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Abstract: This study deals with the numerical solution of a class of linear systems of second-order
boundary value problems (BVPs) using a new symmetric cubic B-spline method (NCBM). This
is a typical cubic B-spline collocation method powered by new approximations for second-order
derivatives. The flexibility and high order precision of B-spline functions allow them to approximate
the answers. These functions have a symmetrical property. The new second-order approximation
plays an important role in producing more accurate results up to a fifth-order accuracy. To verify the
proposed method’s accuracy, it is tested on three linear systems of ordinary differential equations
with multiple step sizes. The numerical findings by the present method are quite similar to the
exact solutions available in the literature. We discovered that when the step size decreased, the
computational errors decreased, resulting in better precision. In addition, details of maximum errors
are investigated. Moreover, simple implementation and straightforward computations are the main
advantages of the offered method. This method yields improved results, even if it does not require
using free parameters. Thus, it can be concluded that the offered scheme is reliable and efficient.

Keywords: cubic B-spline; two-point boundary value problems; ordinary differential equation; linear
system; error analysis

1. Introduction

Most problems arising from scientific and engineering applications, especially applica-
tions in geodesics, are boundary value problems (BVPs), which are much more difficult to
solve than initial value problems (IVPs). Since it is generally difficult to find closed-form so-
lutions for BVPs, many researchers have attempted to develop methods to find approximate
or numerical solutions for BVPs. Well-known methods involve the shooting method [1],
finite difference methods [2–4] and spectral methods [5–7]. In some real-life situations,
the shooting method produces numerically sensitive systems of algebraic equations, which
must be solved using other numerical methods [8].
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In the present paper, we consider the following system of linear two-point second-
order BVPs:

w′′(x) + p1(x)w′(x) + p2(x)w(x) + p3(x)z′′(x) + p4(x)z′(x) + p5(x)z(x) = f1(x),

z′′(x) + q1(x)z′(x) + q2(x)z(x) + q3(x)w′′(x) + q4(x)w′(x) + q5(x)w(x) = f2(x),
(1)

with boundary conditions

w(0) = w(1) = z(0) = z(1) = 0, (2)

where 0 ≤ x ≤ 1. In particular, f1(x) and f2(x) are given functions, and pi and qi with
i = 1, 2, 3, 4, 5 are continuous and sufficiently smooth functions on the interval I = [0, 1].
Theorems that systematically list the existence and uniqueness of the problem solutions of
(1) and (2) have been studied in [9]. In recent times, applications of linear and non-linear
systems of two-point boundary value problems can be found in economics, biology, physics
and mathematics. For instance, Nikooeinejad et al. [10] obtained the approximate solution
of two-point BVPS for four applications of differential games in economics and management
science using a combined numerical algorithm. In biology, the Shortley–Weller scheme
has been implemented for a two-point boundary value problem. This numerical scheme
was later applied to investigate tumor growth problems in heterogeneous microenviron-
ments [11]. On the other hand, the application of two-point boundary value problems has
been addressed in the problem of calculating rocket trajectories in the atmosphere [12].

Several researchers have investigated the linear and non-linear systems of second-
order boundary value problems and produced various efficient and accurate numerical
methods. These methods include the Laplace homotopy analysis [13,14], continuous ge-
netic algorithm method [15], sinc collocation method [16,17], He’s homotopy perturbation
method [18], reproducing kernel space method [19], multistage optimal homotopy asymp-
totic method [20], variational iteration method (VIM) [21] and Chebyshev finite difference
method [22].

Researchers have been interested in the families of B-splines for their potential to
approximate the solution of BVPs accurately and efficiently. B-spline methods have several
attractive features and flexibility that make them useful in numerical computation to solve
BVPs [23]. For example, the B-spline is the smoothest interpolation function compared to
other piecewise polynomial interpolation functions [24]. Moreover, B-splines have small
local support properties. In recent years, the cubic B-spline collocation method captured
the attention of some researchers to solve partial differential equations [25], fractional
differential equations [26], fractional partial differential equations [27], etc.

This study focuses on finding the solutions of two-point BVPs using the cubic B-spline
method. Bickley was the first to explore cubic splines to approximate the solutions of
two-point BVPs [28]. Later, Albasiny and Hoskins enhanced Bickley’s work by solving
the two-point BVPs using a tri-diagonal matrix of coefficients [29]. Since then, several re-
searchers have earned more interest in employing spline functions for solving BVPs [30–33].
Caglar et al. in [34] evaluated the two-point BVPs solutions using the cubic B-spline basis
function. Hamid et al. [35,36] considered the ECBM and cubic trigonometric B-spline
method for the solution of linear two-point BVPs. Apart from that, Heilat and Ismail [37]
used a hybrid cubic B-spline method to evaluate the solutions of non-linear two-point
boundary value problems. Recently, a hybrid cubic B-spline method with an optimized
parameter was used by Heilat et al. [38] to solve linear two-point BVPs.

The linear system of second-order BVPs has gained attention from Caglar and
Caglar [39] and Heilat et al. [40]. They represented the cubic B-spline method (CBM)
and ECBM, respectively. The ECBM involved two parameters in boosting the flexibility of
the spline curve. Based on the investigation, the ECBM is the best compared to the CBM,
He’s homotopy perturbation method [18], Laplace homotopy analysis method [13], repro-
ducing kernel [19] and sinc-collocation method [17]. In recent years, Zhang and Niu [41]
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found the approximate solution of second-order BVPs using a Lobatto-reproducing kernel
and declared the method has high precision accuracy in different spaces.

The new symmetric cubic B-spline method (NCBM) was first studied by Lang and Xu
in [42] to solve non-linear second-order BVPs with two dependent variables. The NCBM
is a typical CBM, equipped with a new second-order derivative approximation. Then,
Iqbal et al. [43] explored the NCBM for solving several third-order Emden–Flower type
equations. A year after that, Wasim et al. [44] extended the NCBM and proposed the new
extended cubic B-spline method (NECBM) for solving the class of second-order singular
BVPs. Moreover, the nonlinear third-order Korteweg–de Vries equations were solved by
Abbas et al. [45] using the NCBM to approximate the solutions. Later, Nazir et al. [46]
improved the method to a new quintic B-spline approximation technique as a method to
approximate the numerical solution of the Boussinesq equation. Recently, Nazir et al. [47]
implemented the NCBM for the numerical solutions of coupled viscous Burgers equations.

Thus, motivated by all these works, we aim to figure out whether the proposed
method, the NCBM, can perform much better in solving the linear system of two-point
second-order BVPs. The rest of this paper is as follows. In Section 2, the typical definition of
cubic B-spline basis functions is described. Then, Section 3 presents the descriptions of the
numerical method. The convergence analysis of the method has been proven in Section 4.
The numerical results and their discussion are summarized in Section 5. Finally, the paper
ends in Section 6 with a brief conclusion.

2. Preliminary Concepts

This section describes the classical cubic B-spline approximation and the new second-
order approximation invented by Lang and Xu [42]. Let the finite interval [a, b], where
a = x0 < . . . < xN = b is divided into uniform partitions with a mesh point
xi = x0 + ih, i = 0(1)N using a step size h = b−a

N , N ∈ Z+. The typical cubic B-spline basis
function is defined as [34].

Bi(x) =



(x− xi−2)
3, x ∈ [xi−2, xi−1],

h3 + 3h2(x− xi−1) + 3h(x− xi−1)
2 − 3(x− xi−1)

3, x ∈ [xi−1, xi],
h3 + 3h2(xi+1 − x) + 3h(xi+1 − x)2 − 3(xi+1 − x)3, x ∈ [xi, xi+1],
(xi+2 − x)3, x ∈ [xi+1, xi+2],
0, otherwise,

(3)

where i = −1(1)N + 1. The cubic B-spline holds the geometric invariability, convex hull
property and symmetry [48]. For a sufficiently smooth function w(x) and z(x), there exist
a unique third-degree spline W(x) and Z(x) that satisfies the prescribed interpolating
conditions given by

W(xi) = w(xi), i = 0, 1, 2, . . . , N,

W ′(a) = w′(a), W ′(b) = w′(b),

W ′′(a) = w′′(a), W ′′(b) = w′′(b),

and

Z(xi) = z(xi), i = 0, 1, 2, . . . , N,

Z′(a) = z′(a), Z′(b) = z′(b),

Z′′(a) = z′′(a), Z′′(b) = z′′(b),

in which

W(x) =
N+1

∑
i=−1

σiBi(x), (4)
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Z(x) =
N+1

∑
i=−1

ηiBi(x), (5)

where σi and ηi are unknown real coefficients to be computed. The values of Bi(x) and the
first and second derivatives B′i(x) and B′′i (x) at mesh point xi are tabulated in Table 1. From
(4), (5) and Table 1, the cubic B-spline approximations W(xj), W ′(xj), Z(xj) and Z′(xj) can
be simplified as follows:

Wj =
j+1

∑
i=j−1

σiBi(x) =
1
6
(σj−i + 4σj + σj+1), (6)

sj(x) =
j+1

∑
i=j−1

σiB′i(x) =
1

2h
(−σj−i + σj+1), (7)

Zj(x) =
j+1

∑
i=j−1

ηiBi(x) =
1
6
(ηj−i + 4ηj + ηj+1), (8)

rj(x) =
j+1

∑
i=j−1

ηiB′i(x) =
1

2h
(−ηj−i + ηj+1). (9)

Table 1. Coefficient of Bi(x), B′i(x) and B′′i (x) at the nodes.

xi−2 xi−1 xi xi+1 xi+2

Bi(x) 0 1 4 1 0
B′i(x) 0 −1/2h 0 1/2h 0
B′′i (x) 0 1/h2 −2/h2 1/h2 0

The second derivatives, W ′′(xj) and Z′′(xj) can be simplified as Sj and Rj, respectively.
Subsequently, the new approximation for second-order derivatives can be represented as
follows [42,49]:

Sj =
1

12h2


14σj−1 − 33σj + 28σj+1 − 14σj+2 + 6σj+3 − σj+4, for j = 0,
σj−2 + 8σj−1 − 18σj + 8σj+1 + σj+2, for j = 1, . . . , N − 1,
−σn−4 + 6σn−3 − 14σn−2 + 28σn−1 − 33σn + 14σn+1, for j = N,

(10)

and

Rj =
1

12h2


14ηj−1 − 33ηj + 28ηj+1 − 14ηj+2 + 6ηj+3 − ηj+4, for j = 0,
ηj−2 + 8ηj−1 − 18ηj + 8ηj+1 + ηj+2, for j = 1, . . . , N − 1,
−ηn−4 + 6ηn−3 − 14ηn−2 + 28ηn−1 − 33ηn + 14ηn+1, for j = N.

(11)

We note that this NCBM has up to a fifth-order accuracy [49].

3. Implementation of the Method

In this section, we extended Caglar’s work [39] by solving the linear system two-point
second-order BVP and adopted the new second-order approximation.

Discretizing (1) at the knot xj gives the following expression:

Sk+1(xj) + p1(xj)sk+1(xj) + p2(xj)Wk+1(xj) + p3(xj)Rk+1(xj) + p4(xj)rk+1(xj)

+ p5(xj)Zk+1(xj) = f1k(xj),
(12)
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Rk+1(xj) + q1(xj)rk+1(xj) + q2(xj)Zk+1(xj) + q3(xj)Sk+1(xj) + q4(xj)sk+1(xj)

+ q5(xj)Wk+1(xj) = f2k(xj),
(13)

where k = 0, 1, 2, . . .. By substituting (6)–(11) into (12) for j = 0, 1, 2, . . ., N− 1, N, we obtain
the following equation:

For j = 0,(
14σ−1 − 33σ0 + 28σ1 − 14σ2 + 6σ3 − σ4

12h2

)
+ p1(x0)

(
−σ−1 + σ1

2h

)
+ p2(x0)

(
σ−1 + 4σ0 + σ1

6

)
+ p3(x0)

(
14η−1 − 33η0 + 28η1 − 14η2 + 6η3 − η4

12h2

)
+ p4(x0)

(
−η−1 + η1

2h

)
+ p5(x0)

(
η−1 + 4η0 + η1

6

)
= fk1(x0).

(14)

For j = 1, 2, . . . , N − 1,(
σj−2 + 8σj−1 − 18σj + 8σj+1 + σj+2

12h2

)

+ p1(xj)

(−σj−1 + σj+1

2h

)
+ p2(xj)

(
σj−1 + 4σj + σj+1

6

)

+ p3(xj)

(
ηj−2 + 8ηj−1 − 18ηj + 8ηj+1 + ηj+2

12h2

)

+ p4(xj)

(−ηj−1 + ηj+1

2h

)
+ p5(xj)

(
ηj−1 + 4ηj + ηj+1

6

)
= fk1(xj).

(15)

For j = N,(
−σN−4 + 6σN−3 − 14σN−2 + 28σN−1 − 33σN + 14σN+1

12h2

)
+ p1(xN)

(
−σN−1 + σN+1

2h

)
+ p2(xN)

(
σN−1 + 4σN + σN+1

6

)
+ p4(xN)

(
−ηN−4 + 6ηN−3 − 14ηN−2 + 28ηN−1 − 33ηN + 14ηN+1

12h2

)
+ p4(xN)

(
−ηN−1 + ηN+1

2h

)
+ p5(xN)

(
ηN−1 + 4ηN + ηN+1

6

)
= fk1(xN).

(16)

By substituting (6)–(11) into (13) for j = 0, 1, 2, . . ., N − 1, N, we obtain the follow-
ing equation:

For j = 0,(
14η−1 − 33η0 + 28η1 − 14η2 + 6η3 − η4

12h2

)
+ q1(x0)

(
−η−1 + η1

2h

)
+ q2(x0)

(
η−1 + 4η0 + η1

6

)
+ q3(x0)

(
14σ−1 − 33σ0 + 28σ1 − 14σ2 + 6σ3 − σ4

12h2

)
+ q4(x0)

(
−σ−1 + σ1

2h

)
+ q5(x0)

(
σ−1 + 4σ0 + σ1

6

)
= fk1(x0).

(17)
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For j = 1, 2, . . . , N − 1,(
ηj−2 + 8ηj−1 − 18ηj + 8ηj+1 + ηj+2

12h2

)

+ q1(xj)

(−ηj−1 + ηj+1

2h

)
+ q2(xj)

(
ηj−1 + 4ηj + ηj+1

6

)

+ q3(xj)

(
σj−2 + 8σj−1 − 18σj + 8σj+1 + σj+2

12h2

)

+ q4(xj)

(−σj−1 + σj+1

2h

)
+ q5(xj)

(
σj−1 + 4σj + σj+1

6

)
= fk1(xj).

(18)

For j = N,(
−ηN−4 + 6ηN−3 − 14ηN−2 + 28ηN−1 − 33ηN + 14ηN+1

12h2

)
+ q1(xN)

(
−ηN−1 + ηN+1

2h

)
+ q2(xN)

(
ηN−1 + 4ηN + ηN+1

6

)
+ q3(xN)

(
−σN−4 + 6σN−3 − 14σN−2 + 28σN−1 − 33σN + 14σN+1

12h2

)
+ q4(xN)

(
−σN−1 + σN+1

2h

)
+ q5(xN)

(
σN−1 + 4σN + σN+1

6

)
= fk1(xN).

(19)

Consequently, we have 2N + 2 linear equations involving 2N + 6 unknowns. Thus,
we need four additional equations, which can be obtained from the boundary conditions
in (2) below:

σ−1 + 4σ0 + σ1 = 0,

σN−1 + 4σN + σN+1 = 0,

η−1 + 4η0 + η1 = 0,

ηN−1 + 4ηN + ηN+1 = 0.

Hence, the above system will have the (2N + 6)× (2N + 6) dimensional matrix form
that can be expressed as:

AX = B,

where matrix A is given by:

A =

A1 | A2
. . . . . . . . .
A4 | A3

,

X = [σ−1, σ0, σ1, . . . , σN−1, σN , σN+1, η−1, η0, η1, . . . , ηN−1, ηN , ηN+1]
T

and

B = [0, 12h2 f1(x0), 12h2 f1(x1), . . . , 12h2 f1(xN), 0, 0, 12h2 f2(x0), 12h2 f2(x1),

. . . , 12h2 f2(xN), 0)]T .

The four sub-matrices A1, A2, A3 and A4 are represented as follows:
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A1 =



1 4 1 0 0 0 · · · 0 0 0 0 0 0
ε1 ε2 ε3 ε4 ε5 ε6 · · · 0 0 0 0 0 0

α1,1 α2,1 α3,1 α4,1 α5,1 0 · · · 0 0 0 0 0 0
0 α1,2 α2,2 α3,2 α4,2 α5,2 · · · 0 0 0 0 0 0
...

...
...

...
...

...
. . .

...
...

...
...

...
...

0 0 0 0 0 0 · · · α1,N−2 α2,N−2 α3,N−2 α4,N−2 α5,N−2 0
0 0 0 0 0 0 · · · 0 α1,N−1 α2,N−1 α3,N−1 α4,N−1 α5,N−1
0 0 0 0 0 0 · · · φ1 φ2 φ3 φ4 φ5 φ6
0 0 0 0 0 0 · · · 0 0 0 1 4 1


,

A2 =



0 0 0 0 0 0 · · · 0 0 0 0 0 0
ε7 ε8 ε9 ε10 ε11 ε12 · · · 0 0 0 0 0 0

α6,1 α7,1 α8,1 α9,1 α10,1 0 · · · 0 0 0 0 0 0
0 α6,2 α7,2 α8,2 α9,2 α10,2 · · · 0 0 0 0 0 0
...

...
...

...
...

...
. . .

...
...

...
...

...
...

0 0 0 0 0 0 · · · α6,N−2 α7,N−2 α8,N−2 α9,N−2 α10,N−2 0
0 0 0 0 0 0 · · · 0 α6,N−1 α7,N−1 α8,N−1 α9,N−1 α10,N−1
0 0 0 0 0 0 · · · φ7 φ8 φ9 φ10 φ11 φ12
0 0 0 0 0 0 · · · 0 0 0 0 0 0


,

A3 =



1 4 1 0 0 0 · · · 0 0 0 0 0 0
β1 β2 β3 β4 β5 β6 · · · 0 0 0 0 0 0

γ1,1 γ2,1 γ3,1 γ4,1 γ5,1 0 · · · 0 0 0 0 0 0
0 γ1,2 γ2,2 γ3,2 γ4,2 γ5,2 · · · 0 0 0 0 0 0
...

...
...

...
...

...
. . .

...
...

...
...

...
...

0 0 0 0 0 0 · · · γ1,N−2 γ2,N−2 γ3,N−2 γ4,N−2 γ5,N−2 0
0 0 0 0 0 0 · · · 0 γ1,N−1 γ2,N−1 γ3,N−1 γ4,N−1 γ5,N−1
0 0 0 0 0 0 · · · δ1 δ2 δ3 δ4 δ5 δ6
0 0 0 0 0 0 · · · 0 0 0 1 4 1


,

and

A4 =



0 0 0 0 0 0 · · · 0 0 0 0 0 0
β7 β8 β9 β10 β11 β12 · · · 0 0 0 0 0 0

γ6,1 γ7,1 γ8,1 γ9,1 γ10,1 0 · · · 0 0 0 0 0 0
0 γ6,2 γ7,2 γ8,2 γ9,2 γ10,2 · · · 0 0 0 0 0 0
...

...
...

...
...

...
. . .

...
...

...
...

...
...

0 0 0 0 0 0 · · · γ6,N−2 γ7,N−2 γ8,N−2 γ9,N−2 γ10,N−2 0
0 0 0 0 0 0 · · · 0 γ6,N−1 γ7,N−1 γ8,N−1 γ9,N−1 γ10,N−1
0 0 0 0 0 0 · · · δ7 δ8 δ9 δ10 δ11 δ12
0 0 0 0 0 0 · · · 0 0 0 0 0 0


.
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For j = 0,

ε1 = 14− 6p1(x0)h + 2p2(x0)h2, ε7 = 14p3(x0)− 6p4(x0) + 2p5(x0)h2,

ε2 = −33 + 8p2(x0)h2, ε8 = −33p3(x0) + 8p5(x0)h2,

ε3 = 28 + 6p1(x0)h + 2p2(x0)h2, ε9 = 28p3(x0) + 6p4(x0)h + 2p5(x0)h2,

ε4 = −14, ε10 = −14p3(x0),

ε5 = 6, ε11 = 6p3(x0),

ε6 = −1, ε12 = −p3(x0),

β1 = 14− 6q1(x0)h + 2q2(x0)h2, β7 = 14q3(x0)− 6q4(x0)h + 2q5(x0)h2,

β2 = −33 + 8q2(x0)h2; β8 = −33q3(x0) + 8q5(x0)h2,

β3 = 28 + 6q1(x0)h + 2q2(x0)h2, β9 = 28q3(x0) + 6q4(x0)h + 2q5(x0)h2,

β4 = −14, β10 = −14q3(x0),

β5 = 6, β11 = 6q3(x0),

β6 = −1, β12 = −q3(x0).

For j = 1, 2, . . . , N − 1,

α1,j = 1, α6,j = p3(xj),

α2,j = 8− 6p1(xj)h + 2p2(xj)h2, α7,j = 8p3(xj)− 6p4(xj)h + 2p5(xj)h2,

α3,j = −18 + 8p2(xj)h2, α8,j = −18p3(xj) + 8p5(xj)h2,

α4,j = 8 + 6p1(xj)h + 2p2(xj)h2, α9,j = 8p3(xj) + 6p4(xj)h + 2p5(xj)h2,

α5,j = 1, α10,j = p3(xj),

γ1,j = 1, γ6,j = q3(xj),

γ2,j = 8− 6q1(xj)h + 2q2h2, γ7,j = 8q3(xj)− 6q4(xj)h + 2q5(xj)h2,

γ3,j = −18 + 8q2(xj)h2, γ8,j = −18q3(xj) + 8q5(xj)h2,

γ4,j = 8 + 6q(xj)h + 2q2(xj)h2, γ9,j = 8q3(xj) + 6q4(xj)h + 2q5(xj)h2,

γ5,j = 1, γ10,j = q3(xj).

For j = N,

φ1 = −1, φ7 = −p3(xN),

φ2 = 6, φ8 = 6p3(xN),

φ3 = −14, φ9 = −14p3(xN),

φ4 = 28− 6p1(xN)h + 2p2(xN)h2, φ10 = 28p3(xN)− 6p4(xN)h + 2p5(xN)h2,

φ5 = −33 + 8p2(xN)h2, φ11 = −33p3(xN) + 8p5(xN)h2,

φ6 = 14 + 6p1(xN)h + 2p2(xN)h2, φ12 = 14p3(xN)h + 6p4(xN)h + 2p5(xN)h2,
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δ1 = −1, δ7 = −q3(xN),

δ2 = 6, δ8 = 6q3(xN),

δ3 = −14, δ9 = −14q3(xN),

δ4 = 28− 6q1(xN)h + 2q2(xN)h2, δ10 = 28q3(xN)− 6q4(xN)h + 2q5(xN)h2,

δ5 = −33 + 8q2(xN)h2, δ11 = −33q3(xN) + 8q5(xN)h2,

δ6 = 14 + 6q1(xN)h + 2q2(xN)h2, δ12 = 14q3(xN) + 6q4(xN)h + 2q5(xN)h2.

Since the matrix A is a banded matrix, the system of linear equations is solved using a
generalization of the Thomas algorithm. This method has been proposed in [50]. Matlab
R2018a running on an Intel(R) CORE(TM) i7-1165G7 CPU 1.30 GHz processor, 8.00 GB
RAM, was used to execute the numerical computations.

4. Convergence Analysis

In this section, we will prove the order of convergence of our method.

Theorem 1. Let pi(x) ∈ C2[0, 1], where i = 1, 2, 3, 4, 5 are continuous and sufficiently smooth
functions. Then, let w̃ be the known exact solution of the boundary value problems (1), (2) and also
m̃ be the cubic B-spline approximation to w̃. Thus, the uniform error is stated by

‖w̃− m̃‖∞ ≤ φh2.

Proof. Let w̃ be the exact solution of the boundary value problems (1), (2) and m̃ be the
cubic B-spline approximation to w̃ given by:

w̃ = m̃ =
N+1

∑
i=−1

σ̃iBi(x)i (20)

where
σ̃ = σ̃i = [σ̃−1, σ̃0, . . . , σ̃N+1]

T . (21)

Furthermore, suppose m̂(x) is the computed cubic B-spline approximation to m̃(x)
given by

ŵ(xi) = m̂(xi) =
N+1

∑
i=−1

σ̂iBi(x)i (22)

where
σ̂ = σ̂i = [σ̂−1, σ̂0, . . . , σ̂N+1]

T . (23)

To approximate the error
‖w̃(xi)− m̃(xi)‖∞,

we need to estimate the error ∥∥w̃(xi)− m̂(xi)
∥∥

∞

and ∥∥ŵ(xi)− m̃(xi)
∥∥

∞

differently. We know that the system of the (n + 3)× (n + 3) matrix leads to

Aσ = F. (24)

It follows that
Aσ̃ = F̃ (25)

and
Aσ̂ = F̂. (26)
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Then, by substracting (25) and (26), we have

A(σ̂− σ̃) = F̂− F̃, (27)

where A is an (n + 3)× (n + 3) dimensional matrix, and

F = [F−1, F0, . . . , FN+1]
T , (28)

where T stands for transpose. Hence, from (27), we have

(σ̂− σ̃) = A−1(F̂− F̃). (29)

Now, consider taking the infinity norm from (29), and we have

‖σ̂− σ̃‖ =
∥∥∥A−1

∥∥∥
∞

∥∥∥F̂− F̃
∥∥∥

∞
.

Note that the B-spline basis B−1, B0, B1, . . . , BN+1 satisfies the following inequality∣∣∣∣∣∣
N+1

∑
i=−1

σ̂iBi(x)i

∣∣∣∣∣∣ ≤ 1. (30)

Adopted from [51–53], we have

‖A−1‖∞‖F̂− F̃‖∞ ≤ φh2, (31)

‖σ̂− σ̃‖∞ ≤ φh2. (32)

Additionally,

m̂(xi)− m̃(xi) = (σ̂− σ̃)
N+1

∑
i=−1

Bi(x)i, (33)

∥∥m̂(xi)− m̃(xi)
∥∥

∞ =

∥∥∥∥∥∥(σ̂− σ̃)
N+1

∑
i=−1

Bi(x)i

∥∥∥∥∥∥
∞

. (34)

Now, consider

∥∥m̂(xi)− m̃(xi)
∥∥

∞ ≤
∥∥(σ̂− σ̃)

∥∥
∞

∣∣∣∣∣∣
N+1

∑
i=−1

Bi(x)i

∣∣∣∣∣∣ ≤ φh2, (35)

∥∥w̃(xi)− m̂(xi)
∥∥

∞ ≤ ρh4 (36)

and ∥∥w̃(xi)− m̃(xi)
∥∥

∞ ≤
∥∥w̃(xi)− m̂(xi)

∥∥
∞ +

∥∥m̂(xi)− m̃(xi)
∥∥

∞. (37)

Substituting (35) and (36) into (37), we have∥∥w̃(xi)− m̃(xi)
∥∥

∞ ≤ φh2 + ρh4 = αh2, (38)

where α = φ + ρh2.

Thus, this method is second-order convergent, given by∥∥w̃(xi)− m̃(xi)
∥∥

∞ ≤ αh2. (39)
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5. Numerical Examples

In this section, three numerical problems of the linear system of ordinary differential
equations are compared with the exact solutions and existing methods to demonstrate the
efficiency and accuracy of the proposed method. The numerical errors are measured using
the error norm L∞, defined as follows:

L∞ = max
j

∣∣∣W(xj)− w(xj)
∣∣∣ or L∞ = max

j

∣∣∣Z(xj)− z(xj)
∣∣∣.

5.1. Problem 1

Consider the system of the linear two-point BVPs equation [40]

w′′(x) + xw(x) + xz(x) = 2,

z′′(x) + 2xz(x) + 2xw(x) = −2,
(40)

with boundary conditions

w(0) = w(1) = z(0) = 0 = z(1) = 0.

The exact solutions are w(x) = x2 − x and z(x) = x− x2.
In Table 2, the approximate solutions, the exact solutions and the absolute errors for

Problem 1 when N = 5 are reported. It clearly shows that the approximate solutions are in
good agreement with the exact solution. Table 3 lists the comparison of error norm between
ECBM and the proposed method for Problem 1 with different step sizes, N = 5 and N = 21.
Two free parameters that are involved in ECBM for this case in Table 3 are obtained by trial
and error. The truncation error of the proposed method was O(h5) accurate. On the other
hand, CBM and ECBM in [40] were O(h2) accurate. Our presented method produced more
accurate results compared to the earlier methods.

Table 2. Absolute errors for Problem 1 when N = 5.

x NCBM Exact Absolute Error NCBM Exact Absolute Error
W(x) Solution w(x) W(x)− w(x) Z(x) Solution z(x) Z(x)− z(x)

0.2 −0.16 −0.16 2.78× 10−17 0.16 0.16 2.22× 10−16

0.4 −0.24 −0.24 1.11× 10−16 0.24 0.24 5.55× 10−17

0.6 −0.24 −0.24 1.67× 10−16 0.24 0.24 1.11× 10−16

0.8 −0.16 −0.16 1.39× 10−16 0.16 0.16 2.78× 10−17

Table 3. The L∞ error norm for Problem 1 when N = 5 and N = 21.

ECBM [40] NCBM ECBM [40] ECBM [40] NCBM
N = 5 N = 5 N = 21 N = 21 N = 21

λ1 = λ2 = 0 λ1 = λ2 = 0 λ1 = λ2 = 1.25 × 10−14

W(x) 3.47× 10−15 1.67× 10−16 3.72× 10−13 1.73× 10−13 1.07× 10−15

Z(x) 3.69× 10−15 2.22× 10−16 2.53× 10−13 1.67× 10−13 6.94× 10−16

5.2. Problem 2

Consider the system of the linear two-point BVPs equation [40]

w′′(x) + w′(x) + xw(x) + z′(x) + 2xz(x) = f1(x),

z′′(x) + z(x) + 2w′(x) + x2w(x) = f2(x),
(41)

with boundary conditions

w(0) = w(1) = z(0) = 0 = z(1) = 0,
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where x ∈ [0, 1], f1(x) = −2(x + 1) cos (x) + π cos (πx) + 2x sin (πx) + (4x − 2x2 − 4)
sin (x) and f2(x) = −4(x− 1) cos (x)− 2(2− x2 + x3) sin (x)− (π2− 1) sin (πx). The true
solutions are w(x) = 2(1− x) sin (x) and z(x) = sin (πx).

Table 4 lists the approximate solution, the exact solution and the absolute errors for
Problem 2 when N = 5. It clearly shows that the approximate solutions promise a good
agreement with the exact solution.

The comparison of the absolute errors between the present methods and the proposed
method are shown for Problem 2 in Tables 5 and 6. The reproducing kernel method in [19]
was solved using eleven points in [0, 1], while the sinc-collocation method in [17] was solved
for N = 5 with the same number of points in [0, 1]. The error bounds for the reproducing
kernel method are at least O(h2) and O(h). Two trial and error-free parameters involved in
ECBM for this case are λ1 = −1.0× 10−3 and λ2 = −1.0× 10−3, respectively. Evidently,
our proposed method produced better approximations compared with the earlier methods.

Table 4. Absolute errors for Problem 2 when N = 5.

x NCBM Exact Absolute Error NCBM Exact Absolute Error
W(x) Solution w(x) W(x)− w(x) Z(x) Solution z(x) Z(x)− z(x)

0.2 0.317794 0.317871 7.71× 10−5 0.587778 0.587785 6.92× 10−6

0.4 0.467274 0.467302 2.81× 10−5 0.950901 0.951057 1.55× 10−4

0.6 0.451776 0.451714 6.19× 10−5 0.950901 0.951057 1.56× 10−4

0.8 0.287036 0.286942 9.37× 10−5 0.587778 0.587785 6.98× 10−6

Table 5. Absolute errors for Problem 2 for w(x).

x

ECBM [40] ECBM [40]
Reproducing Sinc− λ1 = 0 λ1 = −1.0 × 10−3 NCBM
Kernel [19] Collocation [17] λ2 = 0 λ2 = −1.0 × 10−3 N = 25

N = 5 N = 25 N = 25

0.08 3.3× 10−3 3.2× 10−3 1.3× 10−4 1.4× 10−5 9.6× 10−8

0.24 7.7× 10−3 9.2× 10−4 2.7× 10−4 1.1× 10−5 1.6× 10−7

0.4 9.7× 10−3 2.0× 10−3 2.7× 10−4 2.1× 10−5 9.2× 10−8

0.56 9.5× 10−3 2.2× 10−4 2.0× 10−4 5.9× 10−5 1.9× 10−8

0.72 7.3× 10−3 4.1× 10−3 9.4× 10−5 7.8× 10−5 1.0× 10−7

0.88 3.4× 10−3 1.0× 10−2 1.6× 10−5 5.6× 10−5 9.3× 10−8

0.96 1.1× 10−3 2.1× 10−3 3.6× 10−8 2.3× 10−5 4.0× 10−8

Table 6. Absolute errors for Problem 2 for z(x).

x

ECBM [40] ECBM [40]
Reproducing Sinc− λ1 = 0 λ1 = −1.0 × 10−3 NCBM
Kernel [19] Collocation [17] λ2 = 0 λ2 = −1.0 × 10−3 N = 25

N = 5 N = 25 N = 25

0.08 7.7× 10−3 1.5× 10−3 3.8× 10−4 2.2× 10−4 1.8× 10−7

0.24 2.0× 10−2 7.0× 10−3 9.9× 10−4 6.0× 10−4 4.7× 10−7

0.4 2.7× 10−2 7.4× 10−3 1.3× 10−3 8.3× 10−4 6.3× 10−7

0.56 2.7× 10−2 1.0× 10−2 1.4× 10−3 8.6× 10−4 6.4× 10−7

0.72 2.0× 10−2 4.4× 10−3 1.1× 10−3 6.8× 10−4 5.1× 10−7

0.88 9.4× 10−3 2.1× 10−2 5.0× 10−4 3.3× 10−4 2.5× 10−7

0.96 3.1× 10−3 6.9× 10−3 1.7× 10−4 1.1× 10−4 8.5× 10−8

In Tables 7 and 8, the comparison of error norm between ECBM and the presented
method are tabulated for Problem 2 when N = 5 and N = 25, respectively. This clearly
shows our presented method is more powerful. Two free parameters that are involved in
ECBM for this case in Tables 7 and 8 are obtained from the optimization technique. Table 9
reports the L∞ error norm with different N for Problem 2.
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Table 7. The L∞ error norm for Problem 2 when N = 5.

ECBM [40] ECBM [40]
NCBM

λ1 = λ2 = 0 λ1 = −1.269208 × 10−2

λ2 = −6.634523 × 10−2

W(x) 2.09× 10−3 1.80× 10−5 9.37× 10−5

Z(x) 1.75× 10−4 1.75× 10−4 1.56× 10−4

Table 8. The L∞ error norm for Problem 2 when N = 25.

ECBM [40] ECBM [40]
NCBM

λ1 = λ2 = 0 λ1 = −1.0 × 10−3

λ2 = −1.0 × 10−3

W(x) 2.72× 10−4 7.80× 10−5 1.56× 10−7

Z(x) 1.36× 10−3 8.60× 10−4 6.53× 10−7

Table 9. The L∞ error norm with different N for Problem 2.

N NCBM NCBM
W(x) Z(x)

40 2.40× 10−8 1.00× 10−7

80 1.50× 10−9 6.27× 10−9

100 6.14× 10−10 2.57× 10−9

5.3. Problem 3

Consider the system of the linear two-point BVPs equation [21]

w′′(x) + (2x− 1)w′(x) + cos (πx)z′(x) = f1(x),

z′′(x) + xw(x) = f2(x),
(42)

with boundary conditions

w(0) = w(1) = z(0) = z(1) = 0,

where x ∈ (0, 1), f1(x) = −π2 sin (πx) + (2x − 1)π cos (πx) + (2x − 1) cos (πx) and
f2(x) = 2 + x sin (πx). The analytical solutions are w(x) = sin (πx) and z(x) = x2 − x.

Table 10 lists the approximate, the exact solution and the absolute error when N = 5. It
clearly shows that the approximate solutions exhibit a good agreement with the exact solution.

The comparison of the absolute errors between the existing methods and the proposed
method is shown for Problem 3 when N = 41 and N = 20 in Tables 11 and 12. From both
tables, we noted that for N = 20, NCBM can already match the accuracy of the VIM, CBM
and ECBM. Two free parameters involved in ECBM in Tables 11 and 12 are obtained from
trial and error. The VIM in [21] was solved using one iteration step. It is observed that our
proposed method is more precise compared to all earlier methods.

Table 13 compares the error norm between He’s Homotopy Perturbation, Laplace
Homotopy, ECBM and the presented method for Problem 3 when N = 5, while Table 14
compares the error norm between ECBM and the presented method for N = 41. Two
free parameters that are involved in ECBM in Table 13 are obtained from the optimization
technique. Conversely, trial and error are applied to find two free parameters in Table 14.
The L∞ error norm with different N for Problem 3 are tabulated in Table 15. It is noted that
our presented method is found to be reasonably good.
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Table 10. Absolute errors for Problem 3 when N = 5.

x NCBM Exact Absolute Error NCBM Exact Absolute Error
W(x) Solution w(x) W(x)− w(x) Z(x) Solution z(x) Z(x)− z(x)

0.2 0.587845 0.587785 5.98× 10−5 −0.160001 −0.160000 1.10× 10−6

0.4 0.950959 0.951057 9.72× 10−5 −0.240002 −0.240000 2.47× 10−6

0.6 0.950959 0.951057 9.72× 10−5 −0.240002 −0.240000 2.37× 10−6

0.8 0.587845 0.587785 5.97× 10−5 −0.160000 −0.160000 4.86× 10−7

Table 11. Absolute errors for Problem 3 for w(x).

x

ECBM [40]
VIM CBM ECBM [40] λ1 = −1.0 × 10−3 NCBM NCBM
[21] [40] λ1 = 0 λ2 = 0 N = 41 N = 20

N = 41 λ2 = 0 N = 41

0.1 3.30× 10−4 1.40× 10−4 1.30× 10−4 2.83× 10−6 1.63× 10−8 2.83× 10−7

0.2 2.51× 10−3 2.80× 10−4 2.56× 10−4 5.55× 10−6 3.57× 10−8 6.34× 10−7

0.3 7.84× 10−3 3.90× 10−4 3.60× 10−4 7.81× 10−6 5.39× 10−8 9.59× 10−7

0.4 1.66× 10−2 4.60× 10−4 4.28× 10−4 9.30× 10−6 6.71× 10−8 1.19× 10−6

0.5 2.77× 10−2 4.80× 10−2 4.52× 10−4 9.82× 10−6 7.26× 10−8 1.27× 10−6

0.6 3.87× 10−2 4.60× 10−2 4.28× 10−4 9.30× 10−6 6.93× 10−8 1.19× 10−6

0.7 4.59× 10−2 3.90× 10−2 3.60× 10−4 7.81× 10−6 5.78× 10−8 9.59× 10−7

0.8 4.49× 10−2 2.80× 10−2 2.56× 10−4 5.56× 10−6 4.05× 10−8 6.34× 10−7

0.9 3.09× 10−2 1.50× 10−2 1.30× 10−4 2.83× 10−6 2.10× 10−8 6.83× 10−7

Table 12. Absolute errors for Problem 3 for z(x).

x

ECBM [40] ECBM [40]
CBM λ1 = 0 λ1 = −1.0 × 10−3 NCBM NCBM
[40] λ2 = 0 λ2 = 0 N = 41 N = 20

N = 41 N = 41 N = 41

0.1 5.74× 10−6 5.74× 10−6 1.25× 10−7 8.64× 10−10 1.54× 10−8

0.2 1.13× 10−5 1.13× 10−5 2.46× 10−7 1.71× 10−9 3.05× 10−8

0.3 1.64× 10−5 1.64× 10−5 3.56× 10−7 2.49× 10−9 4.42× 10−8

0.4 2.03× 10−5 2.03× 10−5 4.42× 10−7 3.11× 10−9 5.51× 10−8

0.5 2.26× 10−5 2.26× 10−5 4.91× 10−7 3.49× 10−9 6.12× 10−8

0.6 2.26× 10−5 2.26× 10−5 4.92× 10−7 3.53× 10−9 6.10× 10−8

0.7 2.01× 10−5 2.01× 10−5 4.37× 10−7 3.20× 10−9 5.39× 10−8

0.8 1.51× 10−5 1.51× 10−5 3.29× 10−7 2.49× 10−9 4.01× 10−8

0.9 8.14× 10−6 8.14× 10−6 1.76× 10−7 1.48× 10−9 2.13× 10−8

Table 13. The L∞ error norm for Problem 3 when N = 5.

ECBM [40] ECBM [40]
NCBMHe’s Homotopy Laplace λ1 = 0 λ1 = −6.639145 × 10−2

Pertubation [18] Homotopy [13] λ2 = 0 λ2 = 1.161882 × 10−6

W(x) 2.1× 10−4 2.2× 10−5 2.8× 10−2 1.4× 10−4 9.7× 10−5

Z(x) 3.2× 10−4 1.1× 10−5 1.4× 10−3 7.2× 10−6 2.5× 10−6
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Table 14. The L∞ error norm for Problem 3 when N = 41.

ECBM [40] ECBM [40]
NCBMλ1 = 0 λ1 = −1.0 × 10−3

λ2 = 0 λ2 = 0

W(x) 4.52× 10−4 9.82× 10−6 7.26× 10−8

Z(x) 2.26× 10−5 4.92× 10−7 3.56× 10−9

Table 15. The L∞ error norm with different N for Problem 3.

N NCBM NCBM
W(x) Z(x)

60 1.59× 10−8 7.77× 10−10

80 5.02× 10−9 2.46× 10−10

100 2.06× 10−9 1.01× 10−10

Tables 2, 4–6 and 10–12 list the numerical results, the exact solution and the absolute
errors for each problem at uniform mesh. Tables 9 and 15 present the L∞ norm with
different N for Problem 2 and Problem 3, respectively. Additionally, for each problem,
the details of error norm L∞ of the existing and the proposed methods at different values
of N are reported in Tables 3, 7, 8, 13 and 14. Consequently, the approximation obtained
by the proposed method was more precise compared to others. A larger N offers greater
precision but at the cost of a longer computation. This method also does not require a
free parameter, but it is still the most superior and reliable method compared to the stated
existing methods.

6. Conclusions

The NCBM has been applied and analyzed to numerically solve a linear system of
two-point boundary value problems in this study. The method presented was based on
a typical cubic B-spline, a CBS basis function that engages with the new approximation
for the second-order derivative. Theoretically, it has been discovered that our method is
second-order convergence. Three numerical examples were presented, and error norms,
L∞, were calculated. We found that as the step size decreased, the error decreased, resulting
in higher accuracy. Thus, it is concluded that our method gives comparable results to the
stated existing methods. This method has the following three advantages: (a) it can avoid
the unnecessary calculation in finding the unknown parameter; (b) it can produce up to a
fifth-order accuracy; and (c) it can solve the linear system of a two-point boundary value
problem accurately and efficiently. In the future, the proposed method can be used to
solve more difficult problems in engineering and sciences through a graphics processing
unit, GPU.
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