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Abstract: Is hemisphere lateralization for speech processing linked to handedness? To answer
this question, we compared hemisphere lateralization for speech processing and handedness in
18-month-old infants, the age at which infants start to produce words and reach a stable pattern of
handedness. To assess hemisphere lateralization for speech perception, we coupled event-related
potential (ERP) recordings with a syllable-discrimination paradigm and measured response differ-
ences to a change in phoneme or voice (different speaker) in the left and right clusters of electrodes.
To assess handedness, we gave a 15-item grasping test to infants. We also evaluated infants’ range
of vocabulary to assess whether it was associated with direction and degree of handedness and
language brain asymmetries. Brain signals in response to a change in phoneme and voice were left-
and right-lateralized, respectively, indicating functional brain lateralization for speech processing in
infants. Handedness and brain asymmetry for speech processing were not related. In addition, there
were no interactions between the range of vocabulary and asymmetry in brain responses, even for a
phoneme change. Together, a high degree of right-handedness and greater vocabulary range were
associated with an increase in ERP amplitudes in voice condition, irrespective of hemisphere side,
suggesting that they influence discrimination during voice processing.

Keywords: handedness; speech perception; ERP; vocabulary; infant

1. Introduction

It is often assumed that handedness and language lateralization are related. This is
based on several kinds of observations, and it supports theoretical hypotheses about the
origin of language. First, there have been observations of pathologies, mainly aphasia, in
which language was impaired differently in right- and left-handers (e.g., [1], and see [2]
for a meta-analysis). This led to the notion that even though in most people the left-
hemisphere controls important functions of language, the right hemisphere is more likely
to control language in non-right-handers than in right-handers, which is referred to as
atypical lateralization.

Second, many studies using behavioral techniques (dichotic listening or visual half-
field tachistiscopic presentation of linguistic stimuli), or, more recently, brain imaging
techniques (fMRI, MEG or functional Transcranial Doppler Ultrasonography (fTCD)), in-
vestigated language asymmetries depending on handedness in healthy individuals. Most
studies concord in finding (1) that about 95% of right-handers have left-hemisphere domi-
nance for language, (2) that most non-right-handers have also left-hemisphere dominance
for language, but (3) that the proportion of non-right-handers having left-hemisphere
dominance for language is about 10–20% below that of right-handers, and (4) that there
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is an equivalent increase in the incidence of right-hemisphere language lateralization or
no language lateralization in non-right-handers compared to right-handers (e.g., [3–6],
and see [2] for a meta-analysis). However, there seems to be either no relationship within
right-handers between the degree of right-handedness and language lateralization (fMRI 3),
or only when non-right-handers were also included (fTCD) [4], and even so, the association
found was modest and only about 8% of the variance in total hemisphere laterality index
was accounted for (by non-right-handers, we mean the minority of left-handers and the
extremely small minority of ambidextrous people [7]).

Third, theoretical hypotheses have been developed for the origin of language. One
of them, the gradual theory, states that complex forms of manual skills (tool use) and
language share computational principles leading to grammar (skill grammar or language
grammar). The fact that tool use and perception or production of language overlap with
the posterior part of the Broca area, as identified with fMRI, supports arguments for the
share and gradual theory of the origin of language, which suggests that tool-use skills are
related to the origin of language [8,9].

All observations cited above might lead to the idea that language and manual skill—
leading to handedness—share a common genetic basis. However, one can object to the
conclusion of an association between handedness and asymmetries in language-related
areas, as most studies used small samples, except for Carey & Johnstone’s [2] meta-analysis.
One study using a large sample (1554 participants) found significantly more left-handed
than right-handed individuals with atypical language lateralization on the categorical
level, but no association between dichotic listening lateralization quotients and handedness
quotient when using continuous measures [10]. Another objection is that, despite many
studies, there are no data to support a genetic basis for handedness in healthy individuals
([11–13], and see [14] for a review).

In addition, the fact that (1) most people are right-handed and (2) most people have a
left-hemisphere specialization for speech processing does not necessarily mean that the two
phenotypes are linked. Even if both traits were driven by independent factors, statistically,
the great majority of right-handers would also have a left-hemisphere specialization for
speech processing. Therefore, in order to understand the true relationship between the two
asymmetries, it is necessary to track their early development. In this study, we compared
hand preference and brain lateralization for speech perception in 18-month-old infants
to investigate whether there is a link between the two asymmetries when infants start to
produce words and simple sentences.

The earliest signs of behavioral asymmetry seem to be for hand preference. Reaching
and grasping are often considered the first manual skills of the infant. However, infants
and even fetuses use skillfully, and perhaps intentionally, their hand to touch their body, in
particular their face and mouth, before being able to grasp objects. It seems that, from the
earliest observed occurrences of mouth touching and thumb sucking, most fetuses use their
right hand more than their left hand [15–17] (see, however, [18,19] for different results). This
manual asymmetry might be reinforced by the tendency of the fetus, increasingly so during
pregnancy, to turn its head toward the right [20], which is a tendency also observed at birth
and related to hand movement asymmetry at that age [21] and to later hand preference
for reaching [22]. As soon as infants start grasping objects, around 5–6 months of age,
they do so more with their right hand than with their left [23–27]. However, at that age,
manual asymmetry is systematically observed only at the group level, whereas at the
individual level, hand preference fluctuates for a few months, at least for the majority of
infants [28,29]. There is a tendency to increasingly use the right hand for grasping during
the next months [27,30]. At 18 months of age, the majority of infants reach a rather stable
pattern of handedness (see [31] for a review).

Although less precociously observed than manual preference, lateralization for speech
perception also appears very early, toward the end of pregnancy. For instance, a func-
tional Near-Infrared Spectroscopy (fNIRS) study on 30-week, post-menstrual age preterm
neonates showed that several perisylvian regions produce different responses between
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the left and right hemispheres in response to speech syllables, and notably, that the left
frontal region only discriminated a change in phonemes, whereas the right symmetrical
region discriminated both a change in phonemes and a change in voices [32]. Other brain
imaging [33–36] and behavioral [37,38] studies indicate that functional asymmetries for
speech perception exist at full-term birth and during the first months of life. For instance,
functional Magnetic Resonance Imaging (fMRI) studies have shown larger activations in the
left relative to right temporal areas when perceiving linguistic compared to non-linguistic
stimuli [39,40] or compared to music [41]. Similarly, fNIRS studies have shown that con-
trary to prosodic contrasts, phonemic contrasts activate the left hemisphere more than the
right hemisphere [36] (see also the left hemisphere involvement in grammar repetition [42]).
The left-hemisphere specificity for the native-language contrast, as opposed to non-native,
emerges later, usually after six months of age [43,44] (see [45] for a review).

The later development of speech production, as compared with speech perception
and comprehension, does not allow for direct evaluation of its lateralization before the
second year of life. However, lateralization for declarative pointing, considered a proxy
for linguistic skills, has been studied behaviorally. For instance, it seems that the hand
used for pointing at 14 months is often the right hand for all infants even when the target
is positioned slightly to the left [46]. In addition, an EEG coherence study showed that
declarative pointing is associated with the maturation of the left hemisphere [47]. As
soon as infants are able to name objects, speech production seems to be lateralized to
the left hemisphere, as shown with the fTCD brain imaging method more recently used
in infants [48].

A link between the emergence of hand preference and vocabulary development has
been found in some infant studies. For instance, typically developing infants who were
right-handed at 6 months and stayed right-handed all along the 6–24-month longitudinal
study showed a larger vocabulary at 24 months than infants with a more fluctuating hand-
edness pattern [49]. On the other hand, no studies, to our knowledge, directly tackled the
question regarding the relationship between language lateralization and hand preference
in the early phase of speech production in infants. One longitudinal study followed the
development of hand preference and language lateralization from 3 to 10 years of age and
showed a link between the left cerebral lateralization in speech production and between-
hand performance differences in skill: a smaller between-hand difference in the pegboard
task was related to a larger left-hemisphere activation [50]. In that study, lateralization for
speech production was measured using fTCD during an animation-description task, and
between-hand performance differences were evaluated using an electronic version of the
pegboard task. In another study, declarative pointing was used as a proxy for language
development in 1–2-year-old infants, and pointing was more biased toward the right hand
than grasping, but the two asymmetries seemed to be relatively independent 30. Thus, the
question of whether hand preference and language lateralization are linked when speech
production emerges is still open.

In the study presented here, we compared the cerebral bases of language lateralization
with hand preference for grasping objects in infants aged 18 months. To assess hemispheric
lateralization for speech perception, we recorded the event-related potentials (ERP) during a
syllable-discrimination paradigm. Hand preference was evaluated using a 15-item reaching
task. We chose the age of 18 months since at that age, handedness seems to reach a stable
individual pattern, as reported before. In addition, there is a vocabulary burst around
18 months [51,52] (however, see [53] for a different point of view), allowing us to compare
infants with different levels of language. Vocabulary knowledge was assessed using a
questionnaire filled out by the parents.

Thus, the main question in this study was whether the development of brain asym-
metry for speech perception and asymmetry in hand use were related. If infants showing
hemispheric asymmetry in ERPs during syllable discrimination also show a high handed-
ness index on the grasping tasks, then this association will support the assumption that
common factors drive the development of both asymmetries. On the contrary, if there is
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no link between the development of hemispheric asymmetry in ERPs and the degree of
right-handedness, then this will support the assumption that independent factors drive the
development of both asymmetries.

A secondary question was to what extent the vocabulary range is associated with the
direction and degree of both asymmetries. Since vocabulary has sometimes been related
to handedness in infants, it is interesting to ascertain whether vocabulary is also related
to brain lateralization for language. If such a relationship is found, then early vocabulary
could be used as a proxy to represent brain lateralization for language.

2. Material and Methods
2.1. Participants

A total of 59 18-month-old infants with typical development (born full-term without a
history of neurological impairment) participated in the study, including 36 infants from
a larger longitudinal study described elsewhere [54]. The remaining 23 infants were
recruited from a list of local families who had expressed interest in taking part in studies
on infant development. The data from 9 infants were insufficient due to fussiness or
excessive artifacts and, therefore, were not included in the analyses. Thus, as detailed
below, 50 infants were included in the study (27 girls and 23 boys). Infants were seen at
eighteen months ±7 days as the date of the visit sometimes had to be adjusted to fit the
family’s schedule. French was the dominant language in all families. Thirty infants were
raised in a monolingual family and twenty infants in a bi- or multilingual family. We
checked that infants from monolingual and multilingual families were not significantly
different in terms of handedness (p = 0.88) and vocabulary development (p = 0.92). Since
that was the case, this factor was not considered in subsequent analyses.

2.2. Ethics and Informed Consent

This study was conducted in accordance with the 1975 Declaration of Helsinki and
its later amendments and was approved by the local ethics committee of the Paris Cite
University (CER U-Paris Cité). Parents provided informed consent before testing.

2.3. Procedure

Infants came with their parents to the BabyLab of the laboratory. Upon arrival, during
a warm-up period, the infant was familiarized with the site and the experimenters while
playing in the room. The infant and one of the parents were then taken to the EEG room in
the BabyLab. After a short pause following the EEG recording, the infant and parent were
taken to another room in the BabyLab where the infant was evaluated for handedness. In
addition, each family completed a language questionnaire for the infant (see details below).

2.3.1. Evaluation of Brain Lateralization for Language

Brain activity was recorded (band-pass of 0.1–100 Hz and sampling rate of 250 Hz)
using an EEG Geodesic Sensor Net cap composed of 128 electrodes (EGI, Eugene, OR, USA)
with an online reference located on the vertex. Each infant sat on its parent’s lap in front
of a screen. To help the infant relax, the movie “Poccoyo” was presented on the screen
while the EEG cap was fitted. The experimenter started the experiment using a computer
placed outside the recording booth. A camera installed above the screen permitted the
experimenter to follow the infant’s behavior during the experiment. If the infant grew
impatient, peevish or started crying, a short movie was presented on the screen in order to
keep him or her focused on the task.

To assess the hemispheric lateralization for speech perception, we used a paradigm of
syllable discrimination that was used in earlier studies (e.g., [55]). Three different syllables
were produced, two from the French language /pa/ et /ta/ and one from the Tamoul
language /Ta/. These syllables were on each side of two phonetic contrasts, based on the
place of articulation. One contrast, /pa/ vs. /ta/, is discriminated by French speakers
only (native phonetic contrast), and the second /ta/ vs. /Ta/ by Tamil but not French



Symmetry 2023, 15, 989 5 of 18

speakers (non-native phonetic contrast). The syllables were equalized in duration (200 ms)
and loudness.

Each trial was composed of three syllables. The first two syllables were identical,
whereas the third one was either identical (standard trial) or different (deviant trials). The
deviant syllable was either on the other side of the native contrast (e.g., ta1/ta1/pa1) or
on the other side of the non-native contrast (e.g., ta1/ta1/Ta1) relative to the two previous
syllables. A third case of deviance was a change in voice (e.g., ta1/ta1/ta2). The change
in voice was introduced by a change in speaker with a comparable tone and intensity.
Although 24 combinations were possible (4 conditions (standard, deviant native, deviant
non-native, deviant voice) × 3 syllables (/pa/, /ta/, /Ta/) × 2 voices (1 and 2)), we
used only 20 combinations to shorten the experiment while keeping enough trials in
each combination (we then excluded the largest phonetic change from /pa/ to /Ta/ and
the reverse).

In each block, trials were presented in random order. In each trial, the three syllables
were presented with a 1 s interval, and the interval between the onset of the 3rd syllable in
a given trial and the onset of the 1st syllable in the following trial was 2 s. This resulted
in a trial duration of 4 s. The entire experiment consisted of 5 blocks (20 trials each),
each repeated 3 times, adding up to a total of 300 trials. The total duration of the stimuli
presentation was thus 20 min.

Auditory stimuli were played with two loudspeakers located on each side of the
computer screen. In addition, a face (the speaker’s face) that seemed to pronounce the
syllables synchronously with the auditory stimulus, was presented in the center of the
screen. We used this setup in order to keep the infant more focused on the task and to
encourage subliminal language production elicited by imitation. The face was presented on
a 19-inch computer screen set in front of the infant at eye level. The same face was shown
for the duration of the trial. To avoid a mismatch between the articulatory movements
seen and the sound heard, the mouth part of the face was hidden with a white strip. Five
different women’s faces were used, with one single face per block.

2.3.2. Handedness Evaluation

For the handedness evaluation, the infant sat at a table on the parent’s lap. Before each
trial, we ensured that both of the infant’s hands were available. The hand used by the infant
to grasp the object was recorded. The test consisted of 15 trials, i.e., 15 objects presented
within reaching distance of the infant at a midline position. Objects for grasping were
small baby toys that could be grasped unimanually [56]. The number of 15 presentations
was chosen following a comparative study showing that beyond this number, additional
presentations do not significantly change the degree and direction of handedness [28].

2.3.3. Language Evaluation

Vocabulary size was evaluated using the short version of the French translation of the
MacArthur–Bates Communicative Development for Words and Sentences (CDI) [57,58]
dedicated to 18-month-olds. The parents were asked to fill out the inventory at the begin-
ning of the session or, when not possible, at home during the week following the study.
They had to mark off each word their infant understands and/or produces. The variable
considered was the number of words in the child’s vocabulary, which includes the number
of words understood only + the number of words understood and produced.

2.4. Data Analyses
2.4.1. EEG Processing

EEG recordings were band-pass filtered between 0.5 and 20 Hz using a zero-phase
lag filter, and then were further processed using the MATLAB toolboxes: EEGLAB [59]
and Brainstorm Tadel, 2011. Recordings were then segmented into 2200 ms epochs,
[−200, 2000] ms according to the onset of the 3rd syllable within each trial. Channels
and trials contaminated by eye and movement artifacts were automatically detected on
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a trial-by-trial basis based on amplitude variations inside an epoch. For each channel, an
epoch was rejected when the fast-average amplitude exceeded 100 microvolts or when the
difference between the fast- and slow-running averages exceeded 150 microvolts. Channels
were rejected for the entire recording if they were marked as bad in more than 50% of
trials, and trials were rejected if more than 50% of channels were marked as bad. Using
these criteria, 50 out of the 59 infants tested had enough correct data (i.e., at least 10 good
trials for each of the experimental conditions, resulting in a mean number of trials for all
conditions = 133; SD = 63, 40 to 296) and were kept for further analyses. Recordings were
then re-referenced by subtracting the average activity in all channels to each channel, to
obtain average-reference recordings, and baseline-corrected by subtracting the average
amplitude of the [−200 0] ms time window before the onset of the 3rd syllable.

ERPs were computed for each infant by averaging all artifact-free trials in each of the
conditions. The grand average, collapsed over all the conditions, was first visually inspected
during the entire trial using Brainstorm representations of the 2D topographies. Evoked re-
sponses to each syllable were clearly identifiable with a positive pole extending over frontal
areas and a negative posterior pole. To study the left and right hemispheric differences
for these activations, we considered two symmetrical channel clusters based on previous
EEG work using the same recording net and a very similar auditory paradigm [60], which
is consistent with the infant literature on syllable perception [61–63]. Each hemispheric
cluster consisted of 27 electrodes covering the fronto-temporal regions and extending over
T1-F7 on the left side and T2-F8 on the right side. Voltage was averaged over each cluster
of electrodes in each infant.

Second, we identified the time windows indicating language and voice processing
as those showing a significant difference between the standard condition and voice or
phoneme change conditions. To that end, we ran a nonparametric cluster-mass permutation
test [64] over each time series (the two clusters of electrodes) and for each change condition
(phoneme vs. standard and voice vs. standard). In this procedure, the original ERPs were
first compared at each time point using a two-tailed t-test. The t-values of neighboring time
points showing a trend in significant effects (p < 0.10) were summed together to obtain a
statistical weight for that temporal cluster. We set the alpha threshold here at 0.1 in order to
account for the high inter-individual variability in the timing of the responses in infants
and to identify the larger possible time window. Second, to obtain the null distribution
for these weights in our data, we created 1000 new ERPs for the conditions of interest for
each subject, which were obtained with random permutations of the condition labels in the
original data. Then, we performed the same procedure for the original ERPs (i.e., a t-test
comparison was completed for each time point at the group level, followed by summing
the t-values in neighboring time points with p < 0.1). This allowed us to obtain the strongest
statistical cluster in each of the 1000 t-test comparisons. The significance of the original
cluster was established using the fraction of cases in which the clusters obtained with the
permutation procedure obtained higher weights than the original data. For example, in
the case of phoneme change vs. standard, the trials corresponding to these conditions
were randomly re-attributed to one of the two conditions in each subject (i.e., their labels
could be swapped). ERPs were calculated by averaging trials within each condition (i.e.,
considering their new condition labels) for each subject and were compared using a t-test
at the group level. This procedure was repeated 1000 times, each time with a new random
permutation of trial labels for each subject. This nonparametric cluster-mass permutation
test was performed for each comparison of interest (phoneme change vs. standard and
voice change vs. standard) and for the two time series, which identified one time window
of interest in the voice comparison and two in the phoneme comparison (see Section 3).

Finally, we obtained 12 EEG measures for each infant by averaging the voltage differ-
ence [phoneme change-standard] and [voice change-standard] in each of the 2 hemispheric
clusters (right or left) and time windows isolated with the permutation procedure described
above (3 levels). As we did not detect significant differences between the ERP and a change
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in phoneme for the native vs. non-native language (/pa/ -> /ta/, vs. /ta/ -> /Ta/), we
merged the two phonetic contrasts into a single phoneme change condition.

2.4.2. Handedness

Following the handedness test, the handedness index (HI) was calculated as follows:
[number (nb) of right-hand grasps − nb of left-hand grasps]/[nb of right-hand grasps + nb
of left-hand grasps + nb of bimanual grasps]. Based on the HI, for some analyses, infants
were categorized as right-handed (HI ≥ 0.3), left-handed (HI ≤ −0.3) or non-lateralized
(−0.3 < HI < 0.3) (see [7] for a justification of the 0.3 limit).

2.4.3. Language Development

The raw number of words understood and produced was used as a continuous variable.

2.5. Statistical Analyses

An analysis of covariance (ANCOVA) was performed on the voltage difference with
condition (change in phoneme or voice) and hemisphere (right or left cluster) as the
within-subject factors and with handedness (HI) and vocabulary (number of words) as the
between-subject covariates. We considered each time window separately as we suspected
that each captured independent linguistic processing stages, some of which may be more
lateralized than others. When the effects were significant, η2 was calculated for effect size,
and post hoc analyses were performed using t-tests and regression analyses.

3. Results
3.1. Handedness

Data on handedness at 18 months were obtained for 48 infants (26 girls, 22 boys; for
1 girl and 1 boy, the handedness test could not be performed, see Table 1). The mean HI
was 0.39 (from −0.72 to 1, SD = 0.50), i.e., as a group, the infants tended to use their right
hand more than their left hand. The majority of the infants were right-handed (n = 31,
64.6%, 16 girls and 15 boys), whereas 16.6% were left-handed (n = 8, 4 girls and 4 boys)
and 18.8% were not lateralized (n = 9, 6 girls and 3 boys). When the handedness category
was used, left-handed and non-lateralized infants were pooled in the same category as
non-right-handers (n = 17, 35.4%, 10 girls and 7 boys).

Table 1. The number of infants tested for handedness and vocabulary range and when the two
variables were included.

Mean HI SD SE N

Handedness (HI) 0.39 0.38 0.05 48

Handedness (+Voc) 0.39 0.38 0.06 46

Voc (Number of words) 55.69 12.84 1.85 48

Voc (+Handedness) 55.83 12.75 1.88 46

3.2. Language Development

The questionnaire was filled out by the parents of 48 infants (25 girls and 23 boys; the
parents of 2 girls did not fill out the questionnaire). The mean number of words understood
(understood only + understood and produced) was 55.7 (from 28 to 75, SD = 12.8). An
ANCOVA with the number of words as the dependent variable as a function of the category
of handedness and sex (independent factors) showed that there was no significant effect.
There was no significant difference between the number of words in right-handers’ vocabu-
lary (mean = 56.4, SD = 12.3) and the number of words in non-right-handers’ vocabulary
(mean = 55, SD = 13.7) (p = 0.791), as well as no significant sex differences (p = 0.332)
and no significant sex × category of handedness interaction (p = 0.413) (Figure 1). Not
surprisingly, the correlation between HI and the number of words was very low (r = 0.04)
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and not significant (p = 0.717). Finally, the model R2 was very low (0.0178), showing that
HI explained only 1.78% of the variance in the number of words.
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Figure 1. The number of words understood and produced as a function of the category of handedness
and sex (NRhand. = Non-right-handers; Rhand. = Right-handers).

3.3. ERP Lateralization

The nonparametric cluster-mass permutation test revealed three time windows of
interest: T1 = [212–436 ms], T2 = [460–656 ms] and T3 = [776–956 ms]. The ERPs over the
right (R) cluster differed with the change in voice (pR-T1 = 0.039) during T1 and tended to
differ over the left (L) cluster with the change in phoneme during T2 and T3 (pL-T2 = 0.089
and pL-T3 = 0.101 respectively). Although the statistical significance for T2 and T3 was
marginal, we kept this partitioning on the three time windows because of their similar
length and because they covered the 200 ms−1 s post-stimulus period (Figure 2).
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standard (in black) (a), the statistically significant time window is highlighted as time window 1. The
topographies on top of the ERP time courses represent the average activity within this time window
for each of the conditions and also their difference (voice change − standard). For the contrast
phoneme change (in magenta) vs. standard (black) (b), the statistically significant time window is
highlighted as time windows 2 and 3. The topographies on top of the ERP time courses represent the
average activity within each of these time windows for each of the conditions and also their difference
(phoneme change—standard). Red and blue colors in the topographies indicate higher and lower
voltage values, respectively.

ANCOVAs were performed over the three identified time windows independently.
Within T1 (212–436 ms), the only significant effect was a two-way interaction for con-

dition × cluster (F(1,42) = 6.5, p = 0.015). No other main effect or interaction was significant
(Table 2). The post hoc analyses performed with paired t-tests revealed significant voltage
differences between the left vs. right cluster in each condition: phonetic change: p = 0.048,
due to a larger difference in the left than right cluster; voice change: p = 0.019, due to a
larger difference in the right than left cluster. As for the within cluster analyses, the voltage
difference tended to be larger in the condition of phoneme than voice change in the left
cluster, p = 0.060, and was significantly larger in the condition of voice than phoneme
change in the right one, p = 0.015 (Figure 3).

Table 2. Results of the ANCOVA on ERP differences within T1 (212–436 ms) as a function of cluster,
condition, handedness (HI), and vocabulary (number of words). Significant statistics (p < 0.05) are
highlighted with asterisks, and η2 represents effect size.

ANCOVA for Time Window T1 Statistics η2

handedness F(1,42) = 0.8, p = 0.373 0.18
vocabulary F(1,42) = 0.1, p = 0.766 0.02

cluster F(1,42) = 0.3, p = 0.558 0.10
condition F(1,42) = 0.0, p = 0.925 0.00

handedness × vocabulary F(1,42) = 3.7, p = 0.061 0.81
handedness × cluster F(1,42) = 1.9, p = 0.177 0.53

handedness × condition F(1,42) = 0.2, p = 0.695 0.07
vocabulary × cluster F(1,42) = 1.2, p = 0.289 0.32

vocabulary × condition F(1,42) = 1.5, p = 0.231 0.66
cluster × condition F(1,42) = 6.5, p = 0.015 * 0.96

handedness × vocabulary × cluster F(1,42) = 0.2, p = 0.671 0.05
handedness × vocabulary × condition F(1,42) = 0.6, p = 0.448 0.26

handedness × cluster × condition F(1,42) = 0.2, p = 0.660 0.03
vocabulary × cluster × condition F(1,42) = 0.0, p = 0.989 0.00

handedness × vocabulary × cluster × condition F(1,42) = 0.1, p = 0.801 0.01
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Within T2 (460–656 ms), the two-way interaction for handedness × vocabulary
(F(1,42) = 5.3, p = 0.026), as well as the three-way interaction for handedness × vocab-
ulary × condition (F(1,42) = 4.5, p = 0.039) were significant. No other main effect or
interaction was significant (Table 3). For post hoc analyses, we considered HI categories
and performed regression analyses that revealed a correlation (r = 0.45, p = 0.005) between
voice discrimination responses (higher voltage differences for voice change − standard)
and vocabulary scores only in right-handers (Figure 4).

Table 3. Results of the ANCOVA on ERP differences within T2 (460–656 ms) as a function of cluster,
condition, handedness (HI), and vocabulary (number of words). Significant statistics (p < 0.05) are
highlighted with asterisks, and η2 represents effect size.

ANCOVA for Time Window T2 Statistics η2

handedness F(1,42) = 0.4, p = 0.515 0.06
vocabulary F(1,42) = 1.2, p = 0.276 0.18

cluster F(1,42) = 1.2, p = 0.270 0.30
condition F(1,42) = 0.1, p = 0.744 0.02

handedness × vocabulary F(1,42) = 5.3, p = 0.026 * 0.76
handedness × cluster F(1,42) = 2.8, p = 0.104 0.66

handedness × condition F(1,42) = 0.1, p = 0.769 0.02
vocabulary × cluster F(1,42) = 0.0, p = 0.954 0.00

vocabulary × condition F(1,42) = 0.6, p = 0.457 0.11
cluster × condition F(1,42) = 0.1, p = 0.784 0.05

handedness × vocabulary × cluster F(1,42) = 0.2, p = 0.685 0.04
handedness × vocabulary × condition F(1,42) = 4.5, p = 0.040 * 0.86

handedness × cluster × condition F(1,42) = 0.0, p = 0.862 0.02
vocabulary × cluster × condition F(1,42) = 0.5, p = 0.486 0.32

handedness × vocabulary × cluster × condition F(1,42) = 0.9, p = 0.340 0.61
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Figure 4. Correlation between the voltage differences (voice change − standard) and vocabulary
score in right-handers.

Within T3 (776–956 ms), a main effect of vocabulary (F(1,42) = 4.7, p = 0.035) indicated
a correlation (r = 0.16, p = 0.029) between general discrimination responses (higher voltage
differences for all deviants − standards) and vocabulary scores (Figure 5). In addition to this
main effect, the two-way interaction for handedness × cluster was significant (F(1,42) = 4.5,
p = 0.041) (Table 4). The post hoc analysis revealed a correlation between the general
discrimination responses (higher voltage differences for all deviants − standards) over the
right but not the left hemisphere and the handedness index (r = 0.24, p = 0.020) (Figure 6).
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Table 4. Results of the ANCOVA on ERPs differences within T3 (776–956 ms) as a function of cluster,
condition, handedness (HI), and vocabulary (number of words). Significant statistics (p < 0.05) are
highlighted with asterisks, and η2 represents effect size.

ANCOVA for Time Window T3 Statistics η2

handedness F(1,42) = 0.3, p = 0.603 0.05
vocabulary F(1,42) = 4.7, p = 0.035 * 0.81

cluster F(1,42) = 1.0, p = 0.315 0.13
condition F(1,42) = 0.1, p = 0.811 0.01

handedness × vocabulary F(1,42) = 0.8, p = 0.367 0.14
handedness × cluster F(1,42) = 4.5, p = 0.041 * 0.56

handedness × condition F(1,42) = 0.9, p = 0.336 0.24
vocabulary × cluster F(1,42) = 0.6, p = 0.441 0.08

vocabulary × condition F(1,42) = 0.2, p = 0.656 0.05
cluster × condition F(1,42) = 0.5, p = 0.505 0.12

handedness × vocabulary × cluster F(1,42) = 1.9, p = 0.177 0.24
handedness × vocabulary × condition F(1,42) = 2.7, p = 0.105 0.70

handedness × cluster × condition F(1,42) = 1.0, p = 0.314 0.27
vocabulary × cluster × condition F(1,42) = 1.9, p = 0.176 0.49

handedness × vocabulary × cluster × condition F(1,42) = 0.5, p = 0.492 0.13

Symmetry 2023, 15, x FOR PEER REVIEW 11 of 19 
 

 

 

Figure 5. Correlation between the voltage differences (all deviants − standards) and vocabulary 

score. 

 

Figure 6. Correlation between the voltage differences (all deviants − standards) over the right hem-

isphere and handedness index. (NRhand. = Non-right-handers; Rhand. = Right-handers). 

Table 2. Results of the ANCOVA on ERP differences within T1 (212–436 ms) as a function of cluster, 

condition, handedness (HI), and vocabulary (number of words). Significant statistics (p < 0.05) are 

highlighted with asterisks, and ƞ2 represents effect size. 

ANCOVA for Time Window T1  Statistics ƞ2 

handedness F(1,42) = 0.8, p = 0.373 0.18 

vocabulary F(1,42) = 0.1, p = 0.766 0.02 

cluster F(1,42) = 0.3, p = 0.558 0.10 

condition F(1,42) = 0.0, p = 0.925 0.00 

handedness × vocabulary F(1,42) = 3.7, p = 0.061 0.81 

handedness × cluster F(1,42) = 1.9, p = 0.177 0.53 

handedness × condition F(1,42) = 0.2, p = 0.695 0.07 

vocabulary × cluster  F(1,42) = 1.2, p = 0.289 0.32 

vocabulary × condition F(1,42) = 1.5, p = 0.231 0.66 

cluster × condition F(1,42) = 6.5, p = 0.015* 0.96 

handedness × vocabulary × cluster F(1,42) = 0.2, p = 0.671 0.05 

handedness × vocabulary × condition F(1,42) = 0.6, p = 0.448 0.26 

Figure 6. Correlation between the voltage differences (all deviants − standards) over the right
hemisphere and handedness index. (NRhand. = Non-right-handers; Rhand. = Right-handers).



Symmetry 2023, 15, 989 12 of 18

4. Discussion

The main goal of our study was to evaluate whether the cerebral bases of language
lateralization are related to hand preference in infants at 18 months. To assess hemispheric
lateralization for speech perception, we recorded ERPs during a syllable-discrimination
paradigm and measured brain response lateralization to a change in phoneme or voice.
The nonparametric cluster-mass permutation test highlighted three time windows post-
stimulus where the response to a change in phoneme or voice was identified. The response
to a change in voice was right-lateralized, whereas the response to a change in phoneme
was left-lateralized, significantly in the earliest time window. Thus, according to our results,
at 18 months of age, ERP asymmetries for phoneme and voice processing are clear with
lateralization to the left and right hemispheres, respectively.

Lateralized ERP responses in 18-month-olds are consistent with previous reports on
differential lateralized processing of speech vs. non-speech stimuli in younger infants.
Newborns and preterm neonates already demonstrate left-lateralized responses to speech
stimuli, which were observed using NIRS [32,42,65], particularly for native speech stim-
uli [66], and using optical topography [67] as well as other techniques (see [68] for a review;
however, see [69] for different results). Contrary to speech stimuli, non-speech auditory
stimulation elicits right-lateralized responses in newborns using auditory-evoked poten-
tials [70] or NIRS [71]. In older infants, non-linguistic aspects of speech stimuli, such as
prosody, also evoke right-dominant activations using fNIRS [72] (however, for slightly
different results, see [73]). Together, these studies highlight a pre-specialization in the left
and right hemispheres for phonological and pitch (i.e., voice) processing, which seems to
remain stable throughout the second year of life, as we observed here with ERPs (e.g., [3–6],
and see [2] for a meta-analysis).

Although the links remain to be established, this early functional lateralization might
be indirectly related to structural asymmetries that appear early in development. In partic-
ular, the Sylvian fissure and perisylvian regions show strong asymmetries in morphology
from birth [74]. The superior temporal sulcus folds earlier in the right hemisphere than
in the left hemisphere as observed in fetuses, preterm and full-term neonates and in-
fants [75–78], and this asymmetry in-depth persists throughout development [79]. The
maturation of the perisylvian regions also progresses differently between the two cerebral
hemispheres [80,81]. Finally, the connections between these regions are also asymmetrical
early on, particularly the arcuate fasciculus that is more developed in the left hemisphere
than in the right hemisphere in both infants and adults [82,83]. These early asymmetries
are accompanied by differences in processing times for speech stimuli between the two
hemispheres, as observed using ERPs in typical infants but not in infants with agenesis
of the corpus callosum in whom hemispheric lateralization may be impacted [60,84]. The
combination of these early anatomo-functional asymmetries within the perisylvian network
could underlie the emergence of functional lateralization for the processing of speech and
non-speech stimuli, as reported here.

Since the main goal of our study was to compare this early development of language
asymmetry with that of handedness, we included a test of handedness. We observed that,
as a group, the infants tended to use their right hand more than their left hand during
the 15-item grasping task. The majority of the infants were right-handed (64.6%), whereas
16.6% were left-handed and 18.8% were not lateralized. This is consistent with many
studies showing that there is a majority of right-handed grasping at the group level as soon
as grasping develops [23–27], and that, after a decrease in individual fluctuations [28,29],
the majority of infants reach a rather stable handedness pattern by 18 months of age [27,30].

The main question here was whether brain asymmetry for speech perception and
asymmetry in hand use for grasping were related. We hypothesized that if infants with
hemispheric asymmetry in ERPs during syllable discrimination also show a high hand-
edness index in grasping tasks, then this association will support the assumption that
common factors drive the development of both asymmetries. On the contrary, if there is
no link between the development of hemispheric asymmetry in ERPs and handedness,
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this will support the assumption that independent factors drive the development of both
asymmetries. Although we found a significant interaction between cluster and condition in
the first time window, handedness did not interact with cluster or condition, neither in the
first time window nor in the other two time windows. Thus, we observed no link between
the development of hemispheric asymmetry in ERPs and the degree of right-handedness at
18 months. These results argue in favor of independent ontogenetic influences for driving
the development of both asymmetries 12. In addition, this is in line with adult studies
showing no link or almost no link between the degree of right-handedness and hemispheric
asymmetry for language [3,4].

We found an effect of handedness on the level of voltage difference during the third
time window, but only in the right hemisphere and for all conditions. Even though both
asymmetries do not seem to be related at 18 months with our experimental set-up, the
higher the HI, the higher the discriminative response between standard and deviant stimuli
in the right hemisphere.

If these results hold true in future replication studies with different methodologies, one
might conclude that early manual asymmetries and language lateralization are determined
by independent factors. Interestingly, a recent neuroimaging study highlighted that the
morphology of the central sulcus, delineating the sensory and motor regions, shows strong
asymmetries early on in preterm infants and that its shape characteristics at term-equivalent
age tend to predict later handedness at 5 years of age [74], in a similar way as in adults [85].

A secondary question was to what extent vocabulary range is associated with the
direction and degree of both asymmetries. At the behavioral level, i.e., concerning man-
ual asymmetry, we did not find the same relationship between the range of vocabulary
(number of words) and category of handedness as found in Nelson’s study [49] or in other
studies comparing handedness for pointing and vocabulary [46,52]. This might be due to
methodological differences. For instance, in Nelson’s study, the infants were followed from
6 to 24 months, whereas in our study handedness was tested at 18 months, which might
have blurred the differences between early-lateralized and late-lateralized infants.

Concerning language asymmetry, we did not find a specific effect of vocabulary range
on phoneme discrimination in the left hemisphere. However, we found a significant main
effect of vocabulary in the third time window. This means that in both conditions and
in both hemispheres, the greater the vocabulary range, the higher the voltage difference
between standard and deviant. This late time window (>750 ms) might reflect orientation
to novelty following any change detection. To our knowledge, no studies have investigated
the correlation between ERP asymmetry for speech perception and the range of vocabulary
in infants and toddlers so far, but a few studies have explored related questions. First,
a group of researchers described significant differences in lateralized patterns of event-
related EEG oscillations in response to rapid successive auditory stimuli in 6-month-old
infants with a familial risk for language and learning impairment compared to 6-month-old
infants without a familial risk for such an impairment [86]. In addition, differences in
ERPs are predictive of expressive vocabulary at 20 months of age [87]. This suggests that
neural mechanisms that support rapid auditory processing in infancy interplay with the
development of vocabulary. In another study, kindergarten children at risk for dyslexia
were tested using a speech–syllable mismatch negativity paradigm (MMN) and received
two behavioral assessments important for language skills: phonological awareness (PA)
and rapid automatized naming (RAN). The results showed that late MMN amplitude was
significantly greater in children with typical PA ability than in children with low PA ability
and that laterality in the early and late MMN was significantly different in children with
low versus typical RAN ability. This suggests that, in kindergarten children, the amplitude
of the MMN may relate to phonological representations and that asymmetry in the MMN
may relate to the ability to manipulate them [88]. In addition, relationships were observed
between the early organization of functional [89] and structural connectivity [90] within
the left hemisphere and later language skills.
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In addition, one needs to consider that a link between vocabulary range and brain
lateralization might exist for other measures of brain asymmetry (e.g., structural charac-
teristics) that were not tested in our paradigm, as previously suggested [91–93]. The work
of Aeby and collaborators [91], for instance, suggested a relationship between structural
measures of asymmetry in neonates and language development at two years of age.

Of note, we observed a significant interaction between handedness, vocabulary range
and condition in the second time window. The higher the HI and the larger the vocabulary
range, the higher the voltage difference between the standard and deviant voice. Thus,
for voice only, and for both hemispheres, handedness and vocabulary influenced voice
discrimination. Therefore, the only effect found for handedness and vocabulary together
was not on phoneme discrimination but on voice discrimination, and it was not a lateralized
effect. These results are nevertheless interesting to compare with the results of a previous
EEG study, which showed that right-handers with greater vocabulary size had a more
pronounced N400 effect over the right hemisphere than non-lateralized infants at 18 months
but not at 24 months [94]. It would be interesting to continue the present study with other
age groups.

In conclusion, from our results, it appears that brain asymmetries in speech and non-
speech processing—the left hemisphere for phoneme change and the right hemisphere
for voice change—are related neither to handedness nor to range of vocabulary; how-
ever, handedness and range of vocabulary together appear to influence the level of brain
responses for voice change detection. To explain this absence of a relationship between
handedness and cerebral lateralization for speech, one could quote Provins [95] in saying
that “although the development of a cerebral lateralization for speech and handedness is dependent
on both genetic and environmental factors, the specific role of inborn and postnatal influences is very
different”. It might be that a more challenging task for testing manual handedness (such as
tool use) could have evidenced a greater relationship between handedness and cerebral
lateralization for speech, as found in adult (e.g., [8]) studies. Another limitation of our
study might be that handedness was tested on a production task, whereas the language
lateralization condition was a comprehension-oriented situation.
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