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Abstract: Vulnerability refers to the ability of a network to continue functioning when part of the
network is either naturally damaged or targeted for attack. In this paper, the rupture degree of graphs
is employed to measure the vulnerability of uniform linear hypergraphs. First, we discuss the bounds
of the rupture degrees of k-uniform linear hypergraphs. Then, we give a recursive algorithm for
computing the rupture degree of k-uniform hypertrees.
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1. Introduction

Many complex structures resembling a network in real life are modeled as hyper-
graphs, which is a generalization of graphs, see [1–3].

Symmetry is a significant feature in hypergraph theory, especially in uniform hyper-
graph theory. Recent research on the open support of hypergraphs [4], the symmetric
Lagrangian function of linear three-uniform hypergraphs [5], the embeddability of hyper-
trees and unicyclic hypergraphs [6], and the Laplacian energy of r-uniform hypergraphs [7]
have been extensively studied. These results of hypergraphs are deeply dependent on the
symmetric structure.

For a hypergraph H = (V, E), V = {v1, v2, · · · , vn} is a set of elements called vertices,
and E = {e1, e2, · · · , em} is a set of nonempty subsets of V called edges. A hypergraph
with only one vertex is called a trivial hypergraph. If |ei| = k for i = 1, 2, · · · , m, then H is
called a k-uniform hypergraph. Clearly, ordinary graphs are referred to as two-uniform
hypergraphs. A vertex vi ∈ V is said to be incident to an edge ej ∈ E if vi ∈ ej. Two
vertices are said to be adjacent if they are contained in one edge, and two edges are said
to be adjacent if their intersection is not empty. For a vertex vi ∈ V, its degree d(vi) is
defined as d(vi) = |{ej : vi ∈ ej ∈ E}|. An edge ej ∈ E is called a pendant edge of a
k-uniform hypergraph if ej contains exactly k − 1 vertices of degree one. Otherwise, it
is called a nonpendant edge. A hypergraph H

′
= (V

′
, E
′
) is called a sub-hypergraph of

H = (V, E), denoted as H
′ ⊆ H, if V

′ ⊆ V and E
′ ⊆ E. For X ⊆ V, we use H[X] to denote

the hypergraph induced by X, where V(H[X]) = X and E(H[X]) = {e ∈ E(H) : e ⊆ X}.
H−X is the hypergraph induced by V(H) \X. For A ⊆ E, we use H− A to denote the sub-
hypergraph of H which is obtained by deleting all edges in A and keeping vertices. Given
a hypergraph H, a walk W in H is a finite alternating sequence v1e1v2 · · · eqvq+1 of vertices
and edges of H such that: vi ∈ V(H) for i = 1, 2, · · · , q + 1; ei ∈ E(H) for i = 1, 2, · · · , q;
and vi, vi+1 ∈ ei for i = 1, 2, · · · , q. If q > 1 and vq+1 = v1, then W is called a circuit. A walk
of H is called a path if no vertices and edges are repeated. A circuit W is called a cycle
if no vertices and edges are repeated except v1 = vq+1. A hypergraph H is connected if
for any pair of vertices u, v ∈ V(H), there is a path connecting u and v, otherwise H is
disconnected. A component of hypergraph H is a maximal connected sub-hypergraph of H.
A subset X ⊆ V(H) is called a cut set of H if H − X is disconnected. A hypergraph H is a
hypertree if H is connected and acyclic. A k-uniform hypergraph H is call a k-uniform linear
hypergraph if every two edges have at most one common vertex in H. Clearly, a k-uniform
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hypertree is a k-uniform linear hypergraph. Let G = (V, E) be an ordinary graph and
k(≥ 3) be an integer. For any edge e = {ve,1, ve,k} ∈ E(G), by adding k− 2 new vertices
ve,2, ve,3, · · · , ve,k−1 into edge e, we obtain a hypergraph in which each edge possesses k
vertices, which is called a k-uniform hypergraph that underlies graph G (k-power of graph
G) and denoted by Gk = (Vk, Ek). Clearly, Vk = V ∪ (∪e∈E{ve,2, ve,3, · · · , ve,k−1}) and edge
set Ek = {e ∪ {ve,2, ve,3, · · · , ve,k−1} : e ∈ E}. Clearly, Gk is a k-uniform linear hypergraph.

In real life, we are becoming more and more dependent on networks, which makes
it easy for us to fall into a crisis caused by a vulnerability of the network. For example,
assume we have ten electronic components as vertices. If several electronic components
work together to form an electronic module, then this electronic module is considered
as a hyperedge with these electronic components as vertices. Based on their structural
relationships, an integrated module network has been formed. The integrated module
network can be seen as a hypergraph H = (V, E) with vertex set V and hyperedge set
E. Let V = {v1, v2, · · · , v10} be a set of electronic components, E = {e1, e2, · · · , e5} be
a set of electronic modules; see Figure 1. Obviously, if one of electronic components
vi ∈ V is damaged, the electronic modules which contain vi ∈ V would be damaged and
thus affect the overall function of the whole integrated module network H. In addition,
we also find that if there are different electronic components or different numbers of
electronic components damaged, the damage to network H is different. For example,
if only one electronic component (vertex) v1 is damaged, it will cause damage to electronic
module (hyperedge) e1, but the other electronic modules ei (i = 2, 3, 4, 5) remain normal.
If electronic component (vertex) v3 is damaged, then electronic modules (hyperedges) e1
and e2 are damaged and electronic modules ej (j = 3, 4, 5) are normal. In order to make
all the electronic modules ei (i = 1, 2, · · · , 5) damaged, it is easiest to understand that
all the electronic components vj (j = 1, 2, · · · , 10) are damaged. In fact, for network H,
as long as the electronic components v1, v7, and v10 are damaged, then all the electronic
modules ei (i = 1, 2 · · · , 5) are damaged. That is, the whole network H is completely
paralyzed in this case. Therefore, how and at which cost can one restructure the network
such that it becomes more robust against malicious attacks? For this purpose, many
network vulnerability parameters have been proposed and studied, such as toughness [8],
integrity [9], tenacity [10–12], scattering number [13], rupture degree, etc. These parameters
are composed of some or all of the following three quantities: the number of elements that
are not functioning, the number of remaining connected subnetworks, and the size of the
largest remaining group within which mutual communication can still occur. Indeed, the
above quantities play a key role in the robustness of networks. Although a large number of
significant research works have been carried out on these parameters, all of them focus on
the networks modeled by ordinary graphs, and there is still a gap in the research on the
vulnerability of hypernetworks.
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Figure 1. The integrated module network H.

The concept of the rupture degree of a graph was introduced in [14], which has been
well used to measure the vulnerability of networks (see [15–19]). In this paper, we employ
this parameter to measure the vulnerability of hypergraph.
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Let H = (V, E) be a connected hypergraph, the rupture degree of hypergraph H is
defined as

r(H) = max{ω(H − X)− |X| − τ(H − X) : X ⊂ V(H), ω(H − X) > 1},

where X ⊂ V(H) is a cut set of H, and ω(H − X) and τ(H − X) denote the number of
components and the order of the largest component in H − X, respectively. The score of X
is defined as sc(X) = ω(H − X)− |X| − τ(H − X). A set X ⊂ V(H) is called an r-set of H
if sc(X) = r(H).

By the definition of the rupture degree, we focus on a graph G and its four-uniform
hypergraph G4, which is obtained by adding two vertices to each edge of G. A example
is shown in Figure 2. Obviously, {v} is an r-set of G, but not an r-set of G4, which has an
r-set that is {u1, u2, u3, u4}. This means that it is interesting and meaningful to discuss the
vulnerability by determining the rupture degree of a hypergraph.

In this paper, we first give the bounds of the rupture degree of k-uniform linear
hypergraph Gk that underlies graph G in Section 2. In Section 3, we discuss the problem
for computing the rupture degree of k-uniform hypertree H. In Section 4, we propose a
recursive algorithm for computing the r-set of k-uniform hypertree H.
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Figure 2. Graph G and 4-uniform hypergraph G4 that underlies graph G.

Throughout this paper, by bxc we denote the largest integer not larger than x and by
dxe, the smallest integer not smaller than x. Any undefined terminology and notations can
be found in [20,21].

2. The Rupture Degree of k-Uniform Linear Hypergraphs

In this section, we bound the rupture degree of k-uniform linear hypergraph Gk that
underlies graph G with n vertices and m edges.

Lemma 1. Let X be an r-set of k-uniform linear hypergraph Gk that underlies a connected graph
G. Then, τ(Gk − X) = 1.

Proof. Let X be an r-set of Gk, we show that τ(Gk − X) = 1. If not, by the structure of
Gk, then τ(Gk − X) ≥ k. Suppose C1, C2, · · · , Cp are components of Gk − X such that
|Ci| = τ(Gk − X) ≥ k. Now, let vi ∈ Ci and X∗ = X ∪ {vi} for 1 ≤ i ≤ p. Clearly,
ω(Gk − X∗) ≥ ω(Gk − X) + p(k− 2) and τ(Gk − X∗) ≤ τ(Gk − X)− (k− 1). Consider
k ≥ 3 and p ≥ 1; then,

Sc(X∗)− Sc(X)

= ω(Tk − X∗)− τ(Gk − X∗)− |X∗| − [ω(Tk − X)− τ(Gk − X)− |X|]
≥ p(k− 2)− p + (k− 1) = p(k− 3) + (k− 1) > 0.

This contradicts the choice of X. Thus, τ(Gk − X) = 1.
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Given a graph G = (V, E), an independent set of G is a subset of vertices which
contains no pair of neighbors. The independence number α(G) of graph G is the size of the
largest independent set in G. A set of vertices S ⊆ V is a vertex cover of G if every edge
has at least one vertex in S. The vertex cover number of G is the minimum cardinality of a
vertex cover set of G, denote by β(G).

Lemma 2. Let X be an r-set of k-uniform linear hypergraph Gk that underlies connected graph G.
Then, |X| = β(G).

Proof. Let X be an r-set of k-uniform linear hypergraph Gk that underlies a connected
graph G. By Lemma 1, we obtain τ(Gk − X) = 1. This means X is a vertex cover set
of graph G, and thus |X| ≥ β(G). Vice versa, if X is a vertex cover set of graph G, then
each edge of G has at least one end vertex belonging to X. Thus, τ(Gk − X) = 1. By the
definition of β(G), consider β(G) = |X|. It follows that X is an r-set of Gk.

By Lemmas 1 and 2, considering |V(Gk)| = m(k − 2) + n, we directly obtain the
rupture degree of Gk in terms of the vertex cover number β(G) of G.

Theorem 1. Let Gk be a k-uniform linear hypergraph that underlies connected graph G with n
vertices and m edges. Then,

r(Gk) = m(k− 2) + n− 2β(G)− 1.

Unfortunately, the problem of computing the minimum vertex cover (MVC) is NPC [22].
In [23,24], the authors gave some exact algorithms for the MVC. However, all of them took
an exponential time and so were not suited for practical use in large graphs. Therefore, it is
interesting to discuss the bound of the r(Gk) of k-uniform linear hypergraph Gk.

In [25], Harant bounded the independence number α(G) of G with n vertices and
m edges.

Proposition 1. Let G be a connected graph on n vertices with m edges [25]. Then,

(2m + n + 1)−
√
(2m + n + 1)2 − 4n2

2
≤ α(G) ≤ 1

2
+

√
1
4
+ n(n− 1)− 2m.

Combine the famous formula α(G) + β(G) = n for a connected graph G with order n,
we obtain the following corollary.

Corollary 1. Let G be a connected graph on n vertices with m edges. Then,

n− 1
2
−

√
1
4
+ n(n− 1)− 2m ≤ β(G) ≤

√
(2m + n + 1)2 − 4n2 − 2m + n− 1

2
.

By Theorem 1 and Corollary 1, we directly give a bound for the rupture degree of Gk

as follows.

Theorem 2. Let Gk be a k-uniform linear hypergraph that underlies connected graph G with n
vertices and m edges. Then,

mk−
√
(2m + n + 1)2 − 4n2 ≤ r(Gk) ≤ m(k− 2)− n + 2

√
1
4
+ n(n− 1)− 2m.

Remark 1. The bounds in Theorem 2 are the best possible ones. The upper bound can meet at
k-uniform linear hypergraph Kk

1,n−1 that underlies star graph K1,n−1. The lower bound can meet at
k-uniform linear hypergraph Kk

n that underlies complete graph Kn.
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Clearly, if we let m = n − 1 in Theorem 2, then we can obtain the bounds for the
rupture degree of k-uniform hypertree Tk.

Corollary 2. Let Tk be a k-uniform hypertree that underlies a tree T with order n. Then,

(n− 1)k−
√
(5n− 1)(n− 1) ≤ r(Tk) ≤ (n− 1)(k− 2) + n− 1.

Remark 2. The bounds in Corollary 2 are also best possible. The upper bound can meet at k-uniform
linear hypergraph Kk

1,n−1 that underlies star graph K1,n−1. The lower bound can meet at k-uniform
linear hypergraph Kk

2 that underlies K2.

Notice that n − 1 ≤ m ≤ n(n−1)
2 for any connected graph G, we also obtain the

following result.

Corollary 3. Let Gk be a k-uniform linear hypergraph that underlies connected graph G with order
n. Then,

(n− 1)(k− 2)− (n− 1)2 ≤ r(Gk) ≤ n(n− 1)
2

(k− 2) + n− 3.

3. The Rupture Degree of k-Uniform Hypertrees

In this section, we discuss the rupture degree of k-uniform hypertree H. For k-uniform
hypertree H, if X is an r-set of H, then we easily obtain the same result as in Lemma 1.

Lemma 3. Let H = (V, E) be a k-uniform hypertree. If X is an r-set of H, then τ(H − X) = 1.

Lemma 4. Let H = (V, E) be a k-uniform hypertree with n vertices and m edges. Then,
n = m(k− 1) + 1.

Proof. We show how to proceed by induction on m. It is clear that the conclusion holds
for m = 0, 1. Assume the conclusion holds for m ≤ p. Now, we consider the case for
m = p + 1; suppose e ∈ E(H) and H1, H2, · · · , Hk are components of H − e. By the
induction hypothesis, for every component Hi = (Vi, Ei) and ni = |Vi|, mi = |Ei| for
1 ≤ i ≤ k, i · e·, Vi = |Ei|(k− 1) + 1. Thus, we have

|V| =
k

∑
i=1
|Vi| =

k

∑
i=1

(|Ei|(k− 1) + 1)

= m1(k− 1) + 1 + m2(k− 1) + 1 + · · ·+ mk(k− 1) + 1

= (m− 1)(k− 1) + k = m(k− 1) + 1.

The proof is completed.

Lemma 5. Let H = (V, E) be a hypertree with |E| ≥ 2 [26]. Then, H has at least two pen-
dant edges.

Theorem 3. Let H = (V, E) be a k-uniform hypertree and X be the r-set of H. Then, r(H) =
n− 2|X| − 1.

Proof. Suppose X is an r-set of k-uniform hypertree H; by Lemma 3, we have
τ(H − X) = 1. Denote |E| = m and |V| = n; by the structure properties of a k-uniform
hypertree, we have

ω(H − X) = mk− ∑
v∈V\X

(d(v)− 1)− ∑
e∈E

(|e ∩ X|).
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Thus,

r(H) = mk− ∑
v∈V\X

(d(v)− 1)− ∑
e∈E

(|e ∩ X|)− |X| − 1

= mk− [mk− ∑
v∈X

d(v)− n + |X|]− ∑
e∈E

(|e ∩ X|)− |X| − 1

= ∑
v∈X

d(v) + n− ∑
e∈E

(|e ∩ X|)− 2|X| − 1.

Note that ∑v∈X d(v) = ∑e∈E(|e ∩ X|), and we obtain r(H) = n− 2|X| − 1.

Lemma 6. Let H = (V, E) be a k-uniform hypertree with |V| = n, |E| = m, and X be the r-set of
H. Then,

1 ≤ |X| ≤ m− dm− 1
k
e.

Proof. Let X be an r-set of k-uniform hypertree H. It is easy to know that |X| ≥ 1.
On the other hand, by Theorem 3, we know that r(H) = ω(H − X)− |X| − τ(H − X) =
n − 2|X| − 1. In order to let the value of |X| be as large as possible, it suffices that the
number of components of H − X increases at most k− 1 when |X| adds one. This means
|X|(k− 1) + |X| ≤ n. Consider n = m(k− 1) + 1; we have

m(k− 1) + 1 = n ≥ |X|k.

Thus,

|X| ≤ m− m− 1
k

.

Because |X| is a positive integer,

|X| ≤ m− dm− 1
k
e.

The proof is completed.

Base on Theorem 3 and Lemma 6, we give the bounds of the rupture degree of
k-uniform hypertree H as follows.

Theorem 4. Let H = (V, E) be a k-uniform hypertree with |V| = n, |E| = m. Then,

m(k− 3) + 2dm− 1
k
e ≤ r(H) ≤ m(k− 1)− 2.

Remark 3. The bounds in Theorem 3 are best possible. The upper bound can meet at k-uniform
linear hypertree Kk

1,n−1 that underlies star graph K1,n−1. The lower bound can meet at k-uniform
linear hypertree H, which is shown in Figure 3.

Figure 3. A k-uniform hypertree with a minimum rupture degree.
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4. A Recursive Algorithm for Computing the r-Set of k-Uniform Hypertrees

Lemma 3 and Theorem 3 show that we can determine the rupture degree of k-uniform
hypertree H by finding minimal cut set X to let τ(H − X) = 1. Here, we provide a method
to obtain such vertex cut set X.

Let H be a k-uniform hypertree and e = {v1, v2, · · · , vk} be an arbitrary edge of H.
By π(e) = {d1, d2, . . . , dk}, we denote the nondecreasing degree sequence of edge e with
d1 ≤ d2 ≤ · · · ≤ dk. For convenience, {1, 1, . . . , 1︸ ︷︷ ︸

k−1

, d} is often simplified as {1(k−1), d}

for d ≥ 2.
A contraction of an edge e = {v1, v2, · · · , vk} is an operation that identifies that vertices

v1, v2, · · · , vk−1 are merged into the vertex vk and the edges incident to these vertices are
transformed into the edges incident to the vertex vk in H. The resulting graph is denoted
as H · e. Clearly, H · e is also a k-uniform hypertree. Similarly, by H · e1 · e2 we denote the
graph obtained by contracting edges e1, e2 in H.

Lemma 7. Let e1, e2, · · · , et−1 be t − 1 pendant edges of k-uniform hypertree H such that
π(ei) = {1(k−1), t} for i = 1, 2, · · · , t− 1. Let e be an edge with π(e) = {1(k−2), t, d} such that
e1 ∩ e2 ∩ · · · ∩ et−1 ∩ e = v with d(v) = t. Let t, d be integer number great than 1. If X and X

′
are

an r-set of k-uniform hypertree H and H · e · e1 · e2·, · · · , ·et−1, respectively, then X = X
′ ∪ {v}.

Proof. Let X
′

be an r-set of H · e · e1 · e2·, · · · , ·et−1 and e1 ∩ e2 ∩ · · · ∩ et−1 ∩ e = v. It follows
that X

′ ∪ {v} is an r-set of H. In fact, note that H · e · e1 · e2·, · · · , ·et−1 is also a k-uniform
hypertree. Thus, by Lemma 1, we know that τ(H · e · e1 · e2·, · · · , ·et−1 − X

′
) = 1. It is not

difficult to check that X
′ ∪ {v} is an r-set of H. Thus, we have X = X

′ ∪ {v}.

Lemma 8. Let e1, e2, · · · , et−1 be t − 1 pendant edges of k-uniform hypertree H such that
π(ei) = {1(k−1), t} for i = 1, 2, · · · , t− 1. Let e be an edge with π(e) = {t, d1, d2, . . . , dk−1}
such that e1 ∩ e2 ∩ · · · ∩ et−1 ∩ e = v with d(v) = t ≥ 2. Let t, dj be an integer number for
j = 1, 2, · · · , k− 1 and at least two of d1, d2, . . . , dk−1 are great than one. If X and X

′′
are r-sets of

k-uniform hypertree H and H · e1 · e2·, · · · , ·et−1, respectively, then X = X
′′ ∪ {v}.

Proof. Let X
′′

be an r-set of H · e1 · e2·, · · · , ·et−1. Similar to Lemma 7, we know that
X
′′ ∪ {v} is an r-set of H. Thus, we have X = X

′′ ∪ {v}.

Based on Lemmas 7 and 8, we provide a recursive algorithm for computing the
cardinality |X| of an r-set of k-uniform hypertree H. Let di(≥ 2) be integer numbers for
i = 1, 2, 3.

Recursive algorithm:
Step 1: Set |X| = 0.
Step 2: If H is a trivial hyperraph, go to step 10. Otherwise, go to step 3.
Step 3: For k-uniform hypertree H = (V, E) and set

P = {e : e ∈ E, π(e) = (1(k−1), d1)};

Q = {e : e ∈ E, π(e) = (1(k−2), d2, d3)};
U = {e : e ∈ E \ (P ∪Q)}.

Step 4: If P ∪Q = ∅, then let |X| ← |X|+ 1, go to step 10. Otherwise, go to step 5.
Step 5: If Q 6= ∅, go to step 6. Otherwise, go to step 8.
Step 6: For each edge ei ∈ Q, if there exist ej ∈ P such that ei ∩ ej = vij and

d(vij) = |{e : vij ∈ e, e ∈ P}|+ 1, go to step 7. Otherwise, go to step 8.
Step 7: Let |X| ← |X|+ |{vij : vij ∈ e, e ∈ Q}| and set H ← H · N[ei], where N[ei]

denote the edge set of all edges which are incident to vertex vij in H; go to step 2.
Step 8: If U 6= ∅, go to step 9. Otherwise, let |X| ← |X|+ 1, and go to step 10.
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Step 9: For each edge es ∈ U, if there exists et ∈ P such that es ∩ et = vst and
d(vst) = |{e : vst ∈ e, e ∈ P}| + 1, then let |X| ← |X| + |{vst : vst ∈ e, e ∈ U}| and
H ← H · N[es], where N[es] denote the edge set of all edges which incident to vertex vst in
H; go to step 2.

Step 10: Output the value of |X|.

Example 1. Let T4 be a four-uniform hypertree with |E| = 25 that underlies tree T. Using
the above algorithm, we get the cardinality |X| of the r-set X of T4. The details of the algorithm
execution are shown in Figure 4.

1. X ← {u1, u2, u6, u9, u10};
2. X ← {u1, u2, u6, u9, u10} ∪ {u3, u8};
3. X ← {u1, u2, u6, u9, u10, u3, u8} ∪ {u4, u7};
4. X ← {u1, u2, u6, u9, u10, u3, u8, u4, u7} ∪ {u5}.

Thus, X = {u1, u2, u3, u4, u5, u6, u7, u8, u9, u10}. By Lemma 4 and Theorem 3, we obtain
that the rupture degree of four-uniform hypertree T4 is r(T4) = 55.
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Figure 4. Computing the rupture degree of 4-uniform hypertree T4 by our recursive algorithm.

Example 2. Let H be a four-uniform hypertree with |E| = 20. Using the above algorithm, we
obtain that the cardinality |X| of the r-set X of H. The details of the algorithm execution are shown
in Figure 5.

(1) X ← {1, 9};
(2) X ← {1, 9} ∪ {2, 3, 4, 6, 7, 10, 11};
(3) X ← {1, 9, 2, 3, 4, 6, 7, 10, 11} ∪ {5, 8}.

Thus, we have X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}. By Lemma 4 and Theorem 3, we obtain that
the rupture degree of four-uniform hypertree H is r(H) = 38.

1 2 3 4 5

6

7

9

8

1011

2 3 4 5

6

7

8 1011

5 8

(1)

(2) (3)

Figure 5. Rupture degree of 4-uniform hypertree H obtained by our recursive algorithm.
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5. Conclusions

The rupture degree is an important parameter measuring the vulnerability of a net-
work. However, there are few results on the vulnerability of hypernetworks. In this paper,
the parameter rupture degree was used to measure the vulnerability of uniform linear
hypergraphs. In fact, many parameters of vulnerability remain unexplored for hyper-
graphs, and they can be explored in nonuniform or nonlinear hypergraphs. Our work may
stimulate more research in this field.
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