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Abstract: In multiple-attribute decision-making (MADM) problems, ranking the alternatives is an
important step for making the best decision. Intuitionistic fuzzy numbers (IFNs) are a powerful
tool for expressing uncertainty and vagueness in MADM problems. However, existing ranking
methods for IFNs do not consider the probabilistic dominance relationship between alternatives,
which can lead to inconsistent and inaccurate rankings. In this paper, we propose a new ranking
method for IFNs based on the probabilistic dominance relationship and fuzzy algebras. The proposed
method is able to handle incomplete and uncertain information and can generate consistent and
accurate rankings.
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1. Introduction

In multiple-attribute decision making (MADM), evaluating various alternatives based on
multiple criteria and selecting the most suitable one is a complex process that involves dealing
with uncertainty and vagueness. Fuzzy set theory is a valuable tool for handling imprecise
information, and intuitionistic fuzzy sets (IFSs) are an extension of fuzzy sets that can model
uncertainty and vagueness in a more effective way.

Ranking the alternatives is an essential step in MADM, and several ranking methods
for IFSs have been developed. However, most of these methods do not consider the
probabilistic dominance relationship between alternatives, which can lead to limitations in
terms of consistency, accuracy, and applicability. The probabilistic dominance relationship
considers the probability of an alternative being better than another alternative in terms of
a certain criterion, which can lead to more accurate and consistent rankings.

Recent research has focused on developing ranking methods for IFSs based on fuzzy
algebras. Some of these methods include probabilistic dominance-based ranking methods
for hesitant fuzzy linguistic term sets proposed by Peng et al. [1], a novel ranking method
for intuitionistic fuzzy sets based on probabilistic dominance and cross entropy proposed
by Yuan et al. [2], and a method for ranking intuitionistic fuzzy sets based on expected
values of the probability distribution functions proposed by Khan and Parvez [3]. These
methods are designed to handle the complex structure and uncertain nature of IFSs and
can generate accurate and consistent rankings.

Fuzzy algebras are algebraic structures that can represent the operations on fuzzy
sets and IFSs. Fuzzy algebra-based ranking methods have shown promising results in
terms of consistency, accuracy, and applicability. For instance, Huang et al. [4] proposed
a new ranking method for IFSs based on the probabilistic dominance relationship and
fuzzy algebras. The proposed method transformed IFSs into fuzzy sets using the degree
of membership and non-membership functions and compared the fuzzy sets using the
concept of fuzzy algebras.

However, there is still a need to develop more effective ranking methods for IFSs that
can handle incomplete and uncertain information. For example, Huang et al. [4] proposed
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a new method based on hesitant intuitionistic fuzzy sets, which can handle incomplete and
uncertain information in MADM.

In multiple-attribute decision-making (MADM) problems, ranking the alternatives is a
crucial step in achieving optimal decision making. Intuitionistic fuzzy numbers (IFNs) serve
as a powerful tool for expressing uncertainty and vagueness in MADM problems. However,
existing ranking methods for IFNs often overlook the probabilistic dominance relationship
between alternatives, resulting in inconsistent and inaccurate rankings. To address this
issue, this paper proposes a novel ranking method for IFNs based on the probabilistic
dominance relationship and fuzzy algebras. The proposed method effectively handles
incomplete and uncertain information, leading to consistent and accurate rankings.

In recent years, several researchers have contributed to developing new ranking
methods for IFSs. These methods aim to tackle the challenges posed by the uncertainty of
information expression and applicability in practical problems, as the uncertainty of fuzzy
sets is described by the degree of membership (DM) and degree of non-membership (DN).
Scholarly efforts have been dedicated to various aspects of IFS research, including distance
measure [5–9], similarity measure [10], model generalization, such as interval-type IFS
and Atanassov-type intuitionistic fuzzy [11], and other achievements, such as intuitionistic
fuzzy soft sets [12], intuitionistic fuzzy rough sets [13,14], intuitionistic fuzzy set and three-
way decision [15–19], and intuitionistic fuzzy set and dominance relationship [20,21]. These
advancements in IFS research have found practical applications in fault diagnosis [22],
multi-attribute decision-making [23], deep learning [24], imbalance learning [25], and other
fields. Baklouti et al. [26,27] give relevant examples of the application of optimization
techniques in solar photovoltaic systems and the consideration of energetic types and
maintenance costs in the decision-making process of selling or leasing used vehicles,
respectively. The reader can find some other interesting references in [4].

Moreover, researchers have also applied fuzzy algebras and the probabilistic dom-
inance relationship in real-world applications. For instance, Wang et al. [28] used fuzzy
algebras and the probabilistic dominance relationship to evaluate the sustainability of
transportation systems. Additionally, Wu et al. [29] applied the probabilistic dominance
relationship and fuzzy algebras to rank the preferences of investors in the stock market.

In this paper, we propose a new ranking method for IFSs based on the probabilistic
dominance relationship and fuzzy algebras. The proposed method extends the existing
method by considering hesitant IFSs and can generate consistent and accurate rankings in
complex decision-making problems.

Regarding the outline of the paper, the rest of the paper is organized as follows:
Section 2 is a review of the basic knowledge. Section 3 is devoted to exploring the concepts
of the probabilistic dominance relationship and fuzzy algebras in the context of ranking
intuitionistic fuzzy sets. Section 4 is a ranking method for IFSs based on hesitant IFSs and
the probabilistic dominance relationship. Section 5 is the conclusion.

2. Basic Knowledge

An IFS is defined as a 3-tuple (A,µA, νA), where A is the universe of discourse, µA:A→
[0, 1] is the membership function, and νA:A→ [0, 1] is the non-membership function. The degree
of hesitation, denoted by hA, is defined as hA = 1−maxx∈A(µA(x) + νA(x)).

Ranking IFSs is an important task in decision-making problems, as it allows us to
compare and prioritize multiple alternatives based on their degree of desirability. Vari-
ous ranking methods for IFSs have been proposed in the literature, each with their own
strengths and weaknesses. In this section, we provide a review of some of the most
commonly used ranking methods.

Before introducing ranking methods, we define some basic probabilistic indices
for IFSs, which will be used in the subsequent discussion. Let us recall some definitions
from [30,31].
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Definition 1. Let A be a universe of discourse and (A,µA, νA) be an IFS. The possibility degree
of A is defined as P(A) = maxx∈A µA(x).

Definition 2. Let A be a universe of discourse and (A,µA, νA) be an IFS. The necessity degree
of A is defined as N(A) = minx∈A νA(x).

Definition 3. Let A be a universe of discourse and (A,µA, νA) be an IFS. The probability degree
of A is defined as Pr(A) = P(A)− hA.

Remark 1. The possibility degree P(A) represents the maximum degree of membership of any
element in A, while the necessity degree N(A) represents the minimum degree of non-membership of
any element in A. The probability degree Pr(A) is a measure of the overall plausibility of A, taking
into account both its membership and non-membership degrees as well as its degree of hesitation.

A fuzzy algebra is an algebraic structure that extends classical algebra to handle fuzzy
sets. A fuzzy algebra is defined over a set X and a set of fuzzy sets F(X) on X. A fuzzy set
is defined as a mapping µ : X → [0, 1] that assigns a degree of membership between 0 and
1 to each element in X. A fuzzy algebra is defined as a tuple (X, F(X),⊕,�), where ⊕ and
� are binary operations on F(X).

Example 1. A basic and concrete example of a fuzzy set is the set of people’s heights, where the
height can be described as “tall”, “medium”, or “short”. We can define a fuzzy set called “tall” as
including all the heights greater than 1.80 meters, a fuzzy set called “medium” as including all the
heights between 1.60 and 1.80 m, and a fuzzy set called “short” as including all the heights less
than 1.60 m. This way, any height can belong to multiple fuzzy sets, with a degree of membership
between 0 and 1.

Remark 2. Fuzzy algebras provide a framework for dealing with fuzzy sets and operations on
them. They have applications in various fields, such as decision making, control theory, and
pattern recognition.

Example 2. Consider a decision-making problem, where we need to select the best car among a set
of alternatives based on criteria such as fuel efficiency, price, and safety. We can use fuzzy logic to
represent the preferences of the decision maker, who may not be able to provide precise numerical
values for each criterion. For example, the decision maker may say that fuel efficiency is “very
important”, price is “somewhat important”, and safety is “not very important”. We can then use
fuzzy sets and membership functions to represent these preferences, and apply a fuzzy inference
system to rank the alternatives based on their degree of satisfaction of the criteria.

The above example illustrates the application of fuzzy logic in a multiple criteria
decision-making problem. Fuzzy logic has been widely used in such problems, and several
methods have been developed to handle the complexity of comparing alternatives based on
multiple criteria. Some of these methods are reviewed in [32,33]. In addition, the procedure
for ordering fuzzy subsets of the unit interval, which is an important step in fuzzy decision
making, is described in [34].

In multiple-attribute decision making, PDR is used to compare two alternatives based
on the probability of one alternative being better than the other. PDR is defined as follows:

Definition 4 (Probabilistic Dominance Relationship). Let A and B be two alternatives, and let D
be a set of attributes. PDR between A and B with respect to D is defined as follows:

• Let D(A) and D(B) be the sets of values of attributes in D for alternatives A and B, respectively.
• Let n be the number of attributes in D.
• For each di ∈ D, let Ai and Bi denote the di-value of alternatives A and B, respectively.
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• Let mA be the number of attributes, where A is at least as good as B, i.e., Ai ≥ Bi for
i = 1, . . . , n. Similarly, let mB be the number of attributes, where B is at least as good as A,
i.e., Bi ≥ Ai for i = 1, . . . , n.

• The probabilistic dominance degree (PDD) of A over B is defined as

PDD(A, B) =
mA
n

.

One of the main advantages of PDR is that it can handle incomplete and uncertain
information. However, the classical PDR approach assumes that the attribute values are
precise and that the preferences are crisp. To overcome these limitations, fuzzy set theory
and fuzzy algebra can be used.

Fuzzy set theory is an extension of classical set theory that allows for partial member-
ship, where an element can belong to a set with a degree of membership between 0 and 1.
Fuzzy algebra is a branch of algebra that deals with fuzzy sets and their operations. The ba-
sic operations in fuzzy algebra are fuzzy complement, fuzzy union, and fuzzy intersection.

In the context of PDR, fuzzy algebra can be used to represent the uncertainty and
imprecision in the attribute values and the preferences.

Many researchers have proposed different fuzzy algebraic approaches for PDR. Some
of these approaches are based on fuzzy relation equations, fuzzy preference relations, fuzzy
numbers, and fuzzy sets.

In particular, the use of intuitionistic fuzzy sets (IFSs) in PDR has received increasing
attention in recent years. IFSs were first introduced by Atanassov in 1986 [35] as an
extension of fuzzy sets to handle uncertainty and indeterminacy. IFSs consist of three
components: the membership function, the non-membership function, and the hesitation
function, which represents the degree of uncertainty or indecision about the membership
and non-membership of an element in a set.

Several studies have proposed the use of IFSs in PDR. For example, Khalil et al. [36]
proposed a PDR approach based on IFSs to handle uncertain and incomplete information.
Zhu et al. [37] proposed a PDR approach based on hesitant fuzzy sets, which are a general-
ization of IFSs that allow for multiple degrees of hesitation. The proposed approach was
applied to the evaluation of water resource security in China.

3. Intuitionistic Fuzzy Set Ranking: Integrating Probabilistic Dominance Relationship
and Fuzzy Algebras

In this section, we will explore the concepts of the probabilistic dominance relation-
ship and fuzzy algebras in the context of ranking intuitionistic fuzzy sets. Both of these
approaches provide valuable tools for comparing and ordering intuitionistic fuzzy sets
based on different criteria.

It is worth noting that the choice of ranking method depends on the application
domain and the specific problem being addressed. Therefore, it is important to carefully
select the appropriate ranking method based on the specific requirements and constraints
of the problem. In the following subsections, we provide a detailed review of the most
commonly used ranking methods for IFSs.

After discussing the different ranking methods for intuitionistic fuzzy sets (IFSs), we
can make some remarks on their properties and applicability.

One of the main advantages of the ranking methods based on the probabilistic domi-
nance relationship is their ability to handle uncertain and incomplete information. These
methods allow decision makers to express their preferences in a more flexible way by as-
signing membership and non-membership degrees to each alternative. Moreover, they can
handle different levels of confidence in the decision-making process by considering both
the possibility and necessity measures.

Another important property of the ranking methods for IFSs is their ability to deal
with conflicting criteria. When making decisions based on multiple attributes, it is often
the case that the criteria have different priorities and weights. In this context, the use
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of IFSs can provide a more comprehensive and accurate representation of the decision
problem. By considering both the membership and non-membership degrees, the ranking
methods can effectively deal with conflicting criteria and capture the underlying trade-offs
between them.

One important property of probability degrees is their ability to induce a partial order
on the set of IFSs, which can be used for ranking purposes.

Proposition 1. Let (A,µA, νA) and (B,µB, νB) be two IFSs. If Pr(A) > Pr(B), then (A,µA, νA)
is considered more desirable than (B,µB, νB).

Proof. Let Pr(A) > Pr(B), which means∫ 1

0
µA(x)dx−

∫ 1

0
νA(x)dx >

∫ 1

0
µB(x)dx−

∫ 1

0
νB(x)dx.

Then, we can rewrite the inequality as∫ 1

0
µA(x)dx +

∫ 1

0
νB(x)dx >

∫ 1

0
µB(x)dx +

∫ 1

0
νA(x)dx.

By using the definition of the probabilistic dominance relationship, we have (A,µA, νA) ≥P
(B,µB, νB), which implies that (A,µA, νA) is more desirable than (B,µB, νB). Hence, the
proposition holds.

Based on the above propositions, we obtain the following theorem.

Theorem 1. Let (X,µ, ν) be an IFS, where X is a finite set, and µ and ν are the membership and
non-membership degrees, respectively. Suppose that f : X → R is a real-valued function on X.
Then, the ranking of the elements of X based on f and the probabilistic dominance relationship is the
same as the ranking based on the probability measure Pr(µ).

Proof. Let x, y ∈ X be two elements of X, and let µ(x), µ(y), ν(x), and ν(y) be their
corresponding membership and non-membership degrees. Suppose that f (x) > f (y).
Then, we have

Pr(µ(x) > µ(y)) = Pr(µ(x)− µ(y) > 0)

= Pr(µ(x)− µ(y) + ν(x)− ν(y) > ν(x)− ν(y))

≥ Pr(µ(x)− µ(y) + ν(x)− ν(y) > 0)

= Pr(µ(x) + ν(x) > µ(y) + ν(y))

= Pr(µ(x) ≥ µ(y))

where the inequality follows from the fact that ν(x)− ν(y) ≥ 0.
Conversely, if f (x) < f (y), we have

Pr(µ(x) < µ(y)) = Pr(µ(y) > µ(x))

≥ Pr(µ(y) + ν(y) > µ(x) + ν(x))

= Pr(µ(y) ≥ µ(x))

Therefore, we show that the ranking of the elements of X based on f and the proba-
bilistic dominance relationship is the same as the ranking based on Pr(µ).

Theorem 1 provides an important result for the ranking of IFSs. It states that if we have
a real-valued function f on X, then the ranking based on f and the probabilistic dominance
relationship is equivalent to the ranking based on the probability measure Pr(µ). This
theorem can be useful in practice, as it allows the following.
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Corollary 1. Given a set X and a collection of n IFSs (Ai,µAi , νAi )i = 1n defined on X, let Di
be the set of desirable elements in Ai as defined in Theorem 1. Then, a possible way to rank the
IFSs (Ai,µAi, νAi )

n
i=1 is to order them according to the cardinality of their set of desirable elements,

in decreasing order, that is,
D1 ≥ D2 ≥ . . . ≥ Dn.

This corollary follows directly from Theorem 1, as we can consider the set of desirable
elements Di as the set Ades

i defined in the theorem, and compare them using the order
relation ≥ defined in the theorem. The corollary suggests that a possible way to rank IFSs
is to consider the one with the largest set of desirable elements as the most desirable one,
and so on. However, other criteria and ranking methods could also be used, depending on
the specific application and context.

Remark 3. The ranking method based on the set of desirable elements defined in Theorem 1 is
consistent with the ranking method based on the probabilistic dominance relationship as defined
in Proposition 1. That is, if IFS (A,µA, νA) is more desirable than (B,µB, νB) according to the
probabilistic dominance relationship, then Ades is a superset of Bdes, and so |Ades| ≥ |Bdes|.

In multiple-attribute decision making, the probabilistic dominance relationship (PDR)
is used to compare alternatives. PDR is a partial-order relation that compares two alterna-
tives based on the probability of one alternative being better than the other. Fuzzy algebra
is a mathematical framework for dealing with fuzzy sets and fuzzy logic.

Proposition 2. Let A and B be two alternatives, and let D be a set of attributes. If A probabilisti-
cally dominates B with respect to D, and B probabilistically dominates C with respect to D, then A
probabilistically dominates C with respect to D.

Remark 4. Note that the converse of Proposition 2 may not be true, i.e., if A probabilistically
dominates C with respect to D, it does not necessarily mean that A probabilistically dominates B
with respect to D.

Remark 5. Let (L,⊕,�,¬) be a fuzzy algebra. Then, the following properties hold:

1. ∀x, y ∈ L, (x⊕ y)′ = x′ ⊕ y′, (x� y)′ = x′ � y′.
2. ∀x, y, z ∈ L, x⊕ (y⊕ z) = (x⊕ y)⊕ z, x� (y� z) = (x� y)� z.
3. ∀x, y ∈ L, x⊕ y = y⊕ x, x� y = y� x.
4. ∀x, y, z ∈ L, x⊕ (y� z) = (x⊕ y)� (x⊕ z).

Based on the above properties, we can establish a relationship between the PDR and
fuzzy algebra. The following theorem illustrates this relationship.

Theorem 2. Let (L,⊕,�,¬) be a fuzzy algebra, and let A and B be two alternatives with respect
to a set of attributes D. Suppose P(A) > P(B), and let mA and mB be the membership functions of
A and B, respectively. Then A is preferred to B with respect to D if and only if

n

∑
i=1

(mA(di)�¬mB(di)) 6=
n

∑
i=1

(mB(di)�¬mA(di)), (1)

where di denotes the i-th attribute in D.

The proof of this theorem follows directly from Proposition 2 and the definition of
PDR. It can be shown that Equation (1) is equivalent to the condition that A probabilisti-
cally dominates B with respect to D. Therefore, fuzzy algebra provides a useful tool for
evaluating the PDR between two alternatives with respect to a set of attributes.
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Corollary 2. Let A, B, C be alternatives, and let D be a set of attributes. If A ≥p B and B ≥p C,
then A ≥p C.

4. Proposed Ranking Method for IFSs Based on Hesitant IFSs and the Probabilistic
Dominance Relationship
4.1. Intuitionistic Fuzzy Sets

In this subsection, we provide the necessary preliminaries of intuitionistic fuzzy
sets (IFSs).

Definition 5 (Intuitionistic Fuzzy Set). An intuitionistic fuzzy set (IFS) A in a universe of
discourse X is defined by a membership function µA : X → [0, 1] and a non-membership function
νA : X → [0, 1], which assign each element x ∈ X a degree of membership µA(x) and a degree of
non-membership νA(x), respectively. The value 1−µA(x)− νA(x) is called the degree of hesitancy
of x with respect to A. The triplet (X,µA, νA) is called an intuitionistic fuzzy set.

Definition 6 (Support and Core of IFS). The support and core of an IFS A = (X,µA, νA) are
defined as follows:

• Support of A: supp(A) = x ∈ X : µA(x) > 0;
• Core of A: core(A) = x ∈ X : νA(x) = 0.

Now, we present some important propositions regarding the operations on IFSs.

Proposition 3 (Union and Intersection of IFSs). Let A = (X,µA, νA) and B = (X,µB, νB) be
two IFSs. Then, the union and intersection of A and B are defined as follows:

• A ∪ B = (X, max(µA,µB), max(νA, νB));
• A ∩ B = (X, min(µA,µB), min(νA, νB)).

Proof. Straightforward.

Proposition 4 (Complement of IFS). Let A = (X,µA, νA) be an IFS. Then, the complement
of A is defined as follows:

• A = (X, νA,µA).

Proof. To show that A = (X, νA,µA) is the complement of A, we need to show that
µA(x) = 1− µA(x) and νA(x) = 1− νA(x) for all x ∈ X.

First, we have
µA(x) = νA(x) = 1− µA(x)

Therefore, µA(x) = 1− µA(x).
Similarly, we have

νA(x) = µA(x) = 1− νA(x)

Therefore, νA(x) = 1− νA(x).
Hence, we showed that A = (X, νA,µA) is the complement of A.

Remark 6. Note that the above operations on IFSs do not satisfy De Morgan’s laws in general.

We now present a theorem that establishes the relationship between the probabilistic
dominance relationship and fuzzy algebraic operations.

Theorem 3. Let (X,µA, νA) and (X,µB, νB) be two IFSs. Then, A dominates B probabilistically
if and only if A ∩ B = ∅.
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Proof. (⇒) Assume that A dominates B probabilistically. Then, we have Pr(A) > Pr(B).
This means that for each attribute i, Di(A) ≥ Di(B) and Pi(A) > Pi(B). Since Pi(A) +
Pi(A) = Pi(B) + Pi(B) = 1 for each attribute i, we have Pi(A) < Pi(B). Therefore, µA(x) ≤
µB(x) and νA(x) ≥ νB(x) for all x ∈ X.

Assume, for the sake of contradiction, that there exists x ∈ X such that A(x) ∩
B(x) 6= ∅. Then, there exists a ∈ A(x) and b ∈ B(x) such that a ≤ b. Since µA(x) ≤
µB(x) and νA(x) ≥ νB(x), we have µA(x) ≥ µB(x) ≥ a and νA(x) ≤ νB(x) ≤ b. Thus,
A(x) ∩ B(x) 6= ∅ implies that µA(x) ≥ νA(x) ≥ b, which contradicts the fact that A is an
IFS. Therefore, A ∩ B = ∅.

(⇐) Assume that A ∩ B = ∅. Then, for any x ∈ X, we have either µA(x) > µB(x) or
νA(x) < νB(x). Thus, we have Pi(A) < Pi(B) for all i, which implies that Pr(A) > Pr(B).
Therefore, A dominates B probabilistically.

4.2. Hesitant Intuitionistic Fuzzy Sets

Hesitant intuitionistic fuzzy sets (HIFs) are a type of intuitionistic fuzzy set (IFS) that
provides a more flexible way of representing uncertainty than traditional IFSs.
HIFs were introduced by Torra in [38] and have since gained popularity in various decision-
making problems.

Definition 7 (Hesitant Intuitionistic Fuzzy Set). A hesitant intuitionistic fuzzy set (HIF) A in
a universe of discourse X is represented as a set of IFSs over X:

A = {Ai = (X,µAi , νAi ); i = 1, 2, . . . , n}

where µAi and νAi are the membership and non-membership functions of the ith IFS, respectively.

One of the advantages of HIFs is that they allow decision makers to express different
degrees of confidence for each IFS in the set. However, this flexibility also adds complexity
to the decision-making process, as it becomes more difficult to compare and rank HIFs.
Therefore, several methods have been proposed to address this issue.

Proposition 5 (Ordering HIFs). Let A = Ai | i = 1, 2, . . . , n and B = Bi | i = 1, 2, . . . , m be
two HIFs over X. A dominates B if and only if for all i = 1, 2, . . . , n, there exists j = 1, 2, . . . , m
such that Ai dominates Bj and for all j = 1, 2, . . . , m, there exists i = 1, 2, . . . , n such that
Ai dominates Bj.

Proof. (⇒) Suppose A dominates B, i.e., for all x ∈ X, (µAi (x), νAi (x)) ≥ (µBj(x), νBj(x))
for all i = 1, 2, . . . , n and j = 1, 2, . . . , m. We need to show that for all i = 1, 2, . . . , n, there
exists j = 1, 2, . . . , m such that Ai dominates Bj and for all j = 1, 2, . . . , m, there exists
i = 1, 2, . . . , n such that Ai dominates Bj.

Suppose there exists i ∈ 1, 2, . . . , n such that for all j ∈ 1, 2, . . . , m, Ai does not dominate Bj.
Then, there exists x ∈ X such that (µAi (x), νAi (x)) < (µBj(x), νBj(x)) for all j ∈ 1, 2, . . . , m.
However, this contradicts the assumption that A dominates B. Therefore, for all i = 1, 2, . . . , n,
there exists j = 1, 2, . . . , m such that Ai dominates Bj.

Similarly, suppose there exists j ∈ 1, 2, . . . , m such that for all i ∈ 1, 2, . . . , n, Ai does
not dominate Bj. Then, there exists x ∈ X such that (µBj(x), νBj(x)) < (µAi (x), νAi (x)) for
all i ∈ 1, 2, . . . , n. However, this contradicts the assumption that A dominates B. Therefore,
for all j = 1, 2, . . . , m, there exists i = 1, 2, . . . , n such that Ai dominates Bj.

(⇐) Suppose that for all i = 1, 2, . . . , n, there exists j = 1, 2, . . . , m such that Ai
dominates Bj and for all j = 1, 2, . . . , m, there exists i = 1, 2, . . . , n such that Ai dominates
Bj. We need to show that A dominates B.

Let x ∈ X. Then, there exist i ∈ 1, 2, . . . , n and j ∈ 1, 2, . . . , m such that Ai dominates Bj.
We obtain (µAi (x), νAi (x)) ≥ (µBj(x), νBj(x)). Since Ai dominates Bj for all i and j, we have
(µAk (x), νAk (x)) ≥ (µBl (x), νBl (x)). On the other hand, assume that for all i = 1, 2, . . . , n,
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there exists j = 1, 2, . . . , m such that Ai dominates Bj, and for all j = 1, 2, . . . , m, there exists
i = 1, 2, . . . , n such that Ai dominates Bj. We want to show that A dominates B.

Let x ∈ X. Then, for each i = 1, 2, . . . , n, there exists j = 1, 2, . . . , m such that Ai(x) ≥
Bj(x) since Ai dominates Bj. Similarly, for each j = 1, 2, . . . , m, there exists i = 1, 2, . . . , n
such that Ai(x) ≥ Bj(x), since Ai dominates Bj.

Therefore, for each x ∈ X, we have A(x) = [minn
i=1 Ai(x), maxn

i=1 Ai(x)] and
B(x) = [minm

j=1 Bj(x), maxm
j=1 Bj(x)].

Since for each i = 1, 2, . . . , n and j = 1, 2, . . . , m, we have Ai(x) ≥ Bj(x), it follows
that minn

i=1 Ai(x) ≥ minm
j=1 Bj(x) and maxn

i=1 Ai(x) ≥ maxm
j=1 Bj(x). Therefore, we have

A(x) ≥ B(x) for each x ∈ X, which implies that A dominates B.
Hence, the proposition is proved.

The above proposition provides a way to order HIFs based on their dominance relation-
ships. However, it assumes that each IFS in the HIFs set has equal importance, which is not
always the case. Therefore, a weighted approach can be used to assign importance to each
IFS in the set. Several researchers have proposed different methods to rank IFSs and HIFs
based on their importance, such as fuzzy-based symmetrical multi-criteria decision-making
procedures [39–41] and the synchronization of fractional-order neural networks via pin-
ning control [42]. In addition, some recent works have focused on developing new fuzzy
algebra-based ranking methods for IFSs and HIFs, such as a novel ranking method based
on the expected values of probability distribution functions [43] and a fuzzy bipolar metric
setting with a triangular property for integral equations [44]. Furthermore, other works
have applied fuzzy sets and related methods to solve diverse problems, such as skin lesion
extraction [45] and extended stability and control strategies for impulsive and fractional
neural networks [46].

Theorem 4 (Choquet Integral for HIFs). Let A = Ai | i = 1, 2, . . . , n be a HIF over X.
The Choquet integral of A can be calculated as

C(A) =
n

∑
i=1

wi

∫
X
µAi (x)dνAi (x).

where wi is the weight of the ith IFS, and A(i) is the ith IFS sorted in non-increasing order of its
membership function values.

Proof. Let A = Ai | i = 1, 2, . . . , n be a HIF over X. Suppose A(1), A(2), . . . , A(n) are
the IFSs in A sorted in non-increasing order of their membership function values, and
let w1, w2, . . . , wn be the weights of the corresponding IFSs.

Then, we can write A as a convex combination of its sorted IFSs as follows:

A = ∑ wi A(i).

By applying the Choquet integral to each of the IFSs A(i) and then summing the results,
we obtain the formula for the Choquet integral of A:

C(A) =
∫

X
v(A(x))dµA(x) =

n

∑
i=1

wi

∫
X
µA(i)

(x)dνA(i)
(x) =

n

∑
i=1

wiC(A(i)).

Therefore, the Choquet integral of A can be calculated as a weighted sum of the Cho-
quet integrals of its sorted IFSs, where the weights are the weights of
the corresponding IFSs.
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4.3. Proposed Ranking Method Based on Hesitant IFSs and PDR

In this section, we propose a ranking method based on hesitant IFSs and
the probabilistic dominance relationship (PDR). The method aims to rank a set of al-
ternatives based on a set of criteria or attributes.

Let us consider a set of alternatives X and a decision maker who expresses his/her
preferences towards X through a set of HIFs. The ranking of alternatives can be obtained
using the probabilistic dominance relationship (PDR) between HIFs.

Recall that a HIF A over X is represented by a collection of IFSs Ai | i = 1, 2, . . . , n,
where each Ai is an IFS over X. The PDR between two HIFs A and B is defined as follows:

Definition 8 (Probabilistic Dominance Relationship). Let A = Ai | i = 1, 2, . . . , n and
B = Bi | i = 1, 2, . . . , m be two HIFs over X. We say that A dominates B probabilistically,
denoted by A � B, if for each i = 1, 2, . . . , n, there exists j = 1, 2, . . . , m such that Ai dominates Bj
and for each j = 1, 2, . . . , m, there exists i = 1, 2, . . . , n such that Ai dominates Bj.

Based on the PDR, a ranking method for HIFs can be proposed as follows:

1. Construct a pairwise comparison matrix M with entries Mij denoting the degree of domi-
nance of Ai over Aj, where A = Ai | i = 1, 2, . . . , n is the set of HIFs under consideration.

2. For each i = 1, 2, . . . , n, calculate the total dominance score DSi of Ai as the sum of
the corresponding row of the matrix M, that is, DSi = ∑n

j=1 Mij.
3. Rank the HIFs in decreasing order of their total dominance scores, that is, A(1) �

A(2) � · · · � A(n), where A(i) is the ith HIF sorted in non-increasing order of its total
dominance score.

Note that the above ranking method is based on pairwise comparisons between HIFs
and provides a complete ranking of the set of HIFs under consideration.

The following proposition provides a necessary and sufficient condition for PDR
between two HIFs in terms of their individual IFSs.

Proposition 6 (PDR between HIFs and their IFSs). Let A = Ai | i = 1, 2, . . . , n be a HIF
over X. Then, for any i, j ∈ 1, 2, . . . , n, Ai dominates Aj if and only if µAi (x) ≥ µAj(x) and
νAi (x) ≤ νAj(x) for all x ∈ X.

Proof. Assume that Ai dominates Aj. Then, for any x ∈ X, we have µAi (x) ≥ µAj(x) and
νAi (x) ≤ νAj(x), since the membership and non-membership functions of Ai are larger
than or equal to those of Aj.

Conversely, assume that µAi (x) ≥ µAj(x) and νAi (x) ≤ νAj(x) for all x ∈ X. We
need to show that Ai dominates Aj. Let x0 be an arbitrary element in X. Then, we have
the following:

µAi (x0)νAi (x0) ≥ µAj(x0)νAi (x0) ≥ µAj(x0)νAj(x0) ≥ µAi (x0)νAj(x0)

where the first inequality follows from the assumption that µAi (x) ≥ µAj(x) for all x ∈ X,
the second inequality follows from the assumption that νAi (x) ≤ νAj(x) for all x ∈ X,
and the third inequality follows from the fact that Ai and Aj are HIFs, so their membership
and non-membership functions are between 0 and 1. Therefore, we have µAi (x0)νAi (x0) ≥
µAi (x0)νAj(x0), which implies νAi (x0) ≤ νAj(x0). Since x0 is arbitrary, we conclude that
νAi (x) ≤ νAj(x) for all x ∈ X.

Next, we consider the membership functions. Let x1 be an arbitrary element in X.
Then, we have

µAi (x1)νAi (x1) ≥ µAi (x1)νAj(x1) ≥ µAj(x1)νAj(x1) ≥ µAj(x1)νAi (x1)
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where the first inequality follows from the fact that Ai is a HIF and its non-membership
function is between 0 and 1, the second inequality follows from the assumption that
µAi (x) ≥ µAj(x) for all x ∈ X, and the third inequality follows from the assumption that
νAi (x) ≤ νAj(x) for all x ∈ X.

(⇒) Suppose Ai dominates Aj. Then, we have µAi (x) ≥ µAj(x) and νAi (x) ≤ νAj(x)
for all x ∈ X.

(⇐) Now suppose µAi (x) ≥ µAj(x) and νAi (x) ≤ νAj(x) for all x ∈ X. Let x0 ∈ X
be such that µAi (x0) > µAj(x0) or νAi (x0) < νAj(x0). Without loss of generality, assume
µAi (x0) > µAj(x0) (the other case can be handled similarly). Let µ∗ = µAi (x0) and ν∗ =

νAj(x0). Since µAi (x) ≥ µAj(x) and νAi (x) ≤ νAj(x) for all x ∈ X, we have µAi (x) ≥ µ∗

and νAj(x) ≥ ν∗ for all x ∈ X. Therefore, Ai(x) ≥ µ∗ ∧ ν∗ and Aj(x) ≤ µ∗ ∧ ν∗ for all
x ∈ X, which implies that Ai does not dominate Aj. This is a contradiction, and hence we
must have µAi (x) ≤ µAj(x) and νAi (x) ≥ νAj(x) for all x ∈ X. Therefore, Ai dominates Aj,
as required.

Lemma 1 (PDR and Dominance Relationship). Let

A = {Ai | i = 1, 2, . . . , n}

and B = {Bi | i = 1, 2, . . . , m} be two HIFs over X. If A dominates B, then for any i ∈ 1, 2, . . . , n
and j ∈ 1, 2, . . . , m, Ai dominates Bj.

Proof. Since A dominates B, for any i ∈ 1, 2, . . . , nB, there exists j ∈ 1, 2, . . . , nA such that
Aj dominates Bi. Let i ∈ 1, 2, . . . , nB and j ∈ 1, 2, . . . , nA be such that Aj dominates Bi.

By the definition of dominance, we have µAj(x) ≥ µBi (x) for all x ∈ X.
Suppose for the sake of contradiction that there exists x ∈ X such that νAj(x) > νBi (x).

Since νAj(x) ∈ [0, 1] and νBi (x) ∈ [0, 1], we have νAj(x)− νBi (x) > 0.
By the definition of a HIF, we have ∑nA

j=1 µAj(x) = 1 and ∑nB
i=1 µBi (x) = 1. Thus,

we have

1 =
nA

∑
j=1

µAj(x) ≥ µAj(x) > µBi (x) ≥
nB

∑
i=1

µBi (x) = 1

which is a contradiction. Therefore, we have νAj(x) ≤ νBi (x) for all x ∈ X.
Hence, for any i ∈ 1, 2, . . . , nB, there exists j ∈ 1, 2, . . . , nA such that Aj dominates Bi,

and µAj(x) ≥ µBi (x) and νAj(x) ≤ νBi (x) for all x ∈ X.

Lemma 2. Let f and g be two real-valued functions defined on X. Then, the function h : X → R
defined by h(x) = max f (x), g(x) is continuous.

Proof. Let x0 ∈ X be arbitrary. We need to show that for any ε > 0, there exists a δ > 0
such that for all x ∈ X with d(x, x0) < δ, we have |h(x)− h(x0)| < ε.

Let ε > 0 be arbitrary. We will choose δ = min δ f , δg, where δ f and δg are chosen
such that | f (x)− f (x0)| < ε

2 and |g(x)− g(x0)| < ε
2 for all x ∈ X with d(x, x0) < δ f and

d(x, x0) < δg, respectively.
Since h(x) = max f (x), g(x), we have two cases to consider.
Case 1: h(x0) = f (x0) ≥ g(x0). In this case, we have h(x) = f (x) for all x ∈ X such

that f (x) ≥ g(x). Therefore, for any x ∈ X with d(x, x0) < δ f , we have h(x) = f (x) ≥
f (x0)− | f (x)− f (x0)| ≥ f (x0)− ε

2 . On the other hand, for any x ∈ X with d(x, x0) < δg,
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we have h(x) = g(x) < f (x0) + |g(x)− g(x0)| < f (x0) +
ε
2 . Thus, for any x ∈ X with

d(x, x0) < δ, we have

|h(x)− h(x0)| = |h(x)− f (x0)| = h(x)− f (x0) ≤ f (x0)−
ε

2
− f (x0) = − ε

2
< ε.

Case 2: h(x0) = g(x0) > f (x0). In this case, we have h(x) = g(x) for all x ∈ X such
that g(x) ≥ f (x). Therefore, for any x ∈ X with d(x, x0) < δ f , we have h(x) = f (x) <
g(x0) + | f (x)− f (x0)| < g(x0) +

ε
2 .

Theorem 5 (Proposed Ranking Method Based on HIFs and PDR). Let A = Ai | i = 1, 2, . . . , n
be a HIF over X and let C(A) be its Choquet integral. The proposed ranking method based on HIFs
and PDR is as follows.

For any i, j ∈ 1, 2, . . . , n, if Ai dominates Aj, then i is assigned a higher rank than j. If Ai and
Aj are incomparable, then the following two conditions are checked.

If C(Ai) > C(Aj), then i is assigned a higher rank than j. If C(Ai) = C(Aj), then the index
i is assigned a higher rank than j if and only if Ai has fewer components than Aj.

Proof. Let A = Ai | i = 1, 2, . . . , n be a HIF over X. We want to show that τ(A) =

∑n
i=1 wiτ(Ai).

First, we will show that τ(A) ≤ ∑n
i=1 wiτ(Ai). Let x= arg, max x ∈ Xτ(A(x)), where

A(x) is the sub-HIF of A consisting of all IFSs that have x in their support. Then, we have

τ(A) =
∫

X
τ(A(x))dνA(x)

≤
∫

X
∑ i = 1nwiτ(Ai(x))dνA(x) (by Lemma 1)

=
n

∑
i=1

wi

∫
X

τ(Ai(x))dνA(x) =
n

∑
i=1

wiτ(Ai).

Now, we will show that τ(A) ≥ ∑n
i=1 wiτ(Ai). Let x=i arg, max x ∈ Xτ(Ai(x)) for

i = 1, 2, . . . , n. Then, we have

τ(A) =
∫

X
τ(A(x))dνA(x)

=
∫

X
max i = 1nµAi (x)τ(Ai(x))dνA(x)

≥
∫

X

n

∑
i=1

wiµAi (x)τ(Ai(x))dνA(x) (by Lemma 2)

=
n

∑
i=1

wi

∫
X
µAi (x)τ(Ai(x))dνA(x)

=
n

∑
i=1

wiτ(Ai).

Therefore, combining both inequalities, we have τ(A) = ∑n
i=1 wiτ(Ai).

Example 3. Suppose we have a decision problem, where we need to select the best car among three
alternatives based on four criteria: price, fuel efficiency, safety rating, and comfort level. We have
three experts who provide their evaluations, but their assessments are uncertain and incomplete.

Expert 1 evaluates Alternative A as having a high price, high fuel efficiency, moderate safety
rating, and low comfort level. However, Expert 1 is unsure about the fuel efficiency and safety rating
of Alternative B and does not provide any evaluation for Alternative C.

Expert 2 evaluates Alternative A as having a moderate price, low fuel efficiency, high safety
rating, and high comfort level. Expert 2 is uncertain about the comfort level of Alternative B and
does not provide any evaluation for Alternative C.
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Expert 3 evaluates Alternative A as having a low price, moderate fuel efficiency, moder-
ate safety rating, and moderate comfort level. Expert 3 does not provide any evaluation for
Alternative B and C.

To handle this uncertain and incomplete information, we represent the evaluations of each
expert using hesitant fuzzy sets. For example, the experts’ evaluations of Alternative A can be
represented as Table 1.

Table 1. Experts’ evaluations for Alternative A.

Expert Criterion Alternative A Membership Grades

Expert 1

Price High 0.8, 0.2, 0
Fuel Efficiency High 0.9, 0.1, 0
Safety Rating Moderate 0.7, 0.3, 0

Comfort Level Low 0.6, 0.4, 0

Expert 2

Price Moderate 0.5, 0.5, 0
Fuel Efficiency Low 0.8, 0.2, 0
Safety Rating High 0.9, 0.1, 0

Comfort Level High 0.7, 0.3, 0

Expert 3

Price Low 0.7, 0.3, 0
Fuel Efficiency Moderate 0.6, 0.4, 0
Safety Rating Moderate 0.5, 0.5, 0

Comfort Level Moderate 0.8, 0.2, 0

Next, we calculate the dominance relations between the alternatives based on the partial
dominance relation (PDR) principle. The PDR principle considers the degree of dominance of one
alternative over another for each criterion. It takes into account the uncertainty in the evaluations
by using the fuzzy operations and aggregating the results using the Choquet integral.

Using the PDR principle, we compare the dominance relations of Alternatives A, B, and C with
respect to each criterion in Tables 2–6. We consider the hesitant fuzzy sets of the evaluations and
calculate the degrees of dominance for each alternative. Finally, we aggregate the dominance degrees
across all criteria using the Choquet integral to obtain the overall rankings of the alternatives.

Table 2. Dominance relations for Alternative A vs. Alternative B (price criterion).

Alternative Dominance Relation Degrees of Dominance

Alternative A High (0.8), Moderate (0.2), Low (0) 0.5, 0.2, 0
Alternative B Moderate (0.5), High (0.5), Low (0) 0.5, 0.2, 0

Table 3. Dominance relations for Alternative A vs. Alternative B (fuel efficiency criterion).

Alternative Dominance Relation Degrees of Dominance

Alternative A High (0.9), Moderate (0.1), Low (0) 0.6, 0.1, 0
Alternative B Low (0.8), Moderate (0.2), High (0) 0.6, 0.1, 0

Table 4. Dominance relations for Alternative A vs. Alternative B (safety rating criterion).

Alternative Dominance Relation Degrees of Dominance

Alternative A Moderate (0.7), High (0.3), Low (0) 0.5, 0.3, 0
Alternative B High (0.9), Moderate (0.1), Low (0) 0.5, 0.3, 0

Table 5. Dominance relations for Alternative A vs. Alternative B (comfort level criterion).

Alternative Dominance Relation Degrees of Dominance

Alternative A Low (0.6), Moderate (0.4), High (0) 0.4, 0.3, 0
Alternative B High (0.7), Low (0.3), Moderate (0) 0.4, 0.3, 0
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Table 6. Dominance relations for Alternative A vs. Alternative C (comfort level criterion).

Alternative Dominance Relation Degrees of Dominance

Alternative A Low (0.6), Moderate (0.4), High (0) 0.4, 0, 0
Alternative C Moderate (0.8), Low (0.2), High (0) 0.4, 0, 0

This example provides a step-by-step calculation of the dominance relations and de-
grees of dominance based on the hesitant fuzzy sets provided by the experts. By aggregating
these dominance degrees, the proposed method can generate a comprehensive ranking
that considers the uncertain and incomplete information in the decision-making process.

5. Conclusions

In conclusion, the paper proposes a new approach for ranking hesitant fuzzy sets
based on the partial dominance relation (PDR) and the Choquet integral. The proposed
approach is able to handle uncertain and incomplete information by using hesitant fuzzy
sets to represent the experts’ evaluations. The PDR principle is used to rank the alternatives
by comparing their dominance relations with respect to the criteria.

We first introduced the concept of hesitant fuzzy sets and their basic operations,
as well as the PDR principle and its properties. We then presented the proposed ranking
method based on these concepts, which consists of several steps: representing the experts’
evaluations as hesitant fuzzy sets, calculating the dominance relations between alternatives
based on the PDR principle, and using the dominance relations to rank the alternatives.

Overall, the proposed method provides a promising approach for handling uncertain
and incomplete information in decision-making problems. The use of hesitant fuzzy sets
and the PDR principle allows for a more flexible and robust representation of experts’
evaluations, which can lead to more accurate and reliable rankings of alternatives.

The proposed method can be extended to handle MADM problems with many al-
ternatives and attributes. However, its scalability may be limited due to the increasing
computational complexity as the number of alternatives and attributes increases. In the case
of large-scale problems, parallel computing techniques can be used to reduce the computa-
tional time. Further research can also be conducted to develop more efficient algorithms
to improve the scalability of the proposed method. To evaluate the effectiveness of the
proposed method, we will conduct several experiments on a dataset of real-world problems
in future research. We expect that the results will demonstrate that the proposed method
outperforms several existing ranking methods in terms of accuracy and consistency.
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