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Abstract: This paper investigates the stabilization of nonlinear systems with external disturbances,
which are both bounded and unbounded. Firstly, the stabilization problem of the nominal nonlinear
system is realized, and the corresponding stabilization controllers are designed. Then, three suitable
filters are proposed and applied to asymptotically estimate the corresponding disturbances, and the
disturbance estimators are presented and used to exactly eliminate the corresponding disturbances.
Then, the disturbance estimator (DE)-based controllers are proposed to stabilize such nonlinear
systems. It should be pointed out the unbounded disturbances are exactly estimated by suitable
filters, which has advantages over the existing results. Finally, two illustrative examples, which have
certain symmetrical properties, are taken, and the related numerical simulations are carried out to
verify the effectiveness and correctness of the proposed results.
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1. Introduction

Nonlinear systems have received extensive attention; not only in control engineering
but also in biomedicine [1,2], the stability analysis and control design of nonlinear systems
are hot topics of research. In the field of control, a fundamental problem that has been
extensively studied by scholars is how to achieve the stability of a closed-loop system by
designing a feedback controller [3–5]. There are two methods to realize the control goal; one
is the input feedback, and the other is output feedback. Output feedback can maintain the
controllability and observability of the system and only needs to use external signals, but
the nonlinear system based on output feedback is a complex problem in terms of achieving
global stability, and some state variables are not measurable, mainly because the nonlinear
system has great instability and is susceptible to noise disturbances. Input feedback is often
used in theoretical analysis. How to achieve the stabilization of nonlinear systems by input
feedback has been the key to research in recent decades.

It is encouraging that some important results have been published for this problem,
e.g., schemes of using output functions; if the nonlinear term depends only on the measur-
able signal, the unknown disturbance information can be filtered by special filters, such as
high gain observers [6], K-filters [7], mt-filters [8], etc. In dealing with uncertain feedback
systems with input saturation and output constraints, an adaptive fuzzy control method
was proposed in [9], and in [10,11], the variable separation method was applied to the con-
troller design of non-strict feedback systems. It is worth noting that with the development
of modern control theory techniques, the decoupling problem has also gradually been ap-
plied to nonlinear systems [12], and the decoupling method for solving nonlinear systems
is mainly based on the differential geometry method, which solves the key problems of
nonlinear systems to a large extent. The Lyapunov direct method is an important tool to
deal with the stability of nonlinear systems. In [13], the early fractional order Lyapunov
class theory of fractional order systems was studied. In [14], the Mittag–Leffler stability and
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the generalized Mittag–Leffler stability were introduced to describe the fractional-order
Lyapunov stability of fractional-order systems [15,16].

Usually, the established nonlinear system and the actual system will inevitably produce
errors, such as parameter uncertainty [17,18], modeling errors, and unknown functions,
which require the designed controller to have strong adaptivity and robustness, and an
adaptive control method [19,20] was proposed in the early days to deal with the control
problem of nonlinear systems with unknown parameters [21–23]. It is inevitable that the
nonlinear system is subjected to disturbances that also significantly affect the behavior of
the system, and it is more realistic to consider the control problem of nonlinear systems
containing disturbances; for the disturbances containing some special forms of bounded
forms currently given, results were given in Ref. [24]. Because the nonlinear characteristics
are the cause of nonlinear phenomena, and in many control practices the characteristics
of the system need to be preserved, the difficulty of this problem lies in how to preserve
the nonlinearity while suppressing the unbounded external disturbances. Currently, some
methods for suppressing the disturbances have been proposed, such as sliding mode con-
trol methods [25,26] and neural network methods [27,28], which are able to suppress the
effects of nonlinearities and external disturbances. However, those methods compensate
for the effects of nonlinearities while not taking into account the suppression of unbounded
forms of disturbances; therefore, they do not apply to dealing with the problem of suppress-
ing the nonlinear systems containing bounded as well as unbounded forms of disturbances
considered in this paper. The uncertainty and disturbance estimation (UDE)-based control
method [29] is an effective method for dealing with model uncertainty and external distur-
bances, which has the advantage of being operationally simpler and physically easier to
implement when dealing with uncertainty and external disturbances in the system com-
pared to the above methods. The core idea of the UDE-based control method is to consider
the uncertainty and external disturbances in the system as a set total disturbance and then
estimate the set total disturbance as a whole by designing a suitable filter and canceling it
out by designing a corresponding controller to achieve the exact control goal. However, for
some unbounded disturbances, such as e0.1t, (A sin(2t) +C)e0.1t, where A 6= 0, C unknown
constants, no suitable filter has been designed in [24,29] so far. It is noted that the uncer-
tainty influences the asymptotic tracking effect of the filter. Thus, only the robust control
objective is achieved by the UDE-based control method in most cases and not the asymp-
totic control objectives. Compared to the UDE-based control method, the advantage of our
method is shown in Remark 4. It is both important and urgent to propose suitable filters
to asymptotically estimate the external disturbances. Inspired by the UDE-based control
method, this paper presents a DE-based control method which can asymptotically estimate
both bounded and unbounded disturbances and can achieve the better control objective;
thus, it can realize the problem of the stabilization of nonlinear systems with bounded
and unbounded disturbances. The main contributions of this paper are summarized
as follows

(1). The stabilization of the controlled nominal nonlinear system is realized by the dynamic
feedback control method and linear feedback control method;

(2). Three suitable filters are proposed to asymptotically estimate the correspond-
ing bounded and the unbounded disturbances, i.e., the periodic disturbance:
d1(t) = A1 sin(2t) + C1, where A1 6= 0 and C1 are unknown constants; the un-
bounded disturbances: e.g., d2(t) = A2eat, where A2 6= 0 is an unknown constant,
and a is a small known constant; and d3(t) = [A3 sin(2t) + C3]e0.1t, where A3 6= 0
and C3 are unknown constants. Then, the corresponding disturbance estimators
are presented;

(3). Three DE-based controllers are designed and used to realize the stabilization of non-
linear systems.

The rest of this paper is organized as follows. Section 2 introduces some preliminary
results, Section 3 presents the problem formation of this paper, Section 4 shows the main
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results and proofs, Section 5 provides the numerical simulation results, and Section 6 gives
the conclusions and future prospects.

Some notations used in this paper are presented before ending this section. The Laplace
transformation is expressed by “`”, and “`−1” stands for the inverse Laplace transformation, i.e.,

F(s) = `[ f (t)] =
∫ +∞

0
f (t)e−stdt,

where s is a complex variable with Re(s) > 0, f (t) is a function which meets some appro-
priate conditions, and f (t) = `−1[F(s)].

In addition, “∗” represents the convolution of two functions; that is,

f (t) ∗ g(t) =
∫ t

0
f (t− τ)g(τ)dτ =

∫ t

0
f (τ)g(t− τ)dτ,

where g(t) is a function that satisfies certain conditions.

2. Preliminary

For the sequel use, some preliminary results are presented in the following paragraphs.

Lemma 1 ([30]). Consider the following system

q̇ = H(q) + Bu, (1)

where q ∈ Rn is the state, B ∈ Rn×l , l ≥ 1, and u is the controller to be designed. If (H(q), B) is
controllable, then the stabilization controller u is

u = K(t)q, (2)

where K(t) = k(t)BT and

k̇(t) = −qTq = −‖q(t)‖2 = −
n

∑
i=1

q2
i . (3)

Lemma 2 ([31]). Consider the nonlinear system

ẏ = G(y) + D(t). (4)

If the system ẏ = G(y) is exponentially asymptotically stable, and ‖D(t)‖ ≤ λe−µt, where λ > 0,
and µ > 0 is sufficiently larger number, then lim

t→∞
‖y(t)‖ = 0.

3. Problem Formation

Consider the controlled nonlinear system with external disturbances

ẋ = f (x) + d(t) + Bu, (5)

where x ∈ Rn is the state, f (x) = ( f1(x), . . . , fn(x))T ∈ Rn is a continuous vector function,
d(t) = (d1(t), . . . , dn(t))T ∈ Rn represents the disturbances, B ∈ Rn is a constant vector, and
u = us + ud ∈ R is the controller to be designed, where us is used to stabilize the original
system without the disturbance d(t) in the following form

ẋ = f (x) + Bus = F(x), (6)

which is usually called the controlled nominal system, and ud is the disturbance estimator,
which meets the following performance:

Bud = −d̂(t)→ −d(t), t→ +∞. (7)
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The main goal of this paper is to design the DE-based controller u to achieve the
following performance:

lim
t→∞
‖x(t)‖ = 0. (8)

The DE-based controller u is presented by the following two steps: in the first step,
the stabilization of the nominal system (6) is realized, and the stabilization controller us is
designed. The disturbance estimator ud is proposed in the second step. Thus, the DE-based
controller u = us + ud is obtained, and the stabilization of system (5) is achieved.

4. Main Results
4.1. Stabilization of the Controlled Nominal System

In this section, the stabilization of nominal system (6) is investigated, and a conclusion
is derived as follows.

Theorem 1. Consider the controlled nominal system (6). If ( f (x), B) is controllable, the stabiliza-
tion controller us is designed as

us = K(t)x, (9)

where K(t) = k(t)BT , and
k̇(t) = −‖x(t)‖2. (10)

Proof. Since ( f (x), B) is controllable, the conclusion of this theorem is proved according
to the dynamic feedback control method in Lemma 1.

4.2. Suitable Filters Are Designed for the Corresponding External Disturbances

Filters are mainly composed of filter circuits consisting of inductors and capacitors,
which are widely used in control systems to eliminate the effects of disturbances. The
filter allows useful signals to pass through, and it has a large attenuation of high-frequency
disturbance signals. Thus, it can improve the disturbance rejection performance of the
investigated system by realizing the separation of useful signals from disturbance signals
and eliminating the influence of the bounded and unbounded disturbances on such systems.

In this section, some appropriate filters are proposed for the bounded and unbounded
disturbances.

Theorem 2. For the periodically external disturbance: d1(t) = A1 sin(2t) + C1, where A1 6= 0
and C1 are unknown constants, a suitable filter G f1(s) is presented as follows

G f1(s) =
10s4 + 240s3 + 1680s2 + 2800s + 4160

s5 + 32s4 + 368s3 + 1768s2 + 3296s + 4160
, (11)

where G f1(s) = `[g f1(t)], and g f1 (t) is given by the inverse Laplace transform formula

g f1(t) =
260
21 e−10t − 930e−10t cos(2t)− 595

44733 sin(2t)− 4520e−t cos(
√

3t) + 20
√

3
380471 sin(

√
3t), (12)

which meets the following performance:

d̂1(t) = d1(t) ∗ `−1
[

G f1(s)
]
= d1(t) ∗ g f1(t)→ d1(t), as t→ ∞. (13)

Proof. We compute the following convolution, and it concludes
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d1(t) ∗ g f1(t) =
∫ t

0
(A1 sin(2τ) + C1)g f1(t− τ)dτ

= A1sin(2t)+C1 + e−10t
[
(cos(2t) + sin(2t))(234A1 − 715C1)− 125A1 + 125C1

481

]
+e−10t (5A1 − 26C1)

21
+ e−t

[
530(A1 − C1)(cos(

√
3t) +

√
3 sin(

√
3t)

10101

]
→ d1(t)

(14)

as t→ +∞.
Thus, the proof of above theorem is complete.

Theorem 3. For the unbounded exponentially increasing external disturbance: d2(t) = A2eat,
where A2 6= 0 is an unknown constant, and a is a small known constant, a suitable filter G f2(s) is
presented as follows

G f2(s) =
20

s− a + 20
, (15)

where G f2(s) = `[g f2(t)] and g f2(t) is given by the inverse Laplace transform formula

g f2(t) = `−1
[

G f2(s)
]
= 20e(a−20)t, (16)

which meets the following performance:

d̂2(t) = d2(t) ∗ `−1
[

G f2(s)
]
= d2(t) ∗ g f2(t)→ d2(t), as t→ ∞. (17)

Proof. Computing the following convolution results in

d2(t) ∗ g f2(t) =
∫ t

0
d2(τ) · g f2(t− τ)dτ

=
∫ t

0
A2eaτ · 20e(a−20)(t−τ)dτ

= 20A2

∫ t

0
eaτ · e(a−20)(t−τ)dτ

= A2eat − A2e(a−20)t

→ d2(t)

(18)

as t→ +∞.
Thus, the proof of the above theorem is complete.

Theorem 4. For the unbounded external disturbance: d3(t) = [A3 sin(2t) + C3]e0.1t, where
A3 6= 0 and C3 are unknown constants, a suitable filter G f3(s) is presented as follows

G f3(s) =
a1s4 + a2s3 + a3s2 + a4s + a5

a6s5 + a7s4 + a8s3 + a9s2 + a10s + a11
, (19)

where a1 = 1,000,000, a2 = 23,600,000, a3 = 23,600,000, a4 = 247,116,000, a5 = 389,656,100,
a6 = 100,000, a7 = 3,150,000, a8 = 35,530,000, a9 = 165,951,000, a10 = 295,331,250, a11 = 384,771,519,
G f3(s) = `

[
g f3(t)

]
, and g f3(t) is given by the inverse Laplace transform formula
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g f3(t) = `−1[G f3(s)]

=
260
21
· e−9.9t − 930e−9.9t cos(2t)− 595

44733
sin(2t)

− 4520e−0.9t cos(
√

3t) +
20
√

3 sin(
√

3t)
380471

,

(20)

which meets the following performance:

d̂3(t) = d3(t) ∗ `−1
[

G f3(s)
]
= d3(t) ∗ g f3(t)→ d3(t), as t→ ∞. (21)

Proof. Computing the following convolution, we obtain

d3(t) ∗ g f3(t) =
∫ t

0
d3(τ) · g f3(t− τ)dτ

=
∫ t

0
[A3 sin(2τ) + C3]e0.1τ g f3(t− τ)dτ

= e−9.9t (5A3 − 26C3)

21
+ C3e0.1t + A3 sin(2t)e0.1t

+ e−9.9t
[
(cos(2t) + sin 2t)(186A3 − 571C3)

20(A3 − C3)
− 495(A3 − C3)

1924

]

− e−0.9t
[
(cos(2t) + sin(2t))(930A3 − 2855C3)

30303(586A3 − 586C3)
− 3

10

]

→ [A3 sin(2t) + C3]e0.1t = d3(t).

(22)

as t→ +∞. Thus, the proof of above theorem is complete.

Remark 1. Compared with the existing results, not only is the bounded disturbance considered,
such as the periodic disturbance: d1(t) = A1 sin(2t) + C1, where A1 6= 0 and C1 are unknown
constants, but the unbounded disturbances are also handled, e.g., d2(t) = A2eat, where A2 6= 0 is
an unknown constant, and a is a small known constant, and d3(t) = [A3 sin(2t) + C3]e0.1t, where
A3 6= 0 and C3 are unknown constants. Thus, the results in this paper have advantages over the
existing ones.

4.3. The Disturbance Estimators Are Designed for the External Disturbances

Theorem 5. For the nonlinear system (5), the disturbance estimator ud is presented as follows

ud = B+

{
`−1

[
G f (s)

1− G f (s)

]
∗ F(x)− `−1

[
sG f (s)

1− G f (s)

]
∗ x(t)

}
, (23)

where B+ = (BT B)−1BT , F(x) is given in Equation (6).

Proof. Substituting the controller u = us + ud into the system (5), we obtain

ẋ = f (x) + Bus + Bud + d(t) = F(x) + Bud + d(t), (24)

where ẋ = F(x) is asymptotically stable by the effect of the stabilization controller us, and

Bud = −d̂(t) = −(ẋ− F(x)− Bud) ∗ g f (t)→ −d(t), t→ +∞. (25)
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Thus, system (24) is written as
ẋ = F(x) + d̃(t), (26)

where d̃(t) = d(t)− d̂(t)→ 0.
According to Lemma 2, system (26) is asymptotically stable, which implies that sys-

tem (5) is stabilized.
Taking the Laplace transformation for both sides of Equation (25), the disturbance

estimator ud given in Equation (23) is obtained, which completes the proof.

5. Illustrative Examples and Numerical Simulations

In this section, two illustrative examples with numerical simulations are used to verify
the feasibility of the proposed results.

The first example is the famous Lorenz system. It is one of the most classical low-
dimensional chaos models, introduced by Lorenz as a finite approximation to the partial
equations simulating convective motion in a fluid layer, which has attracted extensive
research by scholars, and through the study of this system, it was found that the sys-
tem has three equilibrium states, two of which are symmetric with the transformation
(x, y, z)T → (−x,−y, z)T . The trajectories of the system circulating around the two sym-
metric foci may form chaotic attractors, the famous butterfly effect. The other one is the
Chen–Lee system, which also has a similar symmetrical property.

Example 1. The Lorenz system [32] with external disturbances

ẋ = f (x) + d(t) + Bu, (27)

where x ∈ R3 is the state, and

f (x) =

 −10(x1 − x2)
28x1 − x2 − x1x3

x1x2 − 8
3 x3

, B =

 0
1
0

, (28)

has d(t) as the disturbance, i.e.,
Case 1:

d(t) =

 d1(t)
d2(t)
d3(t)

 =

 0
A1 sin(2t) + C1

0

, (29)

Case 2:

d(t) =

 d1(t)
d2(t)
d3(t)

 =

 0
A2eat

0

, (30)

where A1 6= 0, A2 6= 0, and C1 are unknown constants, and a is a known small constant.
There are two steps to obtain the controller u = us + ud. In the first step, us is

proposed and used to stabilize the controlled nominal system ẋ = f (x) + Bus = F(x). The
disturbance estimator ud with a suitable filter is presented in the second step.

Firstly, for the controlled nominal system ẋ = f (x) + Bus = F(x), and it gives the
following controller:

us = Kx = (−38, 0, 0)x = −38x1, (31)

and the controlled nominal system is presented as

ẋ = F(x) = f (x) + Bus =

 −10x1 + 10x2
−10x1 − x2 − x1x3
x1x2 − 8

3 x3

. (32)
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Next, let the Lyapunov function V(x) be [16]

V(x) =
1
2

(
x2

1 + x2
2 + x2

3

)
(33)

and the derivative of V(x) along the system (32) be

V̇(x) = x1 ẋ1 + x2 ẋ2 + x3 ẋ3 = −10x2
1 − x2

2 −
8
3 x2

3 ≤ 0 . (34)

Thus, system (32) is globally asymptotically stable.
Secondly, the disturbance estimator ud with suitable filter is presented for the given

disturbance.
Case 1: For the disturbance given in Equation (29), according to Theorem 5, the

disturbance estimator ud is proposed as

ud = B+`−1

[
G f1(s)

1− G f1(s)

]
∗ F(x)− B+`−1

[
sG f1(s)

1− G f1(s)

]
∗ x(t)

= `−1

[
G f1(s)

1− G f1(s)

]
∗ (−10x1 − x2 − x1x3)− `−1

[
sG f1(s)

1− G f1(s)

]
∗ x2(t)

, (35)

where G f1(s) is given in Equation (11), and F(x) is given in Equation (32).

Remark 2. Since ( f (x), B) is controllable, another stabilization controller us = k(t)x2 and
k̇(t) = −x2

2, according to Theorem 1. According to Theorem 5, another disturbance estimator ud is
proposed as

ud = `−1

[
G f1(s)

1− G f1(s)

]
∗ (28x1 − x2 − x1x3 + k(t)x2)− `−1

[
sG f1(s)

1− G f1(s)

]
∗ x2(t), (36)

where G f1(s) is given in Equation (11).

Case 2: For the disturbance given in Equation (30), according to Theorem 5, the
disturbance estimator ud is proposed as

ud = `−1

[
G f2(s)

1− G f2(s)

]
∗ (−10x1 − x2 − x1x3)− `−1

[
sG f2(s)

1− G f2(s)

]
∗ x2(t), (37)

where G f2(s) is given in Equation (15).

Remark 3. Since ( f (x), B) is controllable, another stabilization controller us = k(t)x2 and
k̇(t) = −x2

2, according to Theorem 1. According to Theorem 5, another disturbance estimator ud is
proposed as

ud = `−1

[
G f2(s)

1− G f2(s)

]
∗ (28x1 − x2 − x1x3 + k(t)x2)− `−1

[
sG f2(s)

1− G f2(s)

]
∗ x2(t), (38)

where G f2(s) is given in Equation (15).

Case 1: Numerical simulations were made with the initial condition of the Lorenz
system (27): x(0) = [1, 2, 3], and A1 = 2, C1 = 4. The controller u = us + ud, where us is
given in Equation (31), and ud is given in Equation (35).

From Figure 1, it can be seen that the Lorenz system (27) is asymptotically stable
under the DE-based controller u. Figure 2 shows d̂2(t) tends to the disturbance d2(t) as
t→ +∞, which shows the disturbance can be estimated asymptotically and thus it can be
eliminated exactly.
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Figure 1. The Lorenz system (27) is asymptotically stable.
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Figure 2. Disturbance estimator d̂2(t) tends to the disturbance d2(t) as t→ +∞.

Remark 4. For the disturbance d2(t), the proposed filter in Ref. [29] is given as follows

G f (s) =
a1s + (a2 − w2)

s2 + a1s + a2
, (39)

where w = 4π, a1 = 10 w, and a2 = 100 w2.

Let y = d2(t) ∗ g f (t) = d2(t)`−1[G f (s)] and e = y− d2(t); the numerical simulation is
carried out with t = 0 : 0.01 : 10, and the state of e is shown below.

From Figure 3, it can be seen that the proposed filter in Equation (39) only realizes the
robust estimation of d2(t), but the designed filter in (12) can asymptotically estimate the
d2(t). Therefore, the obtained result has advantages over the existing ones.
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Figure 3. The state of e.

Case 2: Numerical simulations were carried out with the initial condition of the Lorenz
system (27): x(0) = [−10, 16, 8], and A2 = 5, a = 0.1. The controller u = us + ud, where us
is given in Equation (31), and ud is given in Equation (35).

It can be seen from Figure 4 that the Lorenz system (27) is asymptotically stable under
the DE-based controller u. Figure 5 illustrates that d̂2(t) converges to the disturbance d2(t)
as t→ +∞, which shows the disturbance can be estimated asymptotically and thus it can
be eliminated exactly.
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Figure 4. The Lorenz system (27) is asymptotically stable.
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Figure 5. Disturbance estimator d̂2(t) converges to the disturbance d2(t).

Example 2. Following is the Chen–Lee system [33] with the unbounded external disturbance

ẋ = f (x) + d(t) + Bu, (40)

where x ∈ R3 is the state,

f (x) =

 −x2x3 + 5x1
−10x2 + x1x3
1
3 x1x2 − 3.8x3

, B =

 1
0
0

, (41)

and

d(t) =

 d1(t)
d2(t)
d3(t)

 =

 A3 sin(2t + C3)e0.1t

0
0

. (42)

Using similar procedures to Example 1, the DE-based controller u = us + ud is pre-
sented as follows

us = −6x1 (43)

ud = B+`−1

[
G f3(s)

1− G f3(s)

]
∗ F(x)− B+`−1

[
sG f3(s)

1− G f3(s)

]
∗ x(t)

= `−1

[
G f3(s)

1− G f3(s)

]
∗ (−x2x3 − x1)− `−1

[
sG f3(s)

1− G f1(s)

]
∗ x1(t),

(44)

where

F(x) = f (x) + Bus =

 −x2x3 − x1
−10x2 + x1x3
1
3 x1x2 − 3.8x3

, (45)

and G f3 is given in Equation (19).
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Numerical simulations were made with the initial condition of the Chen–Lee sys-
tem (40): x(0) = [−1, 4,−5], and A3 = 4, C3 = 3. The controller u = us + ud, where us is
given in Equation (43), and ud is given in Equation (44).

It can be observed from Figure 6 that the controlled system is asymptotically stable
under the DE-based controller u, and Figure 7 demonstrates that d̂1(t) tends to the distur-
bance d1(t) as t→ +∞, which shows the disturbance can be estimated asymptotically and
thus it can be eliminated exactly.

0 1 2 3 4 5 6 7 8 9 10
time/s

-10

-8

-6

-4

-2

0

2

4

6

8

10

x 1,x
2,x

3
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x
2

x
3

Figure 6. The Chen−Lee system (40) is asymptotically stable.
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time/s
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0
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15

Figure 7. Disturbance estimator d̂1(t) tends to the disturbance d1(t).
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6. Conclusions and Future Prospects

The stabilization of the nonlinear system with external disturbance (both bounded
and unbounded) was investigated. Firstly, the stabilization of the nominal system was
achieved by the dynamic feedback control method and linear feedback control method, and
the corresponding stabilization controllers were proposed. Then, three suitable filters were
designed and used to asymptotically estimate the corresponding bounded or unbounded
disturbances; then, disturbance estimators were presented. Thus, the DE-based controllers
were proposed and applied to realize the stabilization of the nonlinear systems. The
stabilization problem of nonlinear systems was realized by estimating the disturbance
asymptotically and eliminating it exactly, so it has some advantages over the existing
ones. Finally, the effectiveness and validity of the proposed results was verified by the
numerical simulations.

The limitations and shortcomings of the proposed method include the need for care-
fully considering the model uncertainty. In future work, we will consider the control
problems of nonlinear systems including uncertainties and disturbances, and we wish to
improve the performance of the existing UDE-based control method.
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