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Abstract: Over time, the accumulation of scale within the transmission pipeline results in a decrease
in the internal diameter of the pipe, leading to a decline in efficiency and energy waste. The
employment of a gamma ray attenuation system that is non-invasive has been found to be a highly
precise diagnostic technique for identifying volumetric percentages across various states. The most
appropriate setup for simulating a volume percentage detection system through Monte Carlo N
particle (MCNP) simulations involves a system consisting of two NaI detectors and dual-energy
gamma sources, namely 241Am and 133Ba radioisotopes. A three-phase flow consisting of oil, water,
and gas exhibits symmetrical homogenous flow characteristics across varying volume percentages
as it traverses through scaled pipes of varying thicknesses. It is worth mentioning that there is
an axial symmetry of flow inside the pipe that creates a homogenous flow pattern. In this study,
the experiment involved the emission of gamma rays from one end of a pipe, with photons being
absorbed by two detectors located at the other end. The resulting data included three distinct features,
namely the counts under the photopeaks of 241Am and 133Ba from the first detector as well as the total
count from the second detector. Through the implementation of a two-output MLP neural network
utilising the aforementioned inputs, it is possible to accurately forecast the volumetric percentages
with an RMSE of under 1.22, regardless of the thickness of the scale. The minimal error value ensures
the efficacy of the proposed technique and the practicality of its implementation in the domains of
petroleum and petrochemicals.

Keywords: three-phase; symmetrical homogenous flow; volumetric percentage; MLP neural network;
scale thickness independent

1. Introduction

Scale deposits in oil pipelines have long been a major cause for worry in the oil and
gas industry. When scale builds up within a pipeline, it may reduce the pipe’s effective
cross-sectional area and impede the transport of petroleum products. This factor prevents
pumps and other machinery from operating at peak efficiency. Scale buildup in a pipeline
that is not closely monitored may cause malfunctions, damage to machinery, higher repair
costs, and decreased output. Using a control system with volume percentage detection
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characteristics is helpful for progressing operations, especially when considering scalability.
Gamma ray attenuation systems are used as a standard in the study of the many variables
involved in a polyphase flow [1–8]. A cesium source, two sodium iodide detectors, and a
test pipe were used in the experiment reported in reference [1]. The authors constructed
a two-phase flow model that included stratified, bubbly, and annular zones. The RBF
neural network was trained with the count data from two detectors, and it was able to
accurately classify the flow regimes and forecast the volume percentages. Using GMDH
artificial neural networks, Roshni et al. (2021) were able to determine flow regimes and
volume percentages from unbalanced data. The great precision achieved by overloading
the system with computations was used to support its implementation. A method for
detecting flow regimes and volume percentages was developed by Roshani et al. (2016)
using a cobalt-60 source and a NaI detector. However, the system’s accuracy in identifying
such parameters was constrained by the extraction of unsuitable attributes. In 2019, experts
predicted the volume fraction of a stratified three-phase flow using the Jaya optimisation
algorithm [4]. Sattari and his team used a cesium source, a test pipe, and two sodium iodide
detectors to create a system for accurate volume percentage measurement and flow regime
categorisation. The potential of GMDH neural networks for detecting transitions between
flow regimes and making volume projections was investigated in a recent study [6]. The
volume percentage was calculated with a high degree of accuracy in this investigation.
However, it should be noted that the research had certain limitations, one of which was
that the scale amount in the pipe was not included. In [7], the thickness of the scale in an
oil pipeline was measured using a dual energy source composed of Cs-137 and Ba-133.
They succeeded to predict scale thickness after extensive research with a RMSE under 0.22.
Recent research measured the thickness of the scale in an oil pipe using a dual-energy
source of Am-241 and Ba-133. After simulating an annular three-phase flow, data from two
transmission detectors were used to feed photopeaks of Am-241 and Ba-133 into an RBF
neural network. As indicated in reference [8], the research resulted in estimating the scale
thickness with a RMSE of less than 0.09. The use of radioisotopes as a source of eternal
energy has several difficulties, such as transportation difficulties and the need for specific
protective equipment for workers. Several studies [9–12] show that researchers have been
looking at the possibility of using X-ray tubes to determine multiphase flow characteristics
in recent years. Researchers used an X-ray tube and a NaI detector to determine the
regime type and volumetric fraction of two-phase flows (as recorded in reference [9]). Two
multilayer perceptrons (MLPs) were trained using temporal characteristics retrieved from
the detector’s output signals. The study done in reference [10] focused on the analysis
of three-phase flows, simulating homogeneous, annular, and stratified flow regimes at
different concentrations. The results were relatively accurate after training three radial
basis function (RBF) neural networks on the frequency characteristics of the incoming
signals. The MCNP programme was used to simulate four different petroleum products in
research [11]. The X-ray tube served as the focal point of the simulation, in which these
products were mixed in pairs in varied quantities. In order to predict the volume ratio of
three different items, recorded signals were supplied as inputs to MLP neural networks.
Using the results for the first three items, predicting the volume ratio for the last product
was simple. The presented approach proved accurate in its predictions of both product kind
and quantity. However, high accuracy was difficult to achieve because of the lack of feature
extraction methods. For the sake of developing new research methods, Balubaid et al. [12]
looked at using wavelet transforms as a feature extraction tool. Accuracy was improved,
and the computational burden was lightened as a result of this move. Building on prior
research, this study aspires to provide a highly reliable diagnosis method for volume
percentages. To do so, a homogeneous flow simulation was simulated on a three-phase
flow system consisting of water, gas, and oil with variable volume percentages. In each
simulation, the scale layer was considered using different thickness. The research set out to
use a two-output MLP neural network to estimate volume fractions with high precision.
To do this, we used the overall count from the second detector in addition to the count
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beneath photopeaks 241Am and 133Ba from the first detector. The following are some of the
contributions made by this study:

• It shows how to enhance the accuracy of the detection system.
• It is possible to obtain volumetric fraction measurements while a three-phase flow is

passing through an oil pipeline in a homogenous flow regime, even in the presence of
a scale layer.

• This study aims to investigate the efficacy of utilising the photopeaks of 241Am and
133Ba in the first detector as well as the total count of the second detector for the
purpose of determining volume percentages.

The collection of useful features can lead to a significant reduction in computa-
tional cost.

2. Simulation Setup

Numerous academic works [13–16] attest to researchers’ growing interest in using the
MCNP algorithm for the simulation of structures employing X-ray or gamma radiation.
MCNP code was used as the simulation platform to simulate the framework suggested in
this research [17]. Radioisotopes 133Ba and 241Am form the backbone of our investigation.
Photons from the previously described dual energy source had an energy of 59 keV and
an energy of 356 keV. These photons were sent down a steel test pipe, where they were
picked up by two detectors at the far end. These gamma rays emitted symmetrically from
the source, and they were shaped using a shield. The two sodium iodide detectors used
in this research were placed at angles of 0 and 7 degrees with respect to the theoretical
horizon. Each detector measured exactly 2.54 cm × 2.54 cm. Within the test pipe itself, a
homogenous flow regime was used to mimic a three-phase flow where the main phenomena
took place. The aforementioned pipe was 10 cm in diameter and had a thickness of 0.5 cm.
Inside this pipe was a thickness measuring instrument in the form of a BaSO4 scale with
several layers. There was a 4.5 g/cm3 density scale within the pipe, and it came in 0 cm,
0.5 cm, 1 cm, 1.5 cm, 2 cm, and 2.5 cm widths and heights. The pipe could carry oil, water,
and gas, and the scale was located inside of it. Water, gas, and oil were all modelled in
this investigation, and their densities were 1, 0.00125, and 0.826 g per cubic centimetre,
respectively. In this investigation, the simulation geometry was constructed throughout
the MCNP code. The experimental framework used in this research served as the basis for
validating the simulations [1]. The count totals obtained by the detectors in the experimental
structure and the simulated structure were compared. It seems like they got along well
enough to be considered a good match. Because there were 36 volume percentages for
each of the 6 values of the scale thickness, the total number of simulations was 216. From
each simulation, we extracted three separate features: the original detector’s count under
photopeaks 241Am and 133Ba and the second detector’s overall count. The 3 × 216 feature
matrix was used to train a neural network. The MLP neural network was trained using
three introduced inputs to predict two outputs, including the volume percentages of gas
and oil. In order to reduce the volume of calculations and increase the accuracy of the neural
network, the volume percentage of water can be calculated separately by subtracting the
volume of the two calculated products from the volume of the pipe. Figure 1 illustrates the
complete structure as described. Figure 2 depicts the signals received from two detectors
and extracted features.
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3. Multilayer Perceptron Neural Network

The human brain comprises numerous interconnected neural units known as neurons,
each possessing dendrites that serve as a medium for transmitting information. Upon
completion of the processing stages, the axon facilitates the transfer of information from
the neuron to its external environment. The aforementioned phenomena occur within the
realms of physiology and biochemistry; however, the utilisation of mathematical modelling
by researchers has altered the nature of the subject matter. The application of advanced
mathematical techniques and artificial neural networks in various scientific domains has
garnered significant interest among scholars, as evidenced by numerous studies [18–40].
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The MLP neural network is widely utilised as a modelling technique. MLP neural networks
were developed using the MATLAB programme (MATLAB 9.3 R2017b)that was used to
extract the features listed above. Instead of using pre-made toolboxes to generate neural
networks, this study meticulously hand-coded each stage of the process from training to
validation to testing. Several neural network construction toolboxes may be available inside
this MATLAB package. It is worth noting that the “feedforwardnet” function was used to
train the neural network. The network architecture comprises three distinct components,
namely the input layer, the hidden layer, and the output layer. Multiple hidden layers
can be utilised in neural networks. Activation functions are executed within the hidden
layers to perform mathematical operations. The determination of the quantity of layers,
the quantity of neurons in the hidden layer, and the selection of the activation function are
contingent upon the characteristics and extent of non-linear properties exhibited by the
extant data. The output of neurons can be expressed as follows [41,42]:

nl =
u

∑
i=1

xiwij + b j = 1, 2, · · · , m (1)

uj = f

(
u

∑
i=1

xiwij + b

)
j = 1, 2, · · · , m (2)

output =
j

∑
n=1

(unwn) + b (3)

The input parameters are denoted by the variable x. The weighting factor, represented
by W, the bias term, identified by b, and the activation function, denoted by f, are the
variables of interest here. The numbers “i” signify the input, while “j” denotes the number
of neurons in the current hidden layer. The available data is divided into three independent
buckets—training, validation, and testing—to combat overfitting and under fitting. The
training dataset is the primary source of information for the neural network’s observation
and fitting processes. A subset of the dataset used to evaluate the success of the training
process is sometimes referred to as “validation data” in discussions about data. In the
testing phases of training, these data are used to put the networks to the test. Using test
data is essential for verifying the accuracy of the trained neural network. To flourish in the
real world, a neural network must demonstrate competence with all three types of input.
To conduct the analysis, researchers used a dataset that included 152 training samples,
32 validation samples, and 32 test samples.

4. Results

Three separate characteristics were presented in the previous sections and used
as inputs to multilayer perceptron (MLP) neural networks. A matrix with 3 rows and
216 columns was considered as the input of the neural network, and a matrix with 2 rows
and 216 columns was considered as the output. The two mentioned outputs are related
to the volume percentage of gas and oil. Different numbers of hidden layers and neurons
within those layers were used across many neural networks. The ideal framework for
calculating the volumetric percentage of gas and oil is shown in Figure 3. Table 1 lists the
various parameters of this network in detail. MRE and RMSE are two suggested criteria for
estimating the network’s error value. Here are the equations described above that may be
used as criteria:

MRE% = 100 × 1
N

N

∑
j=1

∣∣∣∣∣Xj(Exp)− Xj(Pred)
Xj(Pred)

∣∣∣∣∣ (4)
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RMSE =

∑N
j=1
(
Xj(Exp)− Xj(Pred)

)2

N

0.5

(5)

where the variable “N” denotes the quantity of data being analysed. The terms “X(Exp)”
and “X(Pred)” refer to the experimental and predicted values generated by the artificial
neural network (ANN), respectively. Figures 4 and 5 display the regression diagram
and error diagram, respectively, that show the neural networks’ responses to the three
aforementioned classes. The accuracy of the network could be evaluated by comparing
the goal output with the network output, which is shown together on the regression
diagram. In the regression diagram, the black line represents the target outcome, while the
orange circles represent the neural network’s predictions. The error diagram illustrates the
deviation between the two expected outputs and the neural network’s output. In the fitting
diagram, the black line represents the target output, while the orange dashed line represents
the output of the network. The training, validation, and testing data used to train the neural
network as well as the network’s final results are shared in Supplementary Table S1. Table 2
shows a comparison between the system presented in this research and previous studies in
terms of signal processing method, type of neural network, and error rate.

Symmetry 2023, 15, x FOR PEER REVIEW 6 of 14 
 

 

𝑀𝑅𝐸% = 100 ×
1

𝑁
∑ |

𝑋𝑗(𝐸𝑥𝑝) − 𝑋𝑗(𝑃𝑟𝑒𝑑)

𝑋𝑗(𝑃𝑟𝑒𝑑)
|

𝑁

𝑗=1

 (4) 

𝑅𝑀𝑆𝐸 = [
∑ (𝑋𝑗(𝐸𝑥𝑝) − 𝑋𝑗(𝑃𝑟𝑒𝑑))

2
𝑁
𝑗=1

𝑁
]

0.5

 (5) 

where the variable “N” denotes the quantity of data being analysed. The terms “X(Exp)” 

and “X(Pred)” refer to the experimental and predicted values generated by the artificial 

neural network (ANN), respectively. Figures 4 and 5 display the regression diagram and 

error diagram, respectively, that show the neural networks’ responses to the three afore-

mentioned classes. The accuracy of the network could be evaluated by comparing the goal 

output with the network output, which is shown together on the regression diagram. In 

the regression diagram, the black line represents the target outcome, while the orange 

circles represent the neural network’s predictions. The error diagram illustrates the devi-

ation between the two expected outputs and the neural network’s output. In the fitting 

diagram, the black line represents the target output, while the orange dashed line repre-

sents the output of the network. The training, validation, and testing data used to train 

the neural network as well as the network’s final results are shared in Supplementary 

Table S1. Table 2 shows a comparison between the system presented in this research and 

previous studies in terms of signal processing method, type of neural network, and error 

rate. 

 

Figure 3. MLP network for estimating gas and oil volume fractions. Figure 3. MLP network for estimating gas and oil volume fractions.



Symmetry 2023, 15, 1131 7 of 14

Symmetry 2023, 15, x FOR PEER REVIEW 7 of 14 
 

 

 
(a) 

 
(b) 

Figure 4. Cont.



Symmetry 2023, 15, 1131 8 of 14

Symmetry 2023, 15, x FOR PEER REVIEW 8 of 14 
 

 

 
(c) 

Figure 4. (a) training, (b) validation, and (c) test data sets for a neural network that predicts a per-

centage of gas volumes. 

 
(a) 

Figure 4. (a) training, (b) validation, and (c) test data sets for a neural network that predicts a
percentage of gas volumes.

Symmetry 2023, 15, x FOR PEER REVIEW 8 of 14 
 

 

 
(c) 

Figure 4. (a) training, (b) validation, and (c) test data sets for a neural network that predicts a per-

centage of gas volumes. 

 
(a) 

Figure 5. Cont.



Symmetry 2023, 15, 1131 9 of 14

Symmetry 2023, 15, x FOR PEER REVIEW 9 of 14 
 

 

 
(b) 

 
(c) 

Figure 5. (a) training, (b) validation, and (c) test data sets for a neural network that predicts a per-

centage of oil volumes. 

  

Figure 5. (a) training, (b) validation, and (c) test data sets for a neural network that predicts a
percentage of oil volumes.



Symmetry 2023, 15, 1131 10 of 14

Table 1. MLP neural network parameters for making predictions.

ANN MLP

Input layer neurons 3

Neurons in the 1st hidden layer 20

Neurons in the 2nd hidden layer 15

Neurons in the 3rd hidden layer 5

Neurons in the output layer 2

Epochs 480

Activation function Tansig

Output Gas Oil

RMSE
Train Validation Test Train Validation Test

1.16 1.12 1.22 1.13 1.00 1.20

MRE% 4.79 3.84 5.46 4.54 4.91 4.82

Table 2. The suggested detecting system’s accuracy compared to prior research.

Ref
Type of
Neural

Network
Extracted Features Maximum

RMSE
Maximum

MSE

[1] RBF No feature extraction 1.29 1.66

[32] GMDH No feature extraction 2.71 7.34

[43] MLP No feature extraction 4.13 17.05

[44] MLP No feature extraction 1.6 2.56

[45] RBF
Compton continuum and

counts under full energy peaks
of 1173 and 1333 keV

6.12 37.45

[46] MLP No feature extraction 2.12 4.49

[current
study] MLP

Photopeaks of 241Am and 133Ba
in the first and total count of

second detectors
1.22 1.48

Training MLP neural networks with extracted features that are relevant to the task
can reduce the calculation load and improve accuracy in estimating volume percentages.
Because of the system’s high level of precision, the oil and petrochemical sectors did not
need to use a separate detection system. Using a radioisotope source, which has been
linked to negative health effects, is one possible drawback of this investigation. Therefore,
it is critical that the correct safety equipment and clothing be worn at all times when
working with the machinery. The absence of a source deactivation feature is evident.
The minimal error achieved in this study can be attributed to the accurate processing
of the acquired signals and the success of the neural network training using relevant
signal features, which can compensate for any shortcomings. Future research in this area
is strongly encouraged to examine numerous factors, such as temporal, frequency, and
wavelet transform characteristics, and the effectiveness of various neural network models,
in an effort to boost efficiency. As we mentioned previously, there is an axial symmetry
of flow inside the pipe for a homogenous flow regime, and this symmetry phenomenon
makes the metering process difficult. Additionally, there is a symmetrical emission of
used radioisotopes. While using the presented method in this paper in the presence
of these difficulties, the desired output was obtained. Figure 6 depicts the overarching
procedure of the provided approach for calculating the volume fraction. In the initial phase
of the detection system’s architecture, as seen in the figure, the MCNP code simulated
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the flows moving through the pipe and the varying thicknesses of the scale within the
pipe and labeled the signals received by the detectors. The data from each simulation’s
received signals were then analysed to find three features: the 241Am and 133Ba photopeaks
from the first detector as well as the total count from the second detector. In fact, the
characteristics used in this study have been used in previous studies to determine other
parameters of multiphase flows [45,46]. In this research, the performance of the mentioned
characteristics to determine volume percentages in three-phase flows in the homogeneous
regime and in the presence of the scale layer has been investigated. The high accuracy
of the proposed method confirms the proposed characteristics in determining volume
percentages. The percentages of oil and gas inside the pipe might then be predicted using
the acquired features as inputs to a multi-layer perceptron neural network. Following
training, the neural network’s output was checked against the target output to make sure it
was producing the expected results.
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5. Conclusions

The efficiency of the oil industry may be improved by calculating the volume percent-
age of each passing phase of condensate inside the oil pipe. Therefore, developing and
deploying a system to identify volume percentages might prove to be a helpful tool in
tackling the challenges experienced in the oil business. In the present study, the gamma ray
attenuation technique was employed to precisely calculate the volumetric proportion of
three-phase condensates in a homogenous flow regime. The study was successful because
it provided the most effective strategy for achieving the desired effect. The detecting system
consists of a dual-energy gamma generator and two NaI detectors, one on either end of
the pipe, to determine the relative volume of each phase. The MCNP algorithm is used to
replicate the aforementioned procedure. In this study, a homogenous three-phase flow was
simulated with volumes ranging from 10% to 80%. The study also investigated a range of
scale thicknesses from zero centimetres to two and a half centimetres. From the signals



Symmetry 2023, 15, 1131 12 of 14

produced in all simulations, three characteristics were collected for this study: the count be-
neath Photopeaks 241Am and 133Ba of the first detector and the overall count of the second
detector. These characteristics were then used in the formation of a neural network. One
MLP neural network was trained using the aforementioned characteristics as inputs, and
the outputs of the neural network were the gas and oil volumes as percentages. Subtracting
the amounts of oil and gas from the total volume of the pipe yields an accurate estimate
of the water phase’s contribution to the pipe’s volume. The neural network’s promising
performance in predicting the volume percentage with an RMSE of less than 1.22 stands out
when compared to other studies. The suggested method’s excellent accuracy is attributable
to its skillful feature extraction and subsequent use in training neural networks, which
pave the way for the construction of optimal networks. The current study introduces a
detection method that has been found to be highly useful and is strongly suggested for use
in the oil and petroleum sectors.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/sym15061131/s1, Table S1. The target data and the trained neural
network’s output for three categories of training, validation and testing.
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