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Abstract: Outliers are observations that are significantly different from the other observations in
a dataset. These types of observations are asymmetric in nature due to a lack of symmetry. The
estimation of the cumulative distribution function (CDF) is an important statistical measure commonly
discussed for symmetric datasets. However, the estimation of the CDF in the case of the asymmetric
nature of the dataset is not a much-explored topic. In this article, we use calibration methodology
with auxiliary information for modifying the traditional stratification weight, and hence, we obtain
efficient estimates of the CDF using robust measures, i.e., mid-range and tri-mean, under the different
distance functions. A simulation study is carried out to see the performance of proposed and existing
estimators using asymmetric real-life datasets.

Keywords: calibration estimation; auxiliary data; cumulative distribution function; simulation study

1. Introduction

Finding the percentage of research variables Y that are less than or equal to a specific
value is important, and this leads to the estimation method of the countable population CDF.
In some cases, it is thought necessary to estimate the CDF. For instance, a soil scientist would
be curious to discover how many people in a developing nation are living in poverty. We are
usually concerned with the percentage of yi values in the population. In certain situations,
the need for a CDF is more important. Users of sample survey data frequently need to
calculate the population CDF or, alternatively, the percentage of population elements whose
values are less than or equal to a certain value ty. For instance, we might be interested in
the percentage of agricultural land where pesticide poisoning effects are less than zero or
the percentage of filtration facilities where arsenic is present in portable water that is less
than zero. Such a percentage is a specific value of the population’s CDF.

FY
(
ty
)
=

1
M

M

∑
i=0

I
(
yi ≤ ty

)
where I

(
yi ≤ ty

)
= 1 for yi ≤ ty and I

(
yi ≤ ty

)
= 0 for yi > ty. In surveys, we can

frequently only measure the research variable for those items in a sample; hence, the typical
estimation methods of the CDF depend solely on the choice of the sampling design and the
sampled percentage of the population. FY

(
ty
)

can be estimated by

F̂y
(
ty
)
=

1
m

m

∑
i=0

I
(
yi ≤ ty

)
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Many researchers have calculated the CDF using data from one or more additional
variables. First of all, Reference [1] proposed a method for estimating the countable
population CDF. Reference [2] obtained ratio and difference estimation methods for a
population CDF under a general sample design using supplementary population variables.
They demonstrated the benefits of the design-based estimation method over the model-
based estimation method in the case of model misspecifications, especially for large samples.
Reference [3] developed a traditional as well as a prediction technique for estimating the
CDF from survey data. Reference [4] proposes an estimator for the finite population
CDF using the model-calibration pseudo-empirical likelihood technique. Reference [5]
considers the issue of estimating the CDF and quantiles for a countable population using
supplementary data. Reference [6] develops a generalized family of estimation methods for
estimating the CDF using auxiliary variables. Reference [7] develops an efficient approach
for the estimation of process variability by using the exponential technique. Reference [8]
developed two new families for the estimation of the countable population CDF in the case
of non-response under simple random sampling. They studied two different types of non-
response situations: (i) non-response on both the research and supplementary data; and (ii)
non-response just on the research data. The developed estimation methods are compared to
existing estimation methods, both theoretically and numerically. Reference [9] developed a
new family of estimation methods for the finite CDF using the stratified random sampling
(StRS) method. Reference [10] also proposed a generalized class of exponential factor type
estimation methods for estimating the countable population CDF with supplementary
information in the form of the average and rank of the supplementary information.

In recent years, the calibration estimation method has become an important area of
study in survey sampling. By using auxiliary data, the calibration estimation technique in-
creases the accuracy of estimations by adjusting the original design weights. The calibration
estimation method is a procedure for adjusting survey sampling weights in order to simu-
late population means, totals, etc. with the help of supplementary data. The pioneering
article on calibration was written by Reference [11]. Reference [12] developed a calibration
estimation method for mean estimation. Reference [13] proposed a calibration estimation
method for estimating the population mean in StRS with various calibration conditions
based on supplementary information. Reference [14] proposes a novel calibration estima-
tion method for the population parameter of the study variable using newly calibrated
weights for two supplementary variables under StRS. Reference [15] proposes a distance
function. Using their developed distance function, a calibration estimation method of the
population mean in StRS is obtained. References [16,17] extended the work by utilizing
linear moments’ characteristics. Reference [18] developed two novel classes of ratio- and
regression-type estimation methods of population variation under SRSWOR by integrating
knowledge on nonconventional and robust dispersion measures of supplementary data.
Reference [19] proposes a new robust calibration estimation method for estimating the
population mean under StRS. Reference [12] methodology for CDF estimation, however,
has not received much attention yet.

This article proposes a new calibration estimation method for the population CDF
under StRS using new calibration conditions that include robust measures. The use of
robust measures makes the calibration estimator of CDF more efficient. The rest of the
article is organized as follows: In Section 2, an adapted estimator of CDF using robust
measures is shown. In Section 3, the proposed CDF using robust measure estimators is
developed. In Section 4, a numerical study is conducted. The article concludes in Section 5.

2. First Adapted Calibration Estimator of CDF Using Robust Measure

Outliers can be caused by a variety of factors, such as measurement errors, sampling
bias, or extreme values. As they belong to an asymmetric nature. So, they can have a long
tail on one side or the other, indicating that there are more extreme values in one direction
than the other. Outliers can have a major impact on statistical analyses, as they can distort



Symmetry 2023, 15, 1157 3 of 20

summary statistics and lead to misleading conclusions. So, in this article, we will use robust
measures such as the mid-range and tri-mean to reduce the impact of outliers.

Let ϑ = 1, 2, . . . , M be a finite population M of units, which is divided into γ homoge-
neous strata, where the size of ϕth stratum is Mϕ, for ϕ = 1, 2, .., γ in such a manner that

γ

∑
ϕ=1

Mϕ = M. Assume that (Y, X) are the study and auxiliary variables, respectively. The

stratum weights are defined asWϕ =
Mϕ

M . The mid-range is defined as MR =
X1(1)+X1(M)

2
where X1(1) is the minimum value in a population of size M and X1(M) is the maximum
value in a population of size M. The next measure included in this article is the tri-mean
(TM), which is the weighted average of the population median and two quartiles and is

defined as: TM = Q1+2Q2+Q3
4 and S2

ϕx =

γ

∑
ϕ=1

(xϕi−
_
xϕ)

2

Mϕ−1 . They denote the population variance

of the supplementary variable in ϕth stratum.
Under this StRS, the traditional unbiased estimator of the CDF is given by

To =
γ

∑
ϕ=1
Wϕ F̂yϕ

(
ty
)

where F̂yϕ

(
ty
)
= 1

m

m
∑

i=0
I
(
yi ≤ ty

)
is the sample CDF estimate of Y in the ϕth stratum.

2.1. First Adapted Calibration Estimator of CDF

Taking motivation from Reference [15], the first adapted estimators are as follows:

GRM(A1)
=

γ

∑
ϕ=1

ΩA1 ϕ F̂yϕ

(
ty
)

(1)

where F̂yϕ

(
ty
)

is the sample CDF of the study variable in ϕth stratum. Further, ΩA1 ϕ is the
calibrated weight; we will use the sum of weighted squared deviation of calibrated weights
function as given below:

γ

∑
ϕ=1

S2
ϕx
(
Qϕ

)−1(ΩA1 ϕ −Wϕ

)2
(2)

and satisfy the calibration constraint

γ

∑
ϕ=1

ΩA1 ϕ M̂Rϕ(x) =
γ

∑
ϕ=1
Wϕ MRϕ(x) (3)

Note that Wϕ =
Mϕ

M denote the traditional stratum weight,
(

M̂Rϕ(x), MRϕ(x)

)
are

presenting the sample and population mid-range of the supplementary variable in the ϕth

stratum, andQϕ is suitably chosen weights to decide different types of estimation methods.
The Lagrange function is given by

∆
(
ΩA1 ϕ,Wϕ

)
=

γ

∑
ϕ=1

S2
ϕx
(
Qϕ

)−1(ΩA1 ϕ −Wϕ

)2

−2λA

(
γ

∑
ϕ=1

ΩA1 ϕ M̂Rϕ(x) −
γ

∑
ϕ=1
Wϕ MRϕ(x)

) (4)

where λA are multipliers of Lagrange and setting
∂∆(ΩA1 ϕ ,Wϕ)

∂ΩA1 ϕ
= 0, we obtain

ΩA1 ϕ =Wϕ + λAQϕ

(
S2

ϕx

)−1
M̂Rϕ(x) (5)



Symmetry 2023, 15, 1157 4 of 20

Substituting Equation (5) in Equation (3) and solving for lambda, we have

λA =

γ

∑
ϕ=1
Wϕ MRϕ(x) −

γ

∑
ϕ=1
Wϕ M̂Rϕ(x)

γ

∑
ϕ=1
Qϕ

(
S2

ϕx

)−1
M̂2

Rϕ(x)

(6)

Substituting Equation (6) in Equation (5), we obtain the calibration weight as

ΩA1 ϕ =Wϕ +

γ

∑
ϕ=1
Wϕ MRϕ(x) −

γ

∑
ϕ=1
Wϕ M̂Rϕ(x)

γ

∑
ϕ=1
Qϕ

(
S2

ϕx

)−1
M̂2

Rϕ(x)

M̂Rϕ(x)Qϕ

(
S2

ϕx

)−1
(7)

Substituting Equation (7) in Equation (1), we obtain the calibrated estimator of CDF as
given below:

GRM(A1)
=

γ

∑
ϕ=1
Wϕ F̂yϕ

(
ty
)
+

γ

∑
ϕ=1
Wϕ

(
MRϕ(x) − M̂Rϕ(x)

)
γ

∑
ϕ=1
Qϕ

(
S2

ϕx

)−1
M̂2

Rϕ(x)

γ

∑
ϕ=1
Qϕ

(
S2

ϕx

)−1
M̂Rϕ(x) F̂yϕ

(
ty
)

2.2. Second Adapted Calibration Estimator of CDF

Taking motivation from Reference [15], the second adapted estimators are as follows:

GRM(A2)
=

γ

∑
ϕ=1

ΩA2 ϕ F̂yϕ

(
ty
)

(8)

where F̂yϕ

(
ty
)

is the sample CDF of the study variable in the ϕth stratum. Further, ΩA2 ϕ

is the calibrated weight; we will use the sum of weighted squared deviation of calibrated
weights function as given below:

γ

∑
ϕ=1

S2
ϕx
(
Qϕ

)−1(ΩA2 ϕ −Wϕ

)2
(9)

Subject to calibration constraints defined by

γ

∑
ϕ=1

ΩA2 ϕ M̂Rϕ(x) =
γ

∑
ϕ=1
Wϕ MRϕ(x) (10)

γ

∑
ϕ=1

ΩA2 ϕT̂Mϕ(x) =
γ

∑
ϕ=1
WϕTMϕ(x) (11)



Symmetry 2023, 15, 1157 5 of 20

(
M̂Rϕ(x), MRϕ(x)

)
,
(

T̂Mϕ(x), TMϕ(x)

)
are presenting the sample and population mid-

range and tri-mean of the supplementary variable in the ϕth stratum. The Lagrange function
is given by

∆
(
ΩA2 ϕ,Wϕ

)
=

γ

∑
ϕ=1

S2
ϕx
(
Qϕ

)−1(ΩA2 ϕ −Wϕ

)2

−2λA1

(
γ

∑
ϕ=1

ΩA2 ϕ M̂Rϕ(x) −
γ

∑
ϕ=1
Wϕ MRϕ(x)

)

−2λA2

(
γ

∑
ϕ=1

ΩA2 ϕT̂Mϕ(x) −
γ

∑
ϕ=1
WϕTMϕ(x)

) (12)

where λA1 and λA2 are the Lagrange’s multipliers, setting
∂∆(ΩA2 ϕ ,Wϕ)

∂ΩA2 ϕ
= 0, we obtain

2
(
Qϕ

)−1S2
ϕx
(
ΩA2 ϕ −Wϕ

)
− 2λA1 M̂Rϕ(x) − 2λA2 T̂Mϕ(x) = 0 (13)

Thus, the calibration weight can be obtained as

ΩA2 ϕ =Wϕ +Qϕ

(
S2

ϕx

)−1(
λA1 M̂Rϕ(x) + λA2 T̂Mϕ(x)

)
(14)

Substituting Equation (14) in Equations (10) and (11), respectively, we obtain


(

γ

∑
ϕ=1
Qϕ

(
S2

ϕx

)−1
M̂2

Rϕ(x)

) (
γ

∑
ϕ=1
Qϕ

(
S2

ϕx

)−1
M̂Rϕ(x)T̂Mϕ(x)

)
(

γ

∑
ϕ=1
Qϕ

(
S2

ϕx

)−1
M̂Rϕ(x)T̂Mϕ(x)

) (
γ

∑
ϕ=1
Qϕ

(
S2

ϕx

)−1
T̂2

Mϕ(x)

)

[

λA1
λA2

]
=


γ

∑
ϕ=1
Wϕ

(
MRϕ(x) − M̂Rϕ(x)

)
γ

∑
ϕ=1
Wϕ

(
TMϕ(x) − T̂Mϕ(x)

)


Solving the system of equations for lambdas, we obtain

λA1 =

(
γ

∑
ϕ=1
Qϕ

(
S2

ϕx

)−1
T̂2

Mϕ(x)

)(
γ

∑
ϕ=1
Wϕ

(
MRϕ(x) − M̂Rϕ(x)

))
−
(

γ

∑
ϕ=1
Qϕ

(
S2

ϕx

)−1
M̂Rϕ(x)T̂Mϕ(x)

)(
γ

∑
ϕ=1
Wϕ

(
TMϕ(x) − T̂Mϕ(x)

))
(

γ

∑
ϕ=1
Qϕ
(
S2

ϕx
)−1T̂2

Mϕ(x)

)(
γ

∑
ϕ=1
Qϕ
(
S2

ϕx
)−1 M̂2

Rϕ(x)

)
−
(

γ

∑
ϕ=1
Qϕ
(
S2

ϕx
)−1 M̂Rϕ(x)T̂Mϕ(x)

)2

and

λA2 =

(
γ

∑
ϕ=1
Qϕ

(
S2

ϕx

)−1
M̂2

Rϕ(x)

)(
γ

∑
ϕ=1
Wϕ

(
TMϕ(x) − T̂Mϕ(x)

))
−
(

γ

∑
ϕ=1
Qϕ

(
S2

ϕx

)−1
M̂Rϕ(x)T̂Mϕ(x)

)(
γ

∑
ϕ=1
Wϕ

(
MRϕ(x) − M̂Rϕ(x)

))
(

γ

∑
ϕ=1
Qϕ
(
S2

ϕx
)−1T̂2

Mϕ(x)

)(
γ

∑
ϕ=1
Qϕ
(
S2

ϕx
)−1 M̂2

Rϕ(x)

)
−
(

γ

∑
ϕ=1
Qϕ
(
S2

ϕx
)−1 M̂Rϕ(x)T̂Mϕ(x)

)2

Substituting these values into Equation (14), we obtain the weights as given by

ΩA2 ϕ = Wϕ +

(
Qϕ(S2

ϕx)
−1

M̂Rϕ(x)

)[( γ

∑
ϕ=1
Qϕ(S2

ϕx)
−1

T̂2
Mϕ(x)

)(
γ

∑
ϕ=1
Wϕ(MRϕ(x)−M̂Rϕ(x))

)
−
(

γ

∑
ϕ=1
Qϕ(S2

ϕx)
−1

M̂Rϕ(x) T̂Mϕ(x)

)(
γ

∑
ϕ=1
Wϕ(TMϕ(x)−T̂Mϕ(x))

)]
(

γ

∑
ϕ=1
Qϕ(S2

ϕx)
−1

T̂2
Mϕ(x)

)(
γ

∑
ϕ=1
Qϕ(S2

ϕx)
−1

M̂2
Rϕ(x)

)
−
(

γ

∑
ϕ=1
Qϕ(S2

ϕx)
−1

M̂Rϕ(x) T̂Mϕ(x)

)2

+

(
Qϕ(S2

ϕx)
−1

T̂Mϕ(x)

)[( γ

∑
ϕ=1
Qϕ(S2

ϕx)
−1

M̂2
Rϕ(x)

)(
γ

∑
ϕ=1
Wϕ(TMϕ(x)−T̂Mϕ(x))

)
−
(

γ

∑
ϕ=1
Qϕ(S2

ϕx)
−1

M̂Rϕ(x) T̂Mϕ(x)

)(
γ

∑
ϕ=1
Wϕ(MRϕ(x)−M̂Rϕ(x))

)]
(

γ

∑
ϕ=1
Qϕ(S2

ϕx)
−1

T̂2
Mϕ(x)

)(
γ

∑
ϕ=1
Qϕ(S2

ϕx)
−1

M̂2
Rϕ(x)

)
−
(

γ

∑
ϕ=1
Qϕ(S2

ϕx)
−1

M̂Rϕ(x) T̂Mϕ(x)

)2
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Writing these weights in Equation (8), we obtain the calibration estimator of CDF as

GRM(A2)
=

γ

∑
ϕ=1
Wϕ F̂yϕ

(
ty
)
+ β̂1(RM)

(
γ

∑
ϕ=1
Wϕ

(
MRϕ(x) − M̂Rϕ(x)

))
+ β̂2(RM)

(
γ

∑
ϕ=1
Wϕ

(
TMϕ(x) − T̂Mϕ(x)

))
where betas are given by

β̂1(RM) =

(
γ

∑
ϕ=1
Qϕ

(
S2

ϕx

)−1
M̂Rϕ(x) F̂yϕ

(
ty
))( γ

∑
ϕ=1
Qϕ

(
S2

ϕx

)−1
T̂2

Mϕ(x)

)
−
(

γ

∑
ϕ=1
Qϕ

(
S2

ϕx

)−1
M̂Rϕ(x) T̂Mϕ(x)

)(
γ

∑
ϕ=1
Qϕ

(
S2

ϕx

)−1
T̂

Mϕ(x)
F̂yϕ

(
ty
))

(
γ

∑
ϕ=1
Qϕ

(
S2

ϕx

)−1
T̂2

Mϕ(x)

)(
γ

∑
ϕ=1
Qϕ

(
S2

ϕx

)−1
M̂2

Rϕ(x)

)
−
(

γ

∑
ϕ=1
Qϕ

(
S2

ϕx

)−1
M̂Rϕ(x) T̂Mϕ(x)

)2

and

β̂2(RM) =

(
γ

∑
ϕ=1
Qϕ

(
S2

ϕx

)−1
T̂Mϕ(x) F̂yϕ

(
ty
))( γ

∑
ϕ=1
Qϕ

(
S2

ϕx

)−1
M̂2

Rϕ(x)

)
−
(

γ

∑
ϕ=1
Qϕ

(
S2

ϕx

)−1
M̂Rϕ(x) T̂Mϕ(x)

)(
γ

∑
ϕ=1
Qϕ

(
S2

ϕx

)−1
M̂Rϕ(x) F̂yϕ

(
ty
))

(
γ

∑
ϕ=1
Qϕ

(
S2

ϕx

)−1
T̂2

Mϕ(x)

)(
γ

∑
ϕ=1
Qϕ

(
S2

ϕx

)−1
M̂2

Rϕ(x)

)
−
(

γ

∑
ϕ=1
Qϕ

(
S2

ϕx

)−1
M̂Rϕ(x) T̂Mϕ(x)

)2

3. Proposed Estimator
3.1. First Proposed Calibration Estimator of CDF

Taking inspiration from the first adapted estimator, we proposed the following CDF
estimator:

GRM(P1)
=

γ

∑
ϕ=1

ΩP1 ϕ F̂yϕ

(
ty
)

(15)

where F̂yϕ

(
ty
)

is the sample CDF of the study variable in ϕth stratum. Further, ΩP1 ϕ is the
calibrated weight, we will use the chi-square distance function, as given below:

γ

∑
ϕ=1

(
ΩP1 ϕ −Wϕ

)2

QϕWϕ
(16)

and satisfy the calibration constraint

γ

∑
ϕ=1

ΩP1 ϕ M̂Rϕ(x) =
γ

∑
ϕ=1
Wϕ MRϕ(x) (17)

Note that Wϕ =
Mϕ

M denote the traditional stratum weight, and
(

M̂Rϕ(x), MRϕ(x)

)
are presenting the sample and population mid-range of the auxiliary variable in the ϕth

stratum. The Lagrange function is given by

∆(ΩP1 ϕ,Wϕ) =
γ

∑
ϕ=1

(
ΩP1 ϕ −Wϕ

)2

QϕWϕ
− 2λP

(
γ

∑
ϕ=1

ΩP1 ϕ M̂Rϕ(x) −
γ

∑
ϕ=1
Wϕ MRϕ(x)

)
(18)

where λP are multipliers of Lagrange, setting
∂∆(ΩP1 ϕ ,Wϕ)

∂ΩP1 ϕ
= 0, we obtain

ΩP1 ϕ =Wϕ + λP M̂Rϕ(x)QϕWϕ (19)

Substituting Equation (19) in Equation (17), and solving for lambda, we have
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λP =

γ

∑
ϕ=1
Wϕ MRϕ(x) −

γ

∑
ϕ=1
Wϕ M̂Rϕ(x)

γ

∑
ϕ=1
QϕWϕ M̂2

Rϕ(x)

(20)

Substituting Equation (20) in Equation (19), we obtain the calibration weight as

ΩP1 ϕ =Wϕ +

γ

∑
ϕ=1
Wϕ MRϕ(x) −

γ

∑
ϕ=1
Wϕ M̂Rϕ(x)

γ

∑
ϕ=1
QϕWϕ M̂2

Rϕ(x)

QϕWϕ M̂Rϕ(x) (21)

Substituting Equation (21) in Equation (15), we obtain the calibrated estimator of CDF,
as given below

GRM(P1)
=

γ

∑
ϕ=1
Wϕ F̂yϕ

(
ty
)
+

γ

∑
ϕ=1
Wϕ

(
MRϕ(x) − M̂Rϕ(x)

)
γ

∑
ϕ=1
QϕWϕ M̂2

Rϕ(x)

γ

∑
ϕ=1
QϕWϕ M̂Rϕ(x) F̂yϕ

(
ty
)

3.2. Second Proposed Calibration Estimator of CDF

Taking inspiration from the second adapted estimator, we proposed the following
CDF estimator:

GRM(P2)
=

γ

∑
ϕ=1

ΩP2 ϕ F̂yϕ

(
ty
)

(22)

where F̂yϕ

(
ty
)

is the sample CDF of the study variable in the ϕth stratum. Further, ΩP2 ϕ is
the calibrated weight, we will use the chi-square distance function, as given below:

γ

∑
ϕ=1

(
ΩP2 ϕ −Wϕ

)2

QϕWϕ
(23)

Subject to calibration constraints defined by

γ

∑
ϕ=1

ΩP2 ϕ M̂Rϕ(x) =
γ

∑
ϕ=1
Wϕ MRϕ(x) (24)

γ

∑
ϕ=1

ΩP2 ϕT̂Mϕ(x) =
γ

∑
ϕ=1
WϕTMϕ(x) (25)

where
(

M̂Rϕ(x), MRϕ(x)

)
,
(

T̂Mϕ(x), TMϕ(x)

)
are presenting the sample and population mid-

range and tri-mean of the supplementary variable in the ϕth stratum. The Lagrange function
is given by

∆
(
ΩP2 ϕ,Wϕ

)
=

γ

∑
ϕ=1

(ΩP2 ϕ−Wϕ)
2

QϕWϕ
− 2λP1

(
γ

∑
ϕ=1

ΩP2 ϕ M̂Rϕ(x) −
γ

∑
ϕ=1
Wϕ MRϕ(x)

)

−2λP2

(
γ

∑
ϕ=1

ΩP2 ϕT̂Mϕ(x) −
γ

∑
ϕ=1
WϕTMϕ(x)

) (26)
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where λP1 and λP2 are the Lagrange’s multipliers, setting
∂∆(ΩP2 ϕ ,Wϕ)

∂ΩP2 ϕ
= 0, we obtain

2
ΩP2 ϕ −Wϕ

QϕWϕ
− 2λP1 M̂Rϕ(x) − 2λP2 T̂Mϕ(x) = 0 (27)

Thus, the calibration weight can be obtained as

ΩP2 ϕ =Wϕ +WϕQϕ

(
λP1 M̂Rϕ(x) + λP2 T̂Mϕ(x)

)
(28)

Substituting Equation (28) in Equations (24) and (25), respectively, we obtain
(

γ

∑
ϕ=1
QϕWϕ M̂2

Rϕ(x)

) (
γ

∑
ϕ=1
QϕWϕ M̂Rϕ(x)T̂Mϕ(x)

)
(

γ

∑
ϕ=1
QϕWϕ M̂Rϕ(x)T̂Mϕ(x)

) (
γ

∑
ϕ=1
QϕWϕT̂2

Mϕ(x)

)

[

λP1

λP2

]
=


γ

∑
ϕ=1
Wϕ

(
MRϕ(x) − M̂Rϕ(x)

)
γ

∑
ϕ=1
Wϕ

(
TMϕ(x) − T̂Mϕ(x)

)


Solving the system of equations for lambdas, we obtain

λP1 =

(
γ

∑
ϕ=1
QϕWϕT̂2

Mϕ(x)

)(
γ

∑
ϕ=1
Wϕ

(
MRϕ(x) − M̂Rϕ(x)

))
−
(

γ

∑
ϕ=1
QϕWϕ M̂Rϕ(x)T̂Mϕ(x)

)(
γ

∑
ϕ=1
Wϕ

(
TMϕ(x) − T̂Mϕ(x)

))
(

γ

∑
ϕ=1
QϕWϕT̂2

Mϕ(x)

)(
γ

∑
ϕ=1
QϕWϕ M̂2

Rϕ(x)

)
−
(

γ

∑
ϕ=1
QϕWϕ M̂Rϕ(x)T̂Mϕ(x)

)2

and

λP2 =

(
γ

∑
ϕ=1
QϕWϕ M̂2

Rϕ(x)

)(
γ

∑
ϕ=1
Wϕ

(
TMϕ(x) − T̂Mϕ(x)

))
−
(

γ

∑
ϕ=1
QϕWϕ M̂Rϕ(x)T̂Mϕ(x)

)(
γ

∑
ϕ=1
Wϕ

(
MRϕ(x) − M̂Rϕ(x)

))
(

γ

∑
ϕ=1
QϕWϕT̂2

Mϕ(x)

)(
γ

∑
ϕ=1
QϕWϕ M̂2

Rϕ(x)

)
−
(

γ

∑
ϕ=1
QϕWϕ M̂Rϕ(x)T̂Mϕ(x)

)2

Substituting these values into Equation (28), we obtain the weights as given by

ΩP2 ϕ = Wϕ +

(
QϕWϕ M̂Rϕ(x)

)[( γ

∑
ϕ=1
QϕWϕ T̂2

Mϕ(x)

)(
γ

∑
ϕ=1
Wϕ(MRϕ(x)−M̂Rϕ(x))

)
−
(

γ

∑
ϕ=1
QϕWϕ M̂Rϕ(x) T̂Mϕ(x)

)(
γ

∑
ϕ=1
Wϕ(TMϕ(x)−T̂Mϕ(x))

)]
(

γ

∑
ϕ=1
QϕWϕ T̂2

Mϕ(x)

)(
γ

∑
ϕ=1
QϕWϕ M̂2

Rϕ(x)

)
−
(

γ

∑
ϕ=1
QϕWϕ M̂Rϕ(x) T̂Mϕ(x)

)2

+
(QϕWϕ T̂Mϕ(x))

[(
γ

∑
ϕ=1
QϕWϕ M̂2

Rϕ(x)

)(
γ

∑
ϕ=1
Wϕ(TMϕ(x)−T̂Mϕ(x))

)
−
(

γ

∑
ϕ=1
QϕWϕ M̂Rϕ(x) T̂Mϕ(x)

)(
γ

∑
ϕ=1
Wϕ(MRϕ(x)−M̂Rϕ(x))

)]
(

γ

∑
ϕ=1
QϕWϕ T̂2

Mϕ(x)

)(
γ

∑
ϕ=1
QϕWϕ M̂2

Rϕ(x)

)
−
(

γ

∑
ϕ=1
QϕWϕ M̂Rϕ(x) T̂Mϕ(x)

)2

Writing these weights in Equation (22), we obtain the calibration estimator of CDF as

GRM(P2)
=

γ

∑
ϕ=1
Wϕ F̂yϕ

(
ty
)
+ β̂P1(RM)

(
γ

∑
ϕ=1
Wϕ

(
MRϕ(x) − M̂Rϕ(x)

))

+β̂P2(RM)

(
γ

∑
ϕ=1
Wϕ

(
TMϕ(x) − T̂Mϕ(x)

))

where betas are given by

β̂P1(RM) =

(
γ

∑
ϕ=1
QϕWϕ M̂Rϕ(x) F̂yϕ

(
ty
))( γ

∑
ϕ=1
QϕWϕT̂2

Mϕ(x)

)
−
(

γ

∑
ϕ=1
QϕWϕ M̂Rϕ(x)T̂Mϕ(x)

)(
γ

∑
ϕ=1
QϕWϕT̂Mϕ(x) F̂yϕ

(
ty
))

(
γ

∑
ϕ=1
QϕWϕT̂2

Mϕ(x)

)(
γ

∑
ϕ=1
QϕWϕ M̂2

Rϕ(x)

)
−
(

γ

∑
ϕ=1
QϕWϕ M̂Rϕ(x)T̂Mϕ(x)

)2

and
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β̂P2(RM) =

(
γ

∑
ϕ=1
QϕWϕT̂Mϕ(x) F̂yϕ

(
ty
))( γ

∑
ϕ=1
QϕWϕ M̂2

Rϕ(x)

)
−
(

γ

∑
ϕ=1
QϕWϕ M̂Rϕ(x)T̂Mϕ(x)

)(
γ

∑
ϕ=1
QϕWϕ M̂Rϕ(x) F̂yϕ

(
ty
))

(
γ

∑
ϕ=1
QϕWϕT̂2

Mϕ(x)

)(
γ

∑
ϕ=1
QϕWϕ M̂2

Rϕ(x)

)
−
(

γ

∑
ϕ=1
QϕWϕ M̂Rϕ(x)T̂Mϕ(x)

)2

4. Numerical Study

To study the performance of the developed calibration estimation methods of CDF
using robust measures, we generated four different real-life datasets. The Figures 1–16
show that these populations have outliers and therefore belong to an asymmetric nature.
We compared the mean square error (MSE) of the proposed estimators with the adapted
estimators to evaluate which estimators performed more efficiently. For MSE estimation,
we perform the steps of the simulation study as given below:

Step-1: Select a random sample with size nϕ through StRS from stratum ϕ;
Step-2: Find the value of CDF estimates (say) ξ̂ = GRM(A1)

, GRM(A2)
, GRM(P1)

, GRM(P2)
;

Step-3: Replicate the above steps G = 5000 times and attained ξ̂1, ξ̂2, . . . , ξ̂G;
Step-4: Compute the MSE as

MSE
(
ξ̂
)
=

1
G

R

∑
i=1

(
ξ̂ − FY

(
ty
))2

The bias MSEs and PREs are provided in Tables 1–3, respectively. It is interesting to
notice that in the following part, we will compare the outcomes of all four populations
using the t = 0.25 quantile point.
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Table 1. Bias of proposed and adapted estimators.

Estimator

GRM(A1)
GRM(A2)

GRM(P1)
GRM(P2)

Population 1 2.020741 1.240396 1.51145 0.9898991
Population 2 2.525566 1.871007 2.026478 1.421637
Population 3 0.8161305 0.8058786 0.7483107 0.7522832
Population 4 8.117104 9.373521 6.609163 5.893258

Table 2. MSE of proposed and adapted estimators.

Estimator

GRM(A1)
GRM(A2)

GRM(P1)
GRM(P2)

Population 1 4.083395 1.538583 2.284482 0.9799003
Population 2 6.378484 3.500668 4.106615 2.021053
Population 3 0.666069 0.6494403 0.5599689 0.56593
Population 4 65.88738 87.86289 43.68103 34.73049

Table 3. PRE.

Population 1 Population 2 Population 3 Population 4
GRM(A1)

GRM(P1)
× 100 = 178.7449

GRM(A1)

GRM(P1)
× 100 = 155.3222

GRM(A1)

GRM(P1)
× 100 = 118.9475

GRM(A1)

GRM(P1)
× 100 = 150.8375

GRM(A2)

GRM(P2)
× 100 = 154.0143

GRM(A2)

GRM(P2)
× 100 = 173.2101

GRM(A2)

GRM(P2)
× 100 = 114.7563

GRM(A2)

GRM(P2)
× 100 = 252.9849

4.1. Apple Data (Population 1 and 2)

To demonstrate the performance of the proposed estimation method in this article, we
examine a dataset of apples used in References [16,20].

Population 1
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We consider the following variables for population 1:
x = The list of apple trees in 1999;
y = The amount of apples produced in 1999.
The extreme values of each stratum are clearly shown in the scatter plots in Figures 1–8,

and as a result, the data are appropriate for our suggested estimators.

Population 2

We consider the following variables for population 2:
x = The amount of apples produced in 1998;
y = The amount of apples produced in 1999.

4.2. COVID-19 Data (Populations 3 and 4)

To demonstrate the performance of the proposed estimation method in this article, we
examine a COVID-19 dataset, used in Reference [21].

Population 3

We consider the following variables for population 3:
x = Total cases per million;
y = Total deaths per million.
The extreme values of each stratum are clearly shown in the scatter plots in Figures 9–16,

and as a result, the data are appropriate for our suggested estimators.

Population 4

We consider the following variables for population 4:
x = Total number of cases per million;
y = Total number of recoveries per million.

4.3. Interpretation

Results of Table 2, indicate that:

• For population 1, the first proposed estimator GRM(P1)
= 2.284482 is better than first adapted

estimator GRM(A1)
= 4.083395 and the second proposed estimator GRM(P2)

= 0.9799003 is
better than second adapted estimator GRM(A2)

= 1.538583 at quantile (t = 0.25);

• For population 2, the first proposed estimator GRM(P1)
= 4.106615 is better than first adapted

estimator GRM(A1)
= 6.378484 and the second proposed estimator GRM(P2)

= 2.021053 is
better than second adapted estimator GRM(A2)

= 3.500668 at quantile (t = 0.25);

• For population 3, the first proposed estimator GRM(P1)
= 0.5599689 is better than first adapted

estimator GRM(A1)
= 0.666069 and the second proposed estimator GRM(P2)

= 0.56593 is
better than second adapted estimator GRM(A2)

= at quantile (t = 0.25);

• For population 4, the first proposed estimator GRM(P1)
= 43.68103 is better than first adapted

estimator GRM(A1)
= 65.88738 and the second proposed estimator GRM(P2)

= 34.73049 is
better than second adapted estimator GRM(A2)

= 87.86289 at quantile (t = 0.25).

The similar pattern of performance for PREs of the suggested estimation methods can
be observed in Table 3.

Based on these results for all the estimators, we conclude that the proposed estimators
has minimum bias, MSE, and maximum PRE values for all four populations compared to
the adapted estimators.

5. Conclusions

There are a variety of calibration estimation methods that use one or two calibration
constraints based on supplementary data. In this article, a new, improved calibration
estimator of CDF using robust measures is developed under StRS. To evaluate the effective-
ness of the developed calibration estimators with the adapted calibration estimators, we
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conducted a simulation study using asymmetric real-life datasets. We calculate the bias,
MSE, and PREs of calibration estimators. The results demonstrate that the proposed calibra-
tion estimators are more efficient than the adapted calibration estimators for asymmetric
datasets. In future studies, the work can be expanded to incorporate different sampling
schemes, and new proposals can be compared to existing approaches.
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