ∈ X, where O(ω) is an orbit of ω, where O(ω) is
an orbit of ω, and þ, q are in [1, ∞) for every , ` ∈ O(ω) and for some ω ∈ X;

(iii) If {n} is a sequence where {n} ⊆ O(ω) along limn→∞ n = ∗, then ∗ ∈ O(ω).
Then, S has a fixed point.

Proof. Set α, η : X×X → [0,+∞) by α(, `) = 3 on O(ω)×O(ω) and α(, `) = 0 otherwise
and η(, `) = 1 for all , ` ∈  (see Remark 6 [21]). Then, (X, Ð) is an α-η-complete F -metric
and S is α-admissible with regard to η. Let α(, `) ≥ η(, `); later, , ` ∈ O(ω), afterward,
from (ii), give us

Ð(S, S`)þ ≤ r[Ð(, `)]þβ+qα.[Ð(, S)]þ(1−β−γ)+q(γ−α).[Ð(`, S`)]þγ−qγ.

That is, S is an interpolative convex α-η-contraction of the Reich type. Let a sequence {n}
apply, which reads α(n, n+1) ≥ η(n, n+1) and limn→∞ n = ∗. Therefore, {n} ⊆ O(ω).
The expression is taken from (iii) ∗ ∈ O(ω), α(n, ∗) ≥ η(n, ∗). As a result, Theorem 3’s
criteria are all fulfilled. S therefore has a fixed point.

Theorem 8. Similar to Theorem 7’s hypotheses, this satisfies

Ð(S, S`)þ+q ≤ r[Ð(, S)]þ(1−β)+q(1−α).[Ð(`, S`)]þβ+qα.

Therefore, S attains a fixed point.

Theorem 9. Let S be a self-map and (X, Ð) be an F-complete F-metric space. Suppose the subse-
quent claims are true:

(i) For all , ` ∈ O(ω), there exists r ∈ [0, 1) and α, β, γ ∈ (0, 1), þ, q ∈ [1, ∞) such that

Ð(S, S`)þ ≤ r[Ð(, `)]þβ+qα.[Ð(, S)]þ(1−β−γ)+q(γ−α).[Ð(`, S`)]þγ−qγ,

for some ω ∈ X;
(ii) S is orbitally continuous.

Then, S possesses a fixed point.

Proof. Define α, η : X × X → [0,+∞) by α(, `) = 3 on O(ω) ×O(ω) and α(, `) = 0
otherwise and η(, `) = 1 (see Remark 1.1 [22]); we know S is an α-η-continuous map.
Assume α(, `) ≥ η(, `); afterward, , ` ∈ O(ω). Therefore, S, S` ∈ O(ω): that is,
α(S, S`) ≥ η(S, S`). In light of this, S is therefore a mapping that is α-admissible. We have
from (i)

Ð(S, S`)þ ≤ r[Ð(, `)]þβ+qα.[Ð(, S)]þ(1−β−γ)+q(γ−α).[Ð(`, S`)]þγ−qγ.
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That is to say, S is a Reich-type interpolative convex α-η-contraction. As a result, Theorem 2’s
entire premise is true. S therefore attains a fixed point.

Theorem 10. In Theorem 9, if the assumption (i) is replaced with

Ð(S, S`)þ+q ≤ r[Ð(, S)]þ(1−β)+q(1−α).[Ð(`, S`)]þβ+qα,

then S also attains a fixed point.

Corollary 6. Let (X, Ð) be an F-complete F-metric space and S be a self-map. Assume that the
following conditions hold:

(i) There exist r ∈ [0, 1) such that for every , ` ∈ O(ω),

Ð(S, S`) ≤ r(Ð(, `)

for some ω ∈ X;
(ii) S is orbitally continuous.

Then, S possesses a fixed point.

5. Application

Recent research has shown that the local and nonlocal fractional differential equations
are useful tools for simulating a wide range of phenomena in a variety of scientific and
architectural domains. Numerous fields, including viscoelasticity, etc., make use of the
fractional-order differential equations. For more information, see [23–25]. Bai [26], using
the monotone iterative method, looked into whether the periodic boundary value prob-
lem for the nonlinear impulsive fractional differential equation involving the sequential
fractional derivative has any solutions. Alexandru et al. [27] achieved the existence and
unique solution for the system of fractional equations with sequential Caputo derivatives,
two positive parameters, along with the general Riemann–Stieltjes integral nonlocal bound-
ary conditions. Hammad et al. [28] analyzed the existence and uniqueness of solutions
to a system of fractional defferential equations (FDEs) by using Riemann–Liouville (R-L)
integral boundary conditions. Using the fractional generalized derivative in the sense
of Riemann involving a boundary condition, we want to demonstrate the existence and
uniqueness of a bounded solution.

The left Riemann–Liouville fraction of a Lebesgue integrable function g with regard to
an increasing function h is provided by [29].

a Iα
h g(v) =

1
Γ(α)

∫ v

a
(h(v)− h(ω))α−1 f (ω)h

′
(ω)dω, where α > 0. (8)

With regard to the identical rising function h, the related left Riemann Liouville fractional
derivative of g is given by [29]

aÐα
h g(v) =

(
1

h′(v)
d

dv

)n
I(n−α)g(v)

=

(
1

h′(v)
d

dv

)n 1
Γ(α)

∫ v

a
(h(v)− h(ω))n−α−1 g(ω)h

′
(ω)dω, (9)

where α is the largest integer, α ≥ 0 and n = α + 1. The fractional integral and fractional
derivative are combined in the following theorem.

Theorem 11 ([30]). Let α > 0, n = −[−α], g ∈ L[c, d] and a Iα
h g ∈ ACn

h [c, d]. Then

a Iα
haÐα

h g(v) = g(v)−
n

∑
k=1

ck(h(v)− h(a))α−k.
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We are thinking about the ensuing boundary value problem

cÐα
h`(v) + g(v, `(v)) = 0, with `(c) = `(d) = 0, where 1 < α ≤ 2. (10)

Lemma 1. Let α > 0, n = −[−α], g ∈ L[c, d] and c Iα
h g ∈ ACn

h [c, d] exist if and only if ` is a
solution to the boundary value problem (10),

`(v) =
∫ d

c
ℵ(ω, v) g(ω, `(ω))h

′
(ω)dω,

where the Greens’ function

ℵ(ω, v) =
1

Γ(α)


(
(h(d)−h(ω))(h(v)−h(c))

(h(d)−h(c))

)α−1
− (h(v)− h(ω))α−1, c < ω ≤ v(

(h(d)−h(ω))(h(v)−h(c))
(h(d)−h(c))

)α−1
, v ≤ ω < d

satisfies the following:

• ℵ(ω, v) ≥ 0.

• max
c≤ω,v≤d

ℵ(ω, v) =
1

Γ(α)

(
h(d)− h(c)

4

)α−1
.

Proof. Applying the integral (8) to (10), we obtain

c Iα
hcÐα

h`(v) = − c Iα
h g(v, `(v)) = − 1

Γ(α)

∫ v

c
(h(v)− h(ω))α−1 g(ω)h

′
(ω)dω,

using Theorem 11, we obtain

`(v) = c1(h(v)− h(c))α−1 + c2(h(v)− h(c))α−2− 1
Γ(α)

∫ v

c
(h(v)− h(ω))α−1 g(ω)h

′
(ω)dω,

`(c) = 0, gives c2 = 0.

`(d) = 0, gives

c1 =
(h(d)− h(c))1−α

Γ(α)

∫ d

c
(h(d)− h(ω))α−1 g(ω, `(ω))h

′
(ω)dω.

Therefore

`(v) =
1

Γ(α)

∫ d

c

(h(d)− h(ω))(h(v)− h(c))α−1

(h(d)− h(c))
g(ω, `(ω))h

′
(ω)dω

− 1
Γ(α)

∫ v

c
(h(v)− h(ω))α−1 g(ω, `(ω))h

′
(ω)dω.

Hence

`(v) =
∫ d

c
ℵ(ω, v) g(ω, `(ω))h

′
(ω)dω, where

ℵ(ω, v) =
1

Γ(α)


(
(h(d)−h(ω))(h(v)−h(c))

(h(d)−h(c))

)α−1
− (h(v)− h(ω))α−1, c < ω ≤ v(

(h(d)−h(ω))(h(v)−h(c))
(h(d)−h(c))

)α−1
, v ≤ ω < d

.
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It is obvious that ℵ(ω, v) ≥ 0 for ω ≥ v.

For c ≤ ω < v, it is clear that ℵ(ω, v) ≥ 0 when ω ≥ v.

ℵ(ω, v) =
(
(h(v)− h(c))
(h(d)− h(c))

)α−1
[
(h(d)− h(c))α−1 −

(
h(d)−(

h(c) + (h(ω)−h(c))(h(d)−h(c))
(h(v)−h(c))

)α−1

)]
.

Since

h(c) +
(h(ω)− h(c))(h(d)− h(c))

(h(v)− h(c))
≥ h(ω),

It follows that ℵ(ω, v) ≥ 0, where ω ≤ v and for v ≤ ω,

∂ℵ
∂v

=
1

Γ(α)

(
h(d)− h(ω)

(h(d)− h(c))

)α−1

· (α− 1)(h(v)− h(c))α−2h
′
(v) ≥ 0,

thus, ℵ(ω, v) is rising in proportion to v.
Now ω ≤ v

∂ℵ
∂v

=
h
′
(v)(α− 1)

Γ(α)
·
[
−(h(v)− h(ω))α−2 +

(
h(d)− h(ω)

h(d)− h(c)

)α−1

(h(v)− h(c))α−2

]

=
h
′
(v)

Γ(α− 1)
·
(

h(v)− h(c)
h(d)− h(c)

)α−2
[(

h(d)− h(ω)

h(d)− h(c)

)α−1

−
(
(h(d)− h(c))(h(v)− h(ω))

h(d)− h(c)

)α−2
]

≤ h
′
(v)

Γ(α− 1)
·
(

h(v)− h(c)
h(d)− h(c)

)α−2

[(h(d)− h(c))α−2

−
(

h(d)−
(

h(c) +
h(d)− h(c)
h(v)− h(c)

(h(ω)− h(c))
)α−2

)
]

< 0.

Thus, ℵ(ω, v) is decreasing when ω ≤ v. Therefore, at ω = v, ℵ(ω, v) reaches its maximum.

ℵ(ω, ω) =
1

Γ(α)
(h(d)− h(ω))α−1(h(ω)− h(c))α−1

(h(d)− h(c))α−1 = Ĝ(ω)

Ĝ
′
(ω) = − 1

Γ(α)
(α− 1)

(h(d)− h(ω))α−2

(h(d)− h(c))α−1 h
′
(ω) · (h(ω)− h(c))α−1

+
1

Γ(α)
(h(d)− h(ω))α−1(α− 1)(h(ω)− h(c))α−2h

′
(ω)

(h(d)− h(c))α−1

= 0

yields

h(ω) =
h(c) + h(d)

2
,

or the critical point

ω∗ = h−1
(

h(c) + h(d)
2

)
.

Therefore, the maximum value of h(ω, v) is

Ň(ω∗) =
1

Γ(α)

(
h(d)− h(c)

4

)α−1
,
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|ℵ(ω, v)| ≤ 1
Γ(α)

(
h(d)− h(c)

4

)α−1
.

The Riemann–Stieltjes integrable function of w with respect to ω and g is denoted as
follows: a continuous function g : [0, 1]×R→ R. Assume that Ĉi is the linear space of all
continuous functions defined on I = [0, 1] and that

Ð(w, υ) = ‖w− υ‖2
∞ = max

v∈I
|w(v)− υ(v)|2 for every w, υ ∈ Ĉi.

So, (Ĉi, Ð) is a metric space that is F-complete.
We take into account the following situations:
(a) There exists r ∈ [0, 1), ζ : R2 → R is a function for each c, d ∈ R with ζ(c, d) ≥

ξ(c, d), such that

|g(ω, w(ω))dω− g(ω, υ(ω))dω|þ ≤ |w(ω)− υ(ω)|2(þγ+qβ)

· |w(ω)− Sw(ω)|2(þ(1−γ−ŵ)+q(ŵ−β))

· |υ(ω)− vυ(ω)|2(þŵ−qŵ),

where þ, q ≥ [1, ∞), β, γ, ŵ ∈ (0, 1);
(b) For every w1 ∈ Ĉi, there exists such that

ζ

(
w1(v),

∫ d

c
ℵ(v, ω)g(ω, w1(ω))h

′
(ω)dω

)
≥ ξ

(
w1(v),

∫ d

c
ℵ(v, ω)g(ω, w1(ω))h

′
(ω)dω

)
,

satisfies for each v ∈ I.
(c) There exists a w1, v1 ∈ Ĉi for each w, υ ∈ Ĉi, such that

ζ(w(v), υ(v)) ≥ ξ(w(v), υ(v))

implies ζ

(∫ d

c
ℵ(v, ω)g(ω, w1(ω))h

′
(ω)dω,

∫ d

c
ℵ(v, ω)g(ω, υ1(ω))h

′
(ω)dω

)
≥ ξ

(∫ d

c
ℵ(v, ω)g(ω, w1(ω))h

′
(ω)dω,

∫ d

c
ℵ(v, ω)g(ω, υ1(ω))h

′
(ω)dω

)
,

holds for all values of v ∈ I.
(d) Any group of points w in a sequence {wn} of points in Ĉi will have

ζ(wn, wn+1) ≥ ξ(wn, wn+1), lim
n→∞

inf ζ(wn, w) ≥ lim
n→∞

inf ξ(wn, w).

Theorem 12. Assume that the conditions (a)–(d) are met. So, (10) has at least one w ∈ Ĉi solution.

Proof. We know that w ∈ Ĉi is a solution of the fractional-order integral equation if and
only w ∈ Ĉi is a solution of (10),

w(v) = λ
∫ b

a
ℵ(v, s)g(s, w(s))h

′
(s)ds for all v ∈ I,

where 0 ≤ λ < 1. Define a map S : Ĉi → Ĉi by

Sw(v) = λ
∫ b

a
ℵ(v, s)g(s, w(s))h

′
(s)ds for all v ∈ I.
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Then, solving problem (10) is identical to discovering w∗ ∈ Ĉi, which is a fixed point of S.
Let w, υ ∈ Ĉi, be such that for all v ∈ I, ζ(w(v), υ(v)) ≥ 0. Using (a), we obtain

|Sw(v)− Sυ(v)|p =

∣∣∣∣λ ∫ b

a
ℵ(v, s)[g(s, w(s))− g(s, υ(s))]h

′
(s)ds

∣∣∣∣p
≤ |λ|

∫ b

a
|ℵ(v, s)|

∣∣∣g(s, w(s))− g(s, υ(s))h
′
(s)ds

∣∣∣p
≤ |λ|

∫ b

a
|ℵ(v, s)|h′(s)rds|w(s)− υ(s)|2(pγ+qβ)

· |w(s)− Sw(s)|2(p(1−γ−ŵ)+q(ŵ−β))

· |υ(s)− vυ(s)|2(pŵ−qŵ)

≤ 1
Γ(α)

(
h(b)− h(a)

4

)α−1

(h(b)− h(a))‖w(s)− υ(s)‖2(pγ+qβ)
∞

· ‖w(s)− Sw(s)‖2(p(1−γ−ŵ)+q(ŵ−β))
∞ · ‖υ(s)− Sυ(s)‖2(pŵ−qŵ)

∞

≤ r‖w(s)− υ(s)‖2(pγ+qβ)
∞

· ‖w(s)− Sw(s)‖2(p(1−γ−ŵ)+q(ŵ−β))
∞ · ‖υ(s)− Sυ(s)‖2(pŵ−qŵ)

∞ .

Thus,

D(Sw, Sυ)p <


|w(s)− υ(s)|2(pγ+qβ)

·|w(s)− Sw(s)|2(p(1−γ−ŵ)+q(ŵ−β))

·|υ(s)− Sυ(s)|2(pŵ−qŵ)


holds for each w, υ ∈ Ĉi such that ζ(w(v), υ(v)) ≥ ξ(w(v), υ(v)) for each v ∈ I.

We define α : Ĉi × Ĉi → [0, ∞) by

α(w, υ) =

{
2, if ζ(w(v), υ(v)) ≥ 0, v ∈ I,
0, otherwise

}

and η(w, υ) =

{ 1
3 , if ξ(w(v), υ(v)) ≥ 0, v ∈ I,
0, otherwise

}
Then, for all w, υ ∈ Ĉi, α(w, υ) ≥ η(w, υ), we have

D(Sw, Sυ)p ≤ r


|w(s)− υ(s)|2(pγ+qβ)

·|w(s)− Sw(s)|2(p(1−γ−ŵ)+q(ŵ−β))

·|υ(s)− Sυ(s)|2(pŵ−qŵ)

.

Obviously, α(w, υ) ≥ η(w, υ) for every w, υ ∈ Ĉi. If α(w, υ) ≥ η(w, υ) for each w, υ ∈ Ĉi,
then ζ(w(v), υ(v)) ≥ ξ(w(v), υ(v)).

From (c), we have ζ(Sw(v), Sυ(v)) ≥ ξ(Sw(v), Sυ(v)) and so α(Sw, Sυ) ≥ η(Sw, Sυ).
Thus, S is an α-admissible map concerning η.
From (b), there subsists w1 ∈ Ĉi parallel to α(w1, Sw1) = η(w1, Sw1).
By (d), we know that any group of points in a sequence {wn} of points in Ĉi with w

will have
α(wn, wn+1) = η(wn, wn+1),

and
lim

n→∞
inf α(wn, w) = lim

n→∞
inf η(wn, w).

By using Theorem 2, it can be shown that S attains a fixed point in Ĉi. Finally, w∗ is a
solution to the equation Sw∗ = w∗ in Ĉi (10).
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6. Conclusions

In the context of F-metric space, this study focuses on a novel notion of convex inter-
polative contraction of the Reich and Kannan type that is more inclusive than standard
metrics. Results for the Suzuki-type fixed point are driven in the F-metric space. This
work expands the idea of interpolative contractions and yields a few significant theorems.
This study will add fresh information to the body of knowledge. In order to demon-
strate our theorems and as an application, we find a solution to the fractional differential
equation problem. These new studies and uses would increase the effectiveness of the
new arrangement.
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