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Abstract: Dispersal among species is an important factor that can govern the prey–predator model’s
dynamics and cause a variety of spatial structures on a geographical scale. These structures form
when passive diffusion interacts with the reaction part of the reaction–diffusion system in such a
way that even if the reaction lacks symmetry-breaking capabilities, diffusion can destabilize the
symmetry and allow the system to have them. In this article, we look at how dispersal affects the
prey–predator model with a Hassell–Varley-type functional response when predators do not form
tight groups. By considering linear stability, the temporal stability of the model and the conditions
for Hopf bifurcation at feasible equilibrium are derived. We explored spatial stability in the presence
of diffusion and developed the criterion for diffusion-driven instability. Using amplitude equations,
we then investigated the selection of Turing patterns around the Turing bifurcation threshold. The
examination of the stability of these amplitude equations led to the discovery of numerous Turing
patterns. Finally, numerical simulations were performed to validate the outcomes of the analysis. The
outcomes of the theoretical study and numerical simulation were accorded. Our findings demonstrate
that spatial patterns are sensitive to dispersal and predator death rates.

Keywords: prey–predator model; Hassell–Varley functional response; diffusion-driven instability;
weakly nonlinear analysis; Turing patterns

1. Introduction

Group behavior is observed among organisms everywhere on Earth, on land, and in
the oceans. According to their needs and nature, organisms form small or large groups.
Prey are the organisms that defend themselves from other organisms, whereas predators
are those who hunt the prey. The interaction between prey and predators is known as the
prey–predator relationship, and research into these interactions is an important topic in
ecology. Studies of these interactions can identify system imbalances caused by human
disruption and improve the survival of prey or predators. Due to their applicability in
mathematical ecology, numerous prey–predator models have been devised and thoroughly
researched [1–5].

In prey–predator models, several environmental variables affect population dynamics,
and the functional response is one of them. The functional response defines the intake rate
of a predator as a function of prey density. Therefore, several functional responses have
been identified and examined by researchers; some of them are the Holling type I–IV [6–11],

Symmetry 2023, 15, 986. https://doi.org/10.3390/sym15050986 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15050986
https://doi.org/10.3390/sym15050986
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-7473-7115
https://orcid.org/0000-0001-8050-5639
https://orcid.org/0000-0002-6537-7891
https://orcid.org/0000-0002-7201-6381
https://orcid.org/0000-0001-8411-9233
https://doi.org/10.3390/sym15050986
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15050986?type=check_update&version=2


Symmetry 2023, 15, 986 2 of 20

Crowley–Martin type [12], and Beddington–DeAngelis type [13], as well as modified forms
of these types. In this research, we employ the Hassell–Varley (H-V) functional response(

F(u, v) = cuv
u+mvγ

)
, which is dependent on predator density, to represent the size of the

group formed by predators for hunting. The predator group size is determined by the H-V
constant (γ ∈ (0, 1]). For γ = 1, no group is formed, and a ratio-dependent prey–predator
model is generated. If γ = 1

2 , a fixed number of tight groups are formed; these sizes
are typical of terrestrial predators. For γ = 1

3 , very tight groups, as observed in aquatic
predators, are formed [14].

In a real environment, organisms require finite space to collect the resources they need
to survive, and the size of the space may fluctuate with changes in resource availability
and population density. To fulfill their needs and survival, the organisms must disperse
throughout space. This irregular movement among organisms shows various spatial
structures on a geographical scale. These structures represent the geographical interaction
between organisms and the biodiversity of the surrounding environment. The study of
these spatial formations has become more popular recently.

Alan Turing introduced pattern research for the first time in 1952. According to him, a
few reaction–diffusion (R-D) equations express spatial patterns when the system of ordinary
differential equations is asymptotically stable without diffusion. However, with diffusion,
the system becomes unstable, and gives a variety of spatial patterns [15–18]. Weakly non-
linear analysis is effective for understanding spatial pattern formation in an R-D system. At
the beginning of the Turing bifurcation, a small nonhomogeneous perturbation causes the
system’s steady state to lose stability. To explore active slow modes, the amplitude equation
is applied, and stability analysis produces spots, stripes, and mixed patterns [19–27].

In recent years, much research has been carried out using the H-V function response.
Kumar and Kumari [28] examined the prey–predator system with Hassell–Varley functional
response with the fear effect, and observed that fear can stabilize the periodic oscillation
in the case of aquatic and terrestrial prey–predator interactions. Li and Tian [29] studied
the dynamic behavior analysis of the feedback control predator–prey model with an ex-
ponential fear effect and Hassell–Varley functional response. Du and Lian [30], studied
the stochastic delayed predator–prey model with Hassell–Varley functional response, and
examined the boundedness, extinction, and global stability. Xie et al. [31] investigated a
discrete Hassell–Varley functional prey–predator system with feedback control and ob-
tained the conditions for the existence and uniqueness of periodic solutions. Kim and
Baek [32], examined the dynamics of an impulsively controlled predator-prey system with
the Hassell–Varley functional response, and observed that with a periodically impulsive
effect, the system becomes more complex. Pathak et al. [33] examined the food chain
model with Hassell–Varley response and studied the impact of time delay on the system,
and observed that the system may be used for the biocontrol of pests. For more work on
Hassell–Varley functional response, one could refer to the work of [34–38].

From the above literature review, it is clear that temporal, delayed analyses have been
performed on the prey–predator system with H-V function response, and the results are
focused on the predator’s forms of tight or very tight groups on an aquatic or terrestrial
scale. However, most predators on earth do not form a fixed number of tight groups.
Therefore, in this article, we composed a prey–predator model in which predators are
not forming tight groups, i.e., γ ∈ ( 1

2 , 1]. This research aims to develop a diffusive prey–
predator model in which prey–predator interaction is specified by H-V functional response,
to understand the influence of dispersal and mortality of predators on a spatial scale.

The article is organized as follows: In Section 2, we formulate the diffusive prey–
predator model using the H-V functional response. The linear stability and Hopf bifurcation
analysis are discussed in Section 3. In Section 4, the stability of the diffusive model is
discussed, and the diffusion-driven instability condition is derived. Then, we derived the
amplitude equations using weakly nonlinear analysis and examined stability in Section 5.
In Section 6, we performed numerical simulations to validate the analytical results, and
lastly, the conclusions are drawn in Section 7.
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2. The Mathematical Model

We consider the general prey–predator model with H-V type functional response
as [14]:

dU
dT

= rU
(

1− U
K

)
− cUV

U + mVγ
,

dV
dT

= V
(
− D +

f U
U + mVγ

)
,

(1)

where U and V are the population densities of the prey and predator species at time t > 0,
respectively, and other biological parameters are assumed to be positive, and are defined in
Table 1.

Table 1. Parameters and their definitions.

Parameter Biological Meaning

r is an intrinsic growth rate of prey
K is carrying capacity
c is attack rate
γ is Hassell–Varley (H-V) constant
m is half-saturation constant
f is conversion rate
D is death rate of predators

To reduce the number of parameters in model (1), we nondimensionalize the model
through nondimensional variables and parameters such as [14]:

T → at , U → u
K

, V → α

v
, α =

(m
K

) 1
γ

, s =
cK

1
γ

aKm
1
γ

, δ =
f
a

, d =
D
f

.

Then, the nondimensional model has the form

du
dt

= u(1− u)− suv
u + vγ

,

dv
dt

= δv
(
− d +

u
u + vγ

)
.

(2)

We extend the temporal model (2) into the spatiotemporal model to account for the
random movement of species in a two-dimensional habitat. In the proposed mathematical
model, the reaction part defines the interaction of species and the diffusion defines the
random movement of species. With the addition of diffusion into the model (2), the
modified model is defined as

∂u
∂t

=

reaction︷ ︸︸ ︷
u(1− u)− suv

u + vγ
+

di f f usion︷ ︸︸ ︷
d1∇2u ,

∂v
∂t

= δv
(
− d +

u
u + vγ

)
︸ ︷︷ ︸+ d2∇2v︸ ︷︷ ︸ ,

(3)

with non-negative initial condition and zero-flux boundary condition

∂u
∂η = ∂v

∂η = 0, t > 0, r ∈ ∂Ω, (4)

u(r, 0) > 0, v(r, 0) > 0, (5)

r = (x, y) ∈ Ω,
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where d1 and d2 represent the diffusion coefficients of prey and predator, respectively; ∇2

is the Laplace operator in 2-D space, i.e., Ω = [0, L]× [0, L] ∈ <2; and η is the unit outward
normal to ∂Ω. The zero-flux boundary condition ensures that the system is isolated.

3. Linear Stability Analysis

In this section, we study the stability of the equilibrium points of the model (2). On
computing, the system has the following equilibrium points:

• E0 = (0, 0),
• Ea = (1, 0), and
• E∗ = (u∗, v∗).

where u∗ = dvγ

1−d , and v∗ is obtained from the expression (d− 1)2sv + vγ(dvγ + d− 1) = 0
for the defined value of γ.

From a biological perspective, we are interested in an equilibrium state where both
species coexist: E∗ = (u∗, v∗). Since our model is too complicated to obtain the interior
equilibrium point E∗ = (u∗, v∗) analytically, we therefore studied them by numerical
simulations.

The variational matrix of model (2) at E∗ is given by

JE∗ =

[
a11 a12
a21 a22

]
,

=

−
sv∗

u∗+v∗γ + u∗
(

sv∗

(u∗+v∗γ)2 − 2
)
+ 1 − su∗(u∗−(γ−1)v∗γ)

(u∗+v∗γ)2

δv∗γ+1

(u∗+v∗γ)2 δ

(
u∗(u∗−(γ−1)v∗γ)

(u∗+v∗γ)2 − d
)
.

(6)

To examine the stability of equilibrium point E∗, we investigate the variational matrix’s
characteristic equation

σ2 − Tr(JE∗)σ + Det(JE∗) = 0, (7)

where

Tr(JE∗) = −dδ +
u∗(sv∗ + γδu∗)

(u∗ + v∗γ)2 − sv∗ + (γ− 1)δu∗

u∗ + v∗γ − 2u∗ + 1,

Det(JE∗) =
δ
(

v∗γ
(

dsv∗ + 2u∗2(γ + 2d− 1)− u∗(γ + 2d− 1)
))

(u∗ + v∗γ)2

+
δ
(
(d− 1)u∗2(2u∗ − 1) + d(2u∗ − 1)v∗2γ

)
(u∗ + v∗γ)2 .

According to Routh–Hurwitz stability criteria, the local stability of model (2) is de-
scribed by

• Tr(JE∗) < 0,
• Det(JE∗) > 0.

From the above results, we have

Theorem 1. At E∗, the model (2) is locally asymptotically stable if the following conditions hold:

1. u∗( sv∗+δ(u∗−(γ−1)v∗γ)
(u∗+v∗γ)2 − 2) + 1 < dδ + sv∗

u∗+v∗γ ,

2. δ(u∗ + v∗γ)2(v∗γ(dsv∗ + 2u∗2(γ + 2d− 1)− u∗(γ + 2d− 1)) + (d− 1)u∗2(2u∗ − 1) +
d(2u∗ − 1)v∗2γ) > 0.
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Hopf Bifurcation Analysis

Now, we examine the possibility of Hopf bifurcation with respect to the death rate of
predators (d) around E∗. Hopf bifurcation is the simple scenario for the models’ stability
changes, and periodic solutions emerge. For that, the characteristic roots of Equation (7)
should be purely complex. The roots of Equation (7) are

σ1,2 =
Tr(JE∗)±

√
Tr(JE∗)2 − 4Det(JE∗)

2
(8)

where Tr(JE∗) = α1 and Det(JE∗) = α2 are the functions of d.
Let the imaginary complex characteristic root of the characteristic Equation (7) be

σ1,2(d̄) = β1(d̄)± ιβ2(d̄), which is obtained from α1 = 0 and α2 > 0. From α1 = 0, the
critical value of d̄ is

d̄ =
v∗γ(−(sv∗ + u∗((γ− 1)δ + 4u∗ − 2))) + u∗2(δ− 2u∗ + 1) + (1− 2u∗)v∗2γ

δ(u∗ + v∗γ)2 .

Theorem 2. At E∗, the model (2) will undergo Hopf bifurcation if the following conditions hold:

1. β1(d̄) = 0,

2.
[

Re(σ′(d))
]

d=d̄
6= 0.

Proof. On substituting σ1 into Equation (7) and collecting the imaginary and real part, we
have

β1
2 − β2

2 + α1β1 + α2 = 0, (9)

2β1β2 + α1β2 = 0. (10)

For d = d̄, β1(d̄) = 0, then Equation (9) reduces to

α1β2 = 0, and − β2
2 + α2 = 0 with β2 6= 0. (11)

Then, we have α1(d̄) = 0 and β2(d̄) =
√

α2(d̄), which gives σ(d̄) = −ι
√

α2(d̄). On
substituting β1(d̄) = 0 after differentiating Equation (9) with respect to d, we have

α1β1
′(d)− 2β2β2

′(d) = − 2β2β1
′(d) + α1β2

′(d) = −β2α1
′(d). (12)

Solving Equation (12) gives

[
Re(σ′(d))

]
d=d̄

= −
[α1α2

′(d) + 2β2
2α1
′(d)

α1 + 4β2
2

]
d=d̄
6= 0, (13)

provided α1α2
′(d) + 2β2

2α1
′(d) 6= 0.

4. Diffusion-Driven Instability

For diffusion-driven instability, we assume that model (2) is temporally stable and
linearize model (3) for E∗ = (u∗, v∗), which gives

ż = JE∗z + D′∇2z, (14)

where

z =

[
u− u∗

v− v∗

]
, D′ =

[
d1 0
0 d2

]
, (15)
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and JE∗ is defined in Equation (6). Let the solution of Equation (14) be

z = εcke(σt+ik.r) + c.c. + O(ε2), (16)

where k is the wave number, r is the spatial vector, i is the imaginary unit (i2 = −1), σ is the
growth rate of perturbation in time t, and c.c. represents the conjugate of the amplitudes
associated with the modes −k.

Substituting Equation (16) into Equation (14), then∣∣∣∣a11 − k2d1 − σ a12
a21 a22 − k2d2 − σ

∣∣∣∣ = 0. (17)

Solving Equation (17) yields the characteristic equation

σ2 −Λ1(k2)σ + Λ2(k2) = 0 (18)

where

Λ1(k2) = Tr(JE∗)− (d1 + d2)k2,

Λ2(k2) = Det(JE∗)− (a11d2 + a22d1)k2 + d1d2k4.
(19)

As per A. M. Turing’s theory, the conditions for diffusion-driven instability occur if
the system Equation (3) breaks its stability and becomes spatially unstable. Obviously,
Λ1(k2) = Tr(JE∗)− (d1 + d2)k2 < 0 as Tr(JE∗) < 0 and k, d1, d2 > 0.

Thus, the only condition that can describe the instability is

Λ2(k2) = Det(JE∗)− (a11d2 + a22d1)k2 + d1d2k4 < 0.

for some nonzero k. On differentiating Λ2(k2) with respect to k2, we have

Λ2(k2
min) = Det(JE∗)−

(a11d2 + a22d1)
2

4d1d2
, k2 = k2

min =
a11d2 + a22d1

2d1d2
.

Thus , the condition that Λ2(k2) < 0 for some k2 6= 0 is

Det(JE∗) <
(a11d2 + a22d1)

2

4d1d2
. (20)

The critical conditions for Turing bifurcation (Turing instability) are Re(σ(k)) = 0 and
Im(σ(k)) = 0, which require the transversal condition to be met and Λ2(k2

min) = 0 (Turing

function), i.e., Det(JE∗) =
(a11d2+a22d1)

2

4d1d2
[15,16].

The critical wave number k = kT is then given (using Equation (20)) by

k2
T =

a11d2 + a22d1

2d1d2
=

√
Det(JE∗)

d1d2
.

On substituting the value of kT
2 in Λ2(k2) < 0, we obtain the critical condition for Turing

instability:
(a11d2 + a22d1)

2 > 4(a11a22 − a21a12)d1d2. (21)

The above analysis gives:

Theorem 3. At E∗, the model (3) exhibits diffusion-driven instability if

1. a11 + a22 < 0 and a11a22 − a12a21 > 0,
2. a11d2 + a22d1 > 0,
3. (a11d2 + a22d1)

2 > 4(a11a22 − a21a12)d1d2
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Next, by considering d1 as a Turing bifurcation parameter, we derive the amplitude
equations, and the threshold value of the Turing bifurcation parameter d1 = dT

1 is presented
in Figure 1, along with the region for Turing patterns in the d1 − d2 plane.
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Figure 1. (A) The value of the Turing bifurcation parameter corresponding to the diffusion−driven
instability. (B) Turing region in the d1 − d2 plane. (C) Plot of Re(σ) versus k for varying d1. (D) Plot
of Λ2(k2) versus k for varying d1. Fixed parameters: s = 2, γ = 2

3 , δ = 1, d = 0.3, and d2 = 1.

5. Weakly Nonlinear Analysis

In this section, we derive the amplitude equations and analyze the Turing patterns
(e.g., spots and stripe patterns) through multiple-scale analysis. These patterns are well
described by a system of three active resonant pairs of modes (k j,−k j) (j = 1,2,3) with an
angle of 2π/3, and where |k j| = kT .

First, we linearize the model (3) at E∗ = (u∗, v∗), and represent the system in matrix
form as:

∂

∂t

[
u
v

]
=

[
a11 a12
a21 a22

][
u
v

]
+

1
2

[
fuuu2 + 2 fuvuv + fvvv2

guuu2 + 2guvuv + gvvv2

]
+

1
6

[
fuuuu3 + 3 fuuvu2v + 3 fuvvuv2 + fvvvv3

guuuu3 + 3guuvu2v + 3guvvuv2 + gvvvv3

]
+

[
d1∇2u
d2∇2v

]
.

(22)

The solution of model (3) near d1 = dT
1 can be expressed as follows:

U =

[
u
v

]
=

3

∑
j=1

[
Cu

j
Cv

j

]
e(ikj .r) + c.c. (23)

So, Equation (22) can be rewritten as:

∂U
∂t

= UL + N (24)



Symmetry 2023, 15, 986 8 of 20

where L and N represent the linear and nonlinear terms, respectively.

U = [u, v]T , L =

[
a11 + d1∇2 a12

a21 a22 + d2∇2

]
,

and
N = ε2N2 + ε3N3 + O(ε4), where

N2 =
1
2

[
fuuu2

1 + 2 fuvu1v1 + fvvv2
1

guuu2
1 + 2guvu1v1 + gvvv2

1

]

N3 =


fuuu1u2 + fuv(u1v2 + u2v1) + fvvv1v2 +

1
6

(
fuuuu3

1 + 3 fuuvu2
1v1

+3 fuvvu1v2
1 + fvvvv3

1

)
guuu1u2 + guv(u1v2 + u2v1) + gvvv1v2 +

1
6

(
guuuu3

1 + 3guuvu2
1v1

+3guvvu1v2
1 + gvvvv3

1

)


Now, we expand the bifurcation parameter d1 and U through perturbation techniques, as
follows:

d1
T − d1 = εd1

(1) + ε2d1
(2) + O(ε3), (25)

U =

[
u
v

]
= ε

[
u1
v1

]
+ ε2

[
u2
v2

]
+ ε3

[
u3
v3

]
+ O(ε4). (26)

On substituting Equation (25) into L, we obtain

L = LT + εd1
(1)M + ε2d1

(2)M + O(ε3), (27)

where

LT =

[
a11 + dT

1∇2 a12
a21 a22 + d2∇2

]
and M =

[
∇2 0
0 0

]
. (28)

At the initial stage, the amplitude Cj varies slowly; therefore, ∂
∂T0

= 0. Hence, the expansion
of time t is

∂

∂t
= ε

∂

∂T1
+ ε2 ∂

∂T2
+ O(ε3) (29)

On substituting Equations (26)–(29) into Equation (24), we have the 1st order (O(ε)):

LT

[
u1
v1

]
= 0, (30)

The solution of system Equation (30) is[
u1
v1

]
=

[
Υ1
1

] 3

∑
j=1

[Zje
(ikj .r)] + c.c., (31)

where Υ1 =
a11d2−a22dT

1
2a21dT

1
, |k j| = kT

∗, and Zj is the first-order amplitude of the correspond-

ing e(ikj .r).
For the 2nd order (O(ε2)):

LT

[
u2
v2

]
=

∂

∂T1

[
u1
v1

]
− d1

(1)M
[

u1
v1

]
− N2. (32)
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By the use of Fredholm solvability condition [39], the zero eigenvectors of LT
∗ are[

1
Υ2

]
e(−ikj .r) + c.c., j = 1, 2, 3. (33)

By the orthogonality condition, we have[
1

Υ2

]
e(−ikj .r)N2 = 0. j = 1, 2, 3. (34)

where Υ2 =
2a12dT

1
a11d2−a22dT

1
.

From Equation (34), we have

(Υ1 + Υ2)
∂Z1

∂T1
=− k2

Td(1)1 Υ1Z1 + ( fuuΥ1
2 + fuvΥ1 + fvv

+ Υ2(guuΥ1
2 + guvΥ1 + gvv))Z̄2Z̄3,

(Υ1 + Υ2)
∂Z2

∂T1
=− k2

Td(1)1 Υ1Z2 + ( fuuΥ1
2 + fuvΥ1 + fvv

+ Υ2(guuΥ1
2 + guvΥ1 + gvv))Z̄1Z̄3,

(Υ1 + Υ2)
∂Z3

∂T1
=− k2

Td(1)1 Υ1Z3 + ( fuuΥ1
2 + fuvΥ1 + fvv

+ Υ2(guuΥ1
2 + guvΥ1 + gvv))Z̄1Z̄2.

(35)

Solving Equation (32) yields[
u2
v2

]
=

[
U0
V0

]
+

3

∑
j=1

[
Uj
Vj

]
e(ikj .r) +

3

∑
j=1

[
Ujj
Vjj

]
e(i2kj .r) +

[
U12
V12

]
e(i(k1−k2).r)

+

[
U23
V23

]
e(i(k2−k3).r) +

[
U31
V31

]
e(i(k3−k1).r) + c.c

(36)

where [
U0
V0

]
=

[
u0
v0

]
(|Z1|2 + |Z2|2 + |Z3|2), Uj = xVj,[

Ujj
Vjj

]
=

[
u11
v11

]
Zj

2,
[

Ujk
Vjk

]
=

[
u∗

v∗

]
ZjZ̄k

(37)

with

[
u0
v0

]
=

[ 2a12Q−2a22P
a12a21−a11a22
2(a11Q−a21P)
a11a22−a12a21

]
,

u11

v11

 =

 −a22P+a12Q+4d2Pk2
T

(4d2k2
T−a22)(a11−4dT

1 k2
T)+a12a21

a21P−a11Q+4QdT
1 k2

T
(4d2k2

T−a22)(a11−4dT
1 k2

T)+a12a21

,

[
u∗

v∗

]
=

 −2a22P+2a12Q+6d2Pk2
T

(3d2k2
T−a22)(a11−3dT

1 k2
T)+a12a21

2a21P−2a11Q+6QdT
1 k2

T
(3d2k2

T−a22)(a11−3dT
1 k2

T)+a12a21


and

P = −(1
2

fuuΥ1
2 + fuvΥ1 +

1
2

fvv), Q = −(1
2

guuΥ1
2 + guvΥ1 +

1
2

gvv) (38)
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For the 3rd order (O(ε3)):

LT

[
u3
v3

]
=

∂

∂T1

[
u2
v2

]
+

∂

∂T2

[
u1
v1

]
− d(1)1 M

[
u2
v2

]
− d(2)1 M

[
u1
v1

]
− N3 (39)

Using the Fredholm solubility condition gives

(Υ1 + Υ2)
(∂Y1

∂T1
+

∂Z1

∂T2

)
=− kT

2Υ1(d2
1Z1 + d1

1Y1) + [ fuuΥ1
2 + 2 fuvΥ1

+ fvv + Υ2(guuΥ1
2 + 2guvΥ1 + gvv)](Z̄2Ȳ3

+ Z̄3Ȳ2)− (G1|Z1|2 + G2(|Z2|2 + |Z3|2)Z1)

(40)

where G1 = (I1 + Υ2 J1), G2 = (I2 + Υ2 J2), and

I1 =− [(Υ1 fuu + fuv)(u0 + u11) + ( fvv + Υ1 fuv)(v0 + v11) + R],

I2 =− [(Υ1 fuu + fuv)(u0 + u∗) + ( fvv + Υ1 fuv)(v0 + v∗) + A],

J1 =− [(Υ1guu + guv)(u0 + u11) + (gvv + Υ1guv)(v0 + v11) + S],

J2 =− [(Υ1guu + guv)(u0 + u∗) + (gvv + Υ1guv)(v0 + v∗) + B],

R =
1
2

fuuuΥ1
3 +

3
2

fuuvΥ1
2 +

3
2

fuvvΥ1 +
1
2

fvvv,

S =
1
2

guuuΥ1
3 +

3
2

guuvΥ1
2 +

3
2

guvvΥ1 +
1
2

gvvv,

A = fuuuΥ1
3 + 3 fuuvΥ1

2 + 3 fuvvΥ1 + fvvv,

B =guuuΥ1
3 + 3guuvΥ1

2 + 3guvvΥ1 + gvvv.

On changing the subscript of Z, we obtain the other two equations.
The Taylor series expansion of amplitude Cj (j = 1, 2, 3) can be expressed as follows:

Cj = εZj + ε2Yj + O(ε3) (41)

From Equations (40) and (41), we have

τ0
∂C1

∂t
= µC1 + hC̄2C̄3 − [b1|C1|2 + b2(|C2|2 + |C3|2)]C1,

τ0
∂C2

∂t
= µC2 + hC̄1C̄3 − [b1|C2|2 + b2(|C3|2 + |C1|2)]C2,

τ0
∂C3

∂t
= µC3 + hC̄1C̄2 − [b1|C3|2 + b2(|C1|2 + |C2|2)]C3.

(42)

where

τ0 = − (Υ1 + Υ2)

Υ1dT
1 k2

T
, µ =

dT
1 − d1

dT
1

, h =
2(P + Υ2Q)

Υ1dT
1 k2

T
,

b1 = − G1

Υ1dT
1 kT

2 , b2 = − G2

Υ1dT
1 k2

T
.

(43)

Equation (42) is called the amplitude equation up to the third order of perturbation.
Next, we investigate amplitude stability analysis; on substituting Cj = ϕj exp(iφj) into
Equation (42) and collecting the real and imaginary part, we obtain
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τ0
∂φ

∂t
= −h

ϕ1
2 ϕ2

2 + ϕ2
2 ϕ3

2 + ϕ3
2 ϕ1

2

ϕ1 ϕ2 ϕ3
sin φ,

τ0
∂ϕ1

∂t
= µϕ1 + hϕ2 ϕ3 cos φ− b1 ϕ1

3 − b2(ϕ2
2 + ϕ3

2)ϕ1,

τ0
∂ϕ2

∂t
= µϕ2 + hϕ3 ϕ1 cos φ− b1 ϕ2

3 − b2(ϕ3
2 + ϕ1

2)ϕ2,

τ0
∂ϕ3

∂t
= µϕ3 + hϕ1 ϕ2 cos φ− b1 ϕ3

3 − b2(ϕ1
2 + ϕ2

2)ϕ2,

(44)

where φ = φ1 + φ2 + φ3.
The solutions of system Equation (44) are as follows:

1. The first solution: The stationary state is represented by ϕ1 = ϕ2 = ϕ3 = 0, which is
stable for µ < µ2 = 0 and unstable for µ > µ2 = 0.

2. The second solution: The stripe pattern given byϕ1 =
√

µ
b1
6= 0, ϕ2 = ϕ3 = 0 is stable

for µ > µ3 = h2b1
(b2−b1)2 and unstable for µ < µ3.

3. The third solution: When µ > µ1, two solutions exist: Hexagon patterns are given

by ϕ1 = ϕ2 = ϕ3 =
|h|±
√

h2+4(b1+2b2)µ
2(b1+2b2)

with φ = 0 or π, and exist when µ > µ1 =

−h2

4(b1+2b2)
; the solution ϕ+ =

|h|+
√

h2+4(b1+2b2)µ
2(b1+2b2)

is stable for µ < µ4 = 2b1+b2
(b2−b1)2 h2, and

ϕ− =
|h|−
√

h2+4(b1+2b2)µ
2(b1+2b2)

is unstable.

4. The mixed states: When ϕ1 = |h|
b2−b1

, ϕ2 = ϕ3 =
√

µ−b1 ϕ1
2

b1+b2
, with b2 > b1. This exists

when µ > µ3 and is always unstable.

From all the above analyses, we bind up all the results in the form of a theorem.

Theorem 4. The model Equation (3) possesses four different kinds of patterns, and their stability is
described as:

1. Homogeneous solution: It is stable for µ < µ2 and unstable for µ > µ2.
2. Stripe solution: It is stable for µ > µ3 and unstable for µ < µ3.
3. Hexagonal solution: It exists when µ > µ1 and ϕ+ is stable for µ < µ4 and ϕ− is

always unstable.
4. Mixed solution: It exists but is always unstable when b2 > b1 and µ > µ3.

6. Numerical Simulations

In this section, we analyze the results of numerical simulations to verify the theoretical
results from the preceding sections. The simulation facilitates understanding the nonspatial
and spatial dynamics of model (2) and (3), respectively. For numerical simulations, we
fixed the parameter’s numerical value: s = 2, γ = 2

3 , δ = 1, and d2 = 1; and consider d and
d1 as the controlled parameters [14].

Using the value of fixed parameters and d = 0.3, the model (2) has three equi-
librium points:(0, 0), (1, 0), and (0.1558, 0.2192). Since the analysis is focused on coex-
istence equilibrium point E∗ = (0.1558, 0.2192), we therefore check the stability first:
Tr(JE∗) = −0.0697734 < 0 and Det(JE∗) = 0.0644773 > 0. From Routh–Hurwitz stability
criteria and Theorem 1, the model (2) is asymptotically stable at E∗.

6.1. Nonspatial Analysis

Now, we study the nonspatial analysis of the model (2) to check the influence of the
natural death rate of predators on the prey–predator system. In Figure 2, we describe the
time evolution of the population and corresponding phase portrait for different values
of the parameter d = 0.3, 0.25, 0.2, 0.12. As the value of d decreases, the model loses its
stability; for d = 0.3, we observe a stable focus on the equilibrium point, whereas for
d = 0.12, we obtain a limit cycle for the equilibrium point, Meanwhile, in Figure 3, we
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perform Hopf bifurcation analysis over the bifurcation parameter d ∈ (0.05, 0.3): for the
small value of d < d̄ = 0.17, the model shows unstable steady states, and for the large
value of d > d̄ = 0.17, the model is stable. From the nonspatial analysis, it is very clear that
the death rate of predators plays a vital role in the stability of the prey–predator system.
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Figure 2. (Left) Time evolution of the population; (Right) phase portrait for system (2). Parameters:
s = 2, γ = 2

3 , and δ = 1 with varying value of d: (A): d = 0.3, (B): d = 0.25, (C): d = 0.2, and
(D): d = 0.12.
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Figure 3. The bifurcation diagrams with respect to d for model (2), where blue solid curves represent
the stable steady state, limit point cycle (LPC), Hopf bifurcation point (H), and the periodic solution
(green color region). With s = 2, γ = 2

3 , δ = 1.

6.2. Pattern Selection

We performed pattern selection for model (3) in a 2D space of size [0, 70] × [0, 70].
To solve the diffusive model (3), we used FDM (finite difference method), and EM (Euler
method) approximation with ∆t = 0.1 (time step), ∆x = 0.5 = ∆y (space step), and the
initial condition as

u(xi, yj, 0) = u∗ + 0.01$∗ij, v(xi, yj, 0) = v∗ + 0.01$∗ij

where $∗ij are statistically uncorrelated Gaussian white noise perturbations with zero mean
and fixed variance in two-dimensional space. The simulations are intended to reveal
patterns by changing the controlled parameters d1 and d with fixed parameters value under
zero-flux boundary conditions.

In Figure 1, we graphically show the Turing bifurcation threshold value and region
where different patterns are obtained. From Figure 1, it is very clear that when d1 < dT

1 ,
diffusion-driven instability occurs. However, the type of pattern structure is unknown. So,
we employed the amplitude equation to analyze the formation of Turing patterns close to
onset d1 = dT

1 .
From amplitude stability analysis over the different values of parameter d and fixed

d1 = 0.02 and d2 = 1, we have the corresponding values of dT
1 , b1, b2, µ1, µ2, µ3, and µ4, as

seen in Table 2. The bifurcation diagram of amplitude ϕ versus µ is presented in Figure 4,
where the solid curves denote stable states and dotted curves represent unstable states;
S, Hπ , and H0 represent the stripe pattern, hexagonal pattern with φ = π, and hexagonal
pattern with φ = 0, respectively. The stability and the existence range of the four solutions
are displayed in Theorem 4. From the numerical simulations, we have the same patterns of
predators as those of prey. So, we display the spatial distribution of the predator population,
where the colors red (high) and blue (low) represent the population density.

Table 2. For varying d, the pattern selection through an amplitude stability analysis.

S.No. d dT
1 b1 b2 µ1 µ2 µ3 µ4

1. 0.26 0.035 2930.65 5745.24 −0.000219 0 0.00468 0.0185
2. 0.28 0.031 3472.19 7091.72 −0.000478 0 0.00895 0.0362
3. 0.3 0.027 3151.04 6871.92 −0.002559 0 0.03935 0.1645
4. 0.32 0.022 5040.15 10,773.10 −0.020674 0 0.33716 1.3950
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Figure 4. Bifurcation diagram of amplitude ϕ versus µ with different values of d for model (3). S: strip
patterns, H0: hexagonal patterns (φ = 0), and Hπ : hexagonal patterns (φ = π). Fixed parameters:
s = 2, γ = 2

3 , δ = 1, d1 = 0.02, and d2 = 1.

Effects of varying d1 on pattern formation

For varying values of d1 and a fixed d = 0.3, the system (3) has the following Turing
patterns: spots, mixed, and stripes. From Figure 1A: the value of d1 ∈ (0, dT

1 ), at which
Turing patterns appear. In Table 3, the µ values corresponding to different d1 are presented,
and from the amplitude stability, we identify the regions exhibiting various Turing patterns.
In Figure 5, we show the time-series solution of the model (3) in the first panel at T = 1000,
where we observe the dynamical behavior of the system in space for different values of
d1. When d1 ∈ (0, dT

1 ), the corresponding Turing patterns are presented in Figure 5’s
second panel: as the controlled parameter d1 decreases, the patterns of spots→mixed→
stripes is obtained at t = 10, 000. The stability of these Turing patterns is discussed in
Figure 6. From Figure 5 and Table 3, we conclude that the numerical results correspond to
the theoretical analyses.

Table 3. For varying d1, the pattern selection through amplitude stability analysis.

S.No. d1 µ =
dT

1 −d1
d1

Region Pattern Figure

1. 0.0265 0.01852 µ ∈ (µ2, µ3) spots Figure 5A
2. 0.026 0.03704 µ ∈ (µ2, µ3) spots Figure 5B
3. 0.024 0.11111 µ ∈ (µ3, µ4) mixed Figure 5C
4. 0.02 0.25926 µ > µ4 stripes Figure 5D
5. 0.01 0.62963 µ > µ4 stripes Figure 5E
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0 200 400 600 800 1000
Time

0.05

0.1

0.15

0.2

0.25

P
o

p
u

la
ti

o
n

Prey
Predator

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

0.205

0.21

0.215

0.22

0.225
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Figure 5. (Left) Time−series evolution of the populations of the model (3). (Right) Two−dimensional
Turing patterns for fixed parameters s = 2, γ = 2

3 , δ = 1, d = 0.3, and d2 = 1 under varying values
of d1.
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(A): t = 100 (B): t = 1000 (C): t = 5000 (D): t = 10,000
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Figure 6. Two-dimensional Turing patterns stability for fixed parameters s = 2, γ = 2
3 , δ = 1, d = 0.3,

and d2 = 1.

Ecologically, the diffusion coefficient d1 significantly affects Turing selection and shows
various spatial patterns. In Figure 7A, we show the mean population density of species
for varying diffusion rates of prey. It is very clear from the graphical result that more
dispersal among prey species will reduce the prey population. Biologically, this may be due
to the fact that more broad distribution among prey species will increase the hunt rate by
predators, because predators will obtain more prey quickly for their nourishment, reducing
the prey population.
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Figure 7. Mean population density of prey and predator: (A) for varying d1; (B) for varying d with
fixed d1 = 0.02 and d2 = 1.

Effects of varying d on pattern formation

Now, we study the influence of the death rate of predators (d) on a spatial scale via
Turing patterns. The larger the value of d, the smaller the size of the group will be. Thus,
the predator death rate significantly affects the spatial distribution of the population. In
Figure 8, the first panel shows the time-series solution of the model (3) at T = 1000, whereas
the second panel has the patterns for model (3) corresponding to d = 0.25, 0.26, 0.28, 0.3, 0.32.
From the amplitude stability analysis that is discussed in Table 2 and Figure 4, we have
spot patterns; Figure 8A,B present spot and mixed patterns for d = 0.25 and d = 0.26,
respectively. For d = 0.28, 0.3, stripe patterns are observable (Figure 8C,D). When d = 0.32,
a black eye pattern is detectable at time t = 5000 (see Figure 8E). These patterns show the
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spatial structure formed by the species in the domain; thus, they have a clear ecological
meaning. For γ = 2

3 , the predator population forms a small fixed number of groups. As d
increases (0.25→0.32), the red spots get converted into blue spots, which indicates that the
as the value of d increases, the population of species stabilizes. In Figure 7B, we show the
spatial mean population density of species with varying death rates among predators.
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(C): d = 0.28
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(D): d = 0.3
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(E): d = 0.32
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Figure 8. (Left) Time −series evolution of the populations of the model (3). (Right) Two
−dimensional Turing patterns. For fixed parameters, s = 2, γ = 2

3 , δ = 1, d1 = 0.02, and d2 = 1
under varying values of d.
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The results of Figures 7B and 8 show that when predators’ death rates increase, the
prey population increases due to low capture rates by predators. However, a drastic change
is noticed in the predator population, and their population also increases. Biologically, this
could be because predators form small groups, and when the death rate rises, the young
predators receive adequate sustenance, increasing the predator population.

7. Conclusions

The present article discusses the temporal and spatiotemporal dynamics and pattern
formation of prey–predator interaction with H-V functional response to examine the in-
fluence of spatial dispersal on the population. The H-V constant in functional response
defines the size of population-formed groups. Many species in the ecosystem do not form a
fixed number of groups. Hence, we focused on prey–predator interaction where predators
do not form a fixed number of groups. First, we defined the diffusive mathematical model,
and analyzed the model’s temporal stability through the Lyapunov stability theory and
the impact of the controlled parameter d through Hopf bifurcation analysis. With the
incorporation of diffusion, we derived the condition for “diffusion-driven instability”,
which is responsible for the origination of Turing patterns. The amplitude equation for
the active modes close to d1 = d1

T was derived using multiple-scale analysis. Finally,
the theoretical results were validated using numerical simulations. We observed various
patterns emerging from the system, such as spot, mixed, and stripe patterns for varying
the controlled parameters d1 and d. Therefore, the numerical results cater to the previous
theoretical finding.

Thus, we conclude that variation in self-diffusion d1 and in predator death rate d
change the spatial distribution of the population, resulting in diverse spatial patterns.
These results suggest that the mortality rate and diffusion coefficient can affect the system’s
dynamics. From a biological perspective, our analysis concludes that in the prey–predator
model with predators not forming a fixed number of groups, the death rate among preda-
tors plays a vital role in stabilizing the system. Moreover, dispersal among prey species
decreases the prey population, because more dispersal among prey species will increase
the capturing rate by predators.

In this article, we have shown the influence of control parameters on the prey–predator
model on a spatial scale. This method can be applied in research on pattern formation in
prey–predator models and in explaining certain field observations. Further investigations
into the effects of other biological parameters on spatial distribution and the influence of
time delay in biological processes in this model are warranted.
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