
Citation: Dong, L.; He, W.; Liu, Y.

Water Pumping and Refilling (WPR):

A Resource Allocation Algorithm for

Maximizing Acceptance Ratio in

Edge Computing System. Symmetry

2023, 15, 985. https://doi.org/

10.3390/sym15050985

Academic Editor: Silvio Pardi

Received: 2 March 2023

Revised: 27 March 2023

Accepted: 19 April 2023

Published: 26 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Water Pumping and Refilling (WPR): A Resource Allocation
Algorithm for Maximizing Acceptance Ratio in Asymmetrical
Edge Computing Networks
Li Dong * , Wenji He and Yunjie Liu

School of Information and Communication Engineering, Beijing University of Posts and Telecommunications,
Beijing 100876, China
* Correspondence: donglisci@gmail.com

Abstract: Computation offloading has received a significant amount of attention in recent years, with
many researchers proposing joint offloading decision and resource allocation schemes. However,
although existing delay minimization schemes achieve minimum delay costs, they do so at the
cost of losing possible further maximization of the number of serviced requests. Furthermore, the
asymmetry between uplink and downlink poses challenges to resource allocation in edge computing.
This paper addresses this issue by formulating the joint computation offloading and edge resource
allocation problem as a mixed-integer nonlinear programming (MINLP) problem in an edge-enabled
asymmetrical network. Leveraging the margin between a delay-minimum scheme and a near-
deadline scheme, a water pumping and refilling (WPR) algorithm is proposed to maximize the
number of accepted requests. The WPR algorithm can function both as a supplementary algorithm
to a given offloading scheme and as a standalone algorithm to obtain a resource allocation scheme
following a customizable refilling policy. The simulation results demonstrated that the proposed
algorithm outperforms delay-minimum schemes in achieving a high acceptance ratio.

Keywords: computation offloading; mobile edge computing; resource allocation; delay minimum;
WPR

1. Introduction

Computation offloading has emerged as a prominent research area in edge computing-
enabled systems in recent years [1]. Its fundamental concept involves leveraging the
computing resources deployed at the network edge to offer faster and more satisfactory
computational services to user devices (UDs) [2,3]. However, the burgeoning number of
Internet of Things [4] devices exacerbates the already constrained computing resources of
edge nodes. When an asymmetry edge node is overloaded, it is unable to accommodate all
the computation offloading requests. Therefore, how to allocate resources to maximize the
number of serviced requests in asymmetrical systems, while respecting the given resource
limitations, remains a crucial issue.

As computation offloading requests arrive, the BS decides which requests should be
accepted and how many resources should be allocated for the accepted requests. Different
objectives lead to different resource allocation schemes. The primary objective of current
research in computation offloading is to minimize delay or energy consumption [5]. In
situations where multiple users demand offloading services, it is common to minimize
the weighted sum or the sum of users’ processing delays [6,7]. However, weight setting is
typically based on empirical methods, and schemes with different weightings may yield
distinct performances. Although designs that minimize delay cost lead to attractive resource
allocation schemes, most of their resource allocation results tend to be over-provisioned
to some extent. On the other hand, energy consumption minimization schemes, from the
perspective of user devices, extend the battery life of UDs and achieve energy efficiency
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at the system level [8]. However, such schemes may not be optimal from the perspective
of network operators (NOs) because they fail to accommodate additional computation
offloading requests, thereby reducing the economic revenues of NOs.

Several existing studies propose incentive-driven computation offloading and resource
allocation schemes to benefit edge service providers [9]. For example, Yuan et al. [10] aimed
to maximize the profits of remote clouds by accepting more requests without causing high
bandwidth consumption and energy consumption for task processing. However, such
schemes may not be suitable for edge servers with limited resources, particularly when
facing excessive terminal requests. Under such circumstances, the edge server may be
forced to exhaust its available resources to accommodate end requests, which involves
both request acceptance and resource allocation. Therefore, a joint request acceptance and
resource allocation scheme with maximized accepted requests is necessary.

Although these designs function well when there are sufficient resources in the serving
network, the focus of request acceptance and resource allocation should shift towards
utilizing constrained resources to accept as many requests as possible when the resource
is insufficient. Considering this, from the user’s perspective, a satisfactory service does
not necessarily need have the shortest service delay, as long as a certain level of service
agreement [11] is met. Therefore, NOs do not have to distribute the network resource
for a system-wide delay minimal objective, which releases the network’s potential to
accommodate more requests. In this regard, this paper proposes a joint computation
offloading acceptance and edge resource allocation scheme to maximize the number of
accepted requests in an edge-enabled asymmetrical network. Additionally, a scalable water
pumping and refilling algorithm is proposed to accommodate requests on the basis of
the aforementioned delay-minimal schemes. The primary innovations of this paper are
summarized as follows:

• A low-complexity water pumping and refilling (WPR) algorithm is proposed to release
the untapped potential of the network and accommodate more requests, based on the
delay cost minimization scheme. This approach can serve as both a supplementary
method and a standalone method when combined with a specific customization
strategy.

• The joint computation offloading and edge resource allocation problem is formulated
as a mixed integer nonlinear programming problem with the objective of maximizing
the number of accepted requests. Resource margins between the delay cost mini-
mization scheme and the desirable quality of service (QoS) scheme are exploited to
accommodate more requests.

• We evaluate the performance of the proposed algorithm under various conditions.
The simulation results demonstrate that our WPR algorithm outperforms the delay-
cost-minimum-based schemes regarding acceptance ratio.

The remainder of this paper is organized as follows. In Section 2, we review related
work on computation offloading and resource allocation in edge computing systems. In
Section 3, we present the system model and relevant assumptions. The proposed water
pumping and refilling algorithm is introduced in Section 4. In Section 5, we analyze and
discuss the simulation results. Finally, our paper is concluded in Section 6.

2. Related Work

Among the delay-minimal schemes, Ren et al. [7] proposed a partial offloading model
that divides a computational task into two parts and the divided tasks are collaboratively
processed by an edge server and a remote cloud. A closed-form task splitting ratio and
resource allocation scheme were provided. Similarly, Wang et al. [12] aimed to minimize
task duration while meeting energy consumption constraints by allocating bandwidth
equally to connected offloading user devices, using the alternating direction method of
multipliers (ADMM) algorithm to determine computation node selection and computing
resource allocation schemes. Wei et al. [13] selected the joint computation node, decided on
the content caching, and determined the resource allocation (including radio bandwidth
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and computing resources) with a two-hidden-layer deep neural network to minimize end-
to-end delay for computation offloading and content delivery services, where the channel
state and resource allocation are discretized. Although these schemes have achieved
stunning performance, they still fall into the category of delay-minimal schemes, which
means resource allocation results could be fine-tuned to accept more requests within a
deadline.

Similarly, many research efforts have been made to devise energy cost minimiza-
tion (ECM) schemes [14,15]. For example, Wang et al. [5] formulated EM and delay cost
minimization (DCM) problems for single-user partial computation offloading, using the
dynamic voltage scaling technique [16]. They optimized transmission power, computation
resource allocation, and offloading ratio and reached the insightful conclusion that if a task
has a stringent delay requirement (less than a threshold), it cannot be processed in a parti-
tioned way. In [17], requests from representative locations are grouped, and computation
results for requests with duplicated inputs selectively cached. They formulated the cache
decision, bandwidth allocation, and computing resource allocation problem as an MINLP
problem, aiming to minimize the energy consumption of the base station (BS) and all users.
In [18], the deep deterministic policy gradient (DDPG) algorithm is adopted to solve the
joint computation node selection and computing resource allocation problem, aiming to
minimize system energy consumption. They constructed an SBS–MBS three-layer offload-
ing model for delay-stringent tasks. Apart from the cloud- and edge-enabled processing
models, some researchers supplement user devices to enhance performance. For instance,
Huang et al. [19] proposed an edge-end cooperation scheme where mobile devices act
as computing servers to minimize the energy consumed by the mobile devices. In [20], a
three-node computation offloading scenario was studied in which the user device near the
access point (AP) is exploited to relay and compute the task of the far user device with the
aim of minimizing the energy consumed by the AP in a wireless powered system.

Several studies have investigated resource allocation in computation offloading from
different perspectives. In [21] , the authors assumed adequate bandwidth between vehicles
and the associated MEC server and adopted a Q-value-based deep reinforcement learning
method to maximize the acceptance rate in vehicular networks. Zhou and Hu [22] aimed
to maximize the ratio of processed bits to the energy consumed by energy-harvesting user
devices for non-orthogonal multiple access and time division multiple access systems.
Mukherjee et al. [23] focused on maximizing system revenue by analyzing the pricing
strategy for offloaded tasks with different time constraints. Yan et al. [24] formulated
the DCM and revenue maximization problem as a two-stage game, where computing
resources at BS were equally allocated. Wang et al. [25] designed an online auction mechanism
to maximize the profit of resource providers in an energy-effective way. Zhou and Zhang [26]
proposed compensating tasks with a higher delay-to-deadline ratio to minimize the maximal
ratio among users, which was solved using an evolutionary algorithm. Hejja et al. [27]
maximized the number of serviced offloading requests under the network function virtual-
ization framework. Finally, Meng et al. [28] developed a task dispatching and scheduling
algorithm that focused more on computing node selection and task scheduling to maximize
the number of tasks meeting deadline requirements. We summarize part of the studies
mentioned above in Table 1.
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Table 1. Summary of the discussed work.

Work Nodes with
Computing Power

Variables to Be
Optimized Objective Methodology

[7] Edge Server (ES),
Cloud Server (CS) λ 5, x 1, b 2, α 3 DCM Decomposition and

KKT Conditions

[12] UD, ES, CS x, y 4, α DCM ADMM

[13] ES, CS y, b, α DCM Actor-Critic based DRL

[29] UD, ES λ, b, α DCM The Lagrange
multiplier method

[18] UD, ES x, y, α ECM DDPG

[30] UD, ES x, b, α
Computation Rate

Maximization
Lyapunov

Optimization and DRL

[26] ES x, b, α
Minimize Maximal

Delay ratio
Evolutionary

Algorithm

[19] UD, ES x, α ECM Ant Colony-based
algorithm

[24] UD, ES x, c 6 DCM and Revenue
Maximization Stackelberg Game

[25] UD, ES x, c ECM and Revenue
Maximization Market Auction Theory

Our Work ES x, b, α
Acceptance Ratio

Maximization WPR

1: x is the binary offloading vector; 2: b is the bandwidth allocation vector; 3: α is the computing resource allocation
vector; 4: y denotes the computation node selection vector; 5: λ denotes the splitting ratio; 6: c denotes the pricing
vector.

Furthermore, recent research has explored combining deep reinforcement learning
with computation offloading to enhance performance [13,17,30–33]. However, these ap-
proaches do not address the problem of maximizing the number of accepted requests
among a flood of requests with limited resources in an edge-enabled asymmetrical network.
This requires a system of efficient allocation of resources and selection of the appropriate
requests while considering their respective delay requirements. This paper proposes a
solution to solve this problem, wherein tasks are processed at the edge server, and rejected
tasks are considered to be task failures. Notably, our proposed algorithm can function as a
supplementary approach and as a standalone approach.

3. System Model

As shown in Figure 1, the system consists of a single BS and M UDs. The BS is
equipped with an edge computing server, having a computing power of Fe (in CPU
cycles per second). The BS is connected to the edge server via a fiber link [34] to provide
computing services for UDs. UDs issue computation offloading requests to the associated
BS if local computing resources cannot complete the task within the deadline Tdl , and
such requests are considered to be timeouts if they are rejected. It is assumed that the
computation-intensive tasks arrive at the beginning of a schedule interval [35] and only
one task is generated from each UD. Local processing is not considered and requests with
no resources allocated are treated as timeouts.
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Figure 1. System model.

There are K kinds of computation applications running in the system. In this paper,
it is assumed that the input of computational application k is one of the Fk input files.
A computation request of application k is specified by the task input size lk

f (in bits), the

computation load Lk
f (the desired computing resource, in CPU cycles), and the task deadline

Tk
f (this can also be a QoS-related delay parameter). Thus, a UD m requesting computation

offloading of application k with task input f ( f ∈ F k = {1, 2, 3, · · · , Fk}) can be specified
with rm = (lk

f , Lk
f , Tk

f ). rm indicates the computation task from UD m in the sequel. For

simplicity of notations, the parameters of task rm are written as (lm, Lm, Tdl
m ).

When UDs cannot complete their tasks within the given deadline, they request the
associated BS for computation offloading [3]. While some previous research considered
local processing power on the UDs, this paper excludes UDs that can process tasks without
exceeding the deadline (Lm/ fm ≤ Tdl

m ). As a result, the BS can either accept or decline the
computation offloading requests, depending on its processing capabilities. The BS tries to
accommodate the requests to the best of its abilities. When task rm is accepted (i.e., xm = 1),
the BS ensures that resource allocation meets the delay requirement (or QoS-related delay
requirement). If task rm is denied (i.e., xm = 0), the BS incurs a penalty. The BS makes
decisions on joint offloading request acceptance and resource allocation with the aim of
maximizing the number of accepted requests.

3.1. Transmission Model

The whole system is presumed to function in an orthogonal frequency division multi-
ple access (OFDMA) mode with a bandwidth of B (in hertz). In this way, interference is
not considered in our model. Noticing the asymmetry in uplink and downlink, the result
download stage is not considered in our model [36]. Wireless access bandwidth is only
allocated to accepted requests and the BS assigns a portion bandwidth αm to UD m to
upload the task input file (of size lm). Consequently, the maximal upload data rate between
UD m and the BS can be expressed as follows:

Rm = αmBlog2(1 +
pmh2

m
σ2 ) = αmR̂m, (1)

where pm is the upload transmission power (usually determined by the association control
scheme) of UD m. hm is the instantaneous channel gain between UD m and the BS. As
the transmission may occur over several slots, the averaged channel gain hm is employed
to substitute the instantaneous channel gain [7] across multiple frames (with channel
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estimation technologies [37]). Supposing request rm from UD m is accepted, the averaged
upload transmission time for UD m to upload its computation task input can be written as:

tup
m =

lm

αmBlog2(1 +
pmh

2
m

σ2 )
=

lm
αmRm

, (2)

where Rm is the average of Blog2(1 +
pmh

2
m

σ2 ) during tup
m .

In addition, the allocated access bandwidth of the BS cannot exceed its capacity:

∑
m∈M1

αm ≤ 1, (3)

whereM1 denotes the set of accepted requests from UDs.

3.2. Computing Model

The heterogeneity in computing resource requirements among accepted requests
necessitates efficient allocation of computing resources by the edge server. M1 denotes
the set of accepted requests andM0 denotes the set of rejected requests. The BS assigns
a fraction βm of its computing resources to UD m to process the computation task. The
resulting computation delay can be written as:

te
m =

Lm

βmFe
. (4)

The allocation of computing resources must adhere to its capacity constraint, which
can be formally expressed as:

∑
m∈M1

βm ≤ 1. (5)

3.3. Problem Formulation

If a request rm is accepted, the BS ensures that the associated delay constraint is not
violated. This requirement can be expressed as:

Tm = tup
m + te

m ≤ Tdl
m , ∀m ∈ M1. (6)

The main objective is to maximize the number of accommodated requests subject
to the constraints imposed by the limited system resources and deadlines, which can be
formally expressed as:

max
x,α,β

:
M

∑
m=1

1(xm)

s.t. C1 :
M

∑
m=1

xmαm ≤ 1

C2 :
M

∑
m=1

xmβm ≤ 1

C3 : xm(
lm

αmRm
+

Lm

βmFe
) ≤ Tdl

m , ∀m ∈ M. (P1)

1(xm) is an indicator function and takes value one when xm = 1 and zero otherwise.
Constraints C1 and C2 ensure that the bandwidth and computing resources allocated to
the accepted requests should not exceed the system’s capacity. Constraint C3 ensures that
the delay requirements of the accepted requests are met.

Problem (P1) is known to be intractable, due to the non-smooth and non-convex nature
of the objective function. To overcome this challenge, Problem (P1) is transformed into
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Problem (P2) with the objective of minimizing the total delay cost of all requests. This
transformation reduces the search domain of Problem (P1) and enables more efficient
solution approaches to solve Problem (P2). Two key observations form the basis of this
transformation. First, for an accepted request, the processing delay is always less than
the corresponding deadline, while a rejected request receives a relatively large penalty. In
this way, the system delay cost can be reduced by accepting more requests. Second, the
optimal allocation scheme to Problem (P1) does not necessarily minimize the overall delay
cost. Such a scheme could lead to higher delays compared to Problem (P2), which leaves
more vacant resources for other requests. Consequently, solutions to Problem (P1) can
be obtained by first solving the delay cost minimization (P2) and pushing the resource
allocation scheme near to the deadline.

In this paper, rejected requests are treated as timed-out and discarded, incurring
penalties. Specifically, the penalty of a timed-out request is denoted as ηTdl

n , ∀n ∈ M0,
where η � 1 is a constant factor for all requests. This penalty factor reflects the severity of
a timed-out request in terms of delay cost. To account for these penalties, Problem (P2) is
reformulated by adding penalty terms for timed-out requests:

min
x,α,β

:
M

∑
m=1

xm(t
up
m + te

m) + (1− xm)ηTdl
m

s.t. C1,C2,C3. (P2)

Problem (P2) is a challenging MINLP problem with coupled decision variables. To
address this challenge, we follow previous works [38] and Problem (P2) and decompose
the problem into two sub-problems: request acceptance and resource allocation. The binary
request acceptance problem can be solved with a coordinate descent algorithm [39]. Note
that both request acceptance and resource allocation influence the final effect. Specifically,
this paper focuses on solving the resource allocation sub-problem to gain insight into
Problem (P2).

min
α,β

: ∑
m∈M1

(tup
m + te

m) + ∑
n∈M0

ηTdl
n

s.t. C4 : ∑
m∈M1

αm ≤ 1

C5 : ∑
m∈M1

βm ≤ 1

C6 :
lm

αmRm
+

Lm

βmFe
≤ Tdl

m , ∀m ∈ M1. (P2.1)

It can be seen from above that, once x is given (M0 andM1 are determined), Prob-
lem (P2.1) can be reformulated as a convex optimization problem [38]. Once an optimal
resource allocation scheme is obtained, we readjust the resource allocation result inM1 and
try to allocate resources to request inM0, to accommodate more requests without violating
the deadline constraints, and, then, obtain the solutions to the original Problem (P1). This
process allows us to iteratively refine our solutions and obtain an optimized allocation
of system resources that maximizes the number of accommodated requests within the
constraints of the system’s limited resources and deadlines.

4. The Water-Pumping Algorithm

In this section, the classic Lagrange multiplier method and KKT conditions are adopted
to derive the solution to Problem (P2.1). Based on this solution, the water pumping and
refilling algorithm is proposedto solve the initial asymmetric resource allocation Problem,
as stated in Problem (P1).
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4.1. The Delay Minimum Solution

By introducing Lagrange multipliers λ1, λ2, ν = (ν1, ν2, · · · , νm), ∀m ∈ M1, the La-
grange function of (P2.1) can be formulated as:

L(α, β, λ1, λ2, ν) = ∑
m∈M1

(
lm

αmRm
+

Lm

βmFe
) + ∑

n∈M0

ηTdl
m + λ1( ∑

m∈M1

αm − 1)+

λ2( ∑
m∈M1

βm − 1) + ∑
m∈M1

νm(
lm

αmRm
+

Lm

βmFe
− Tdl

m ). (7)

Based on Equation (7) and in-depth analysis of Problem (P2.1), using KKT conditions,
the following corollaries can be obtained.

Corollary 1. The necessary condition for an optimal bandwidth and computing resource allocation
scheme forM1 is given by:

(αm, βm) = (

√
(1+νm)lm

Rm√
λ1

,

√
(1+νm)Lm

Fe√
λ2

) = (

√
(1+νm)lm

Rm

∑
i∈M1

√
(1+νi)li

Ri

,

√
(1+νm)Lm

Fe

∑
i∈M1

√
(1+νi)Li

Fe

). (8)

Proof. Please see the detailed proof in Appendix A.

The optimal bandwidth and computing resource allocation scheme for UD m can be
obtained from Equation (8). It can be observed that the optimal bandwidth allocation is

proportional to
√

lm
Rm

, which implies that requests with better channel conditions and larger
input data size receive a larger share of the bandwidth allocation. Similarly, requests with
higher computation loads are allocated more edge computing resources.

Corollary 2. The optimal allocation scheme achieves the minimal delay cost for all m ∈ M1 when
the Lagrange multiplier νm takes the same value (e.g., 0), which can be denoted as:

(α∗m, β∗m) = (

√
lm
Rm

∑
i∈M1

√
li
Ri

,

√
Lm
Fe

∑
i∈M1

√
Li
Fe

). (9)

Proof. Please see the detailed proof in Appendix B.

Equation (9) indicates that the delay-minimum resource allocation scheme to Problem
(P2.1) in this context leads to the exhaustion of all system resources for accepted requests,
without taking into account the possibility of over-provisioning a request, based on its
maximum acceptable delay. In general, the ratio of the user’s processing delay to its
deadline under the delay-minimum scheme is less than one (Tm < Tdl

m , ∀m ∈ M1), where
the processing delay of an accepted request rm can be represented as:

Tm =

√
λ1√

1 + νm

√
lm
Rm

+

√
λ2√

1 + νm

√
Lm

Fe
. (10)

Upon comparing Equation (8) with Equation (9), it can be observed that the Lagrange
multipliers νm, ∀m ∈ M1 play a crucial role in regulating the allocation of resources, which,
in turn, impacts the processing delays of accepted requests. Thus, the proposed WPR
algorithm increases the number of accepted requests by reallocating resources (setting
νm) to extend the processing delays of accepted requests up to their respective deadlines
(Tm ≈ Tdl

m , ∀m ∈ M1).
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4.2. Water Pumping

It can be inferred from Equation (10) that Tm can be extended to be equal to Tdl
m by

adjusting νm, while keeping λ1, λ2 (which can be calculated with ν = (ν1, ν2, · · · , νm), ∀m ∈
M1 using Equation (8)) unchanged. This can be denoted as:

Tdl
m =

√
λ1√

1 + ν
p
m

√
lm
Rm

+

√
λ2√

1 + ν
p
m

√
Lm

Fe
. (11)

Based on this observation, we propose the term “water pumping ” to describe the
procedure whereby the value of νm, the water level parameter of an accepted request rm, is
adjusted from its initial value νm to a new value ν

p
m. To further characterize this process, we

define the ratio am as am = Tm
Tdl

m
=

√
1+ν

p
m√

1+νm
. By manipulating the value of νm, the processing

delay Tm is extended to the desired maximal acceptable deadline Tdl
m for request rm:

ν
p
m = a2

m(1 + νm)− 1. (12)

Notably, the proposed scheme can be readily extended to a cloud-edge collaboration
model [12,40,41]. In this case, the ratio am can be redefined as Tm

Tdl
m−Trtt

, where Trtt denotes
the round-trip time between the edge node and the remote cloud server. As we adjust
the value of νm to ν

p
m, the vector ν = (ν1, ν2, · · · , νm), ∀m ∈ M1 shifts to the new value

νp = (ν1, ν2, · · · , ν
p
m), ∀m ∈ M1. λ1 and λ2 shifts to λ

p
1 and λ

p
2 , accordingly. The decrement

of
√

λ1,
√

λ2, which is termed the “pumped water ”, can be expressed as follows:

∆1 =
√

λ1 −
√

λ
p
1 =

√
lm
Rm

(√
1 + νm −

√
1 + ν

p
m

)
= (1− am)

√
1 + νm

√
lm
Rm

, (13)

∆2 =
√

λ2 −
√

λ
p
2 =

√
Lm

Fe

(√
1 + νm −

√
1 + ν

p
m

)
= (1− am)

√
1 + νm

√
Lm

Fe
. (14)

4.3. Water Refilling

To accommodate request rm+1, the pumped water ∆1 and ∆2 should be refilled to
ensure that rm+1 does not violate its deadline constraint. The procedure of setting a feasible
νm+1 for rm+1 is termed “water refilling”. Successful water refilling involves finding a
suitable rm+1 and setting νm+1, within the following constraints:

√
λ
′
1 =

√
1 + ν1

√
l1
R1

+ · · ·+
√

1 + νm−1

√
lm−1

Rm−1
+

√
1 + ν

p
m

√
lm
Rm

+

√
1 + νm+1

√
lm+1

Rm+1
=
√

λ
p
1 +

√
1 + νm+1

√
lm+1

Rm+1
≤
√

λ1, (15)

√
λ
′
2 =

√
1 + ν1

√
L1

Fe
+ · · ·+

√
1 + νm−1

√
Lm−1

Fe
+

√
1 + ν

p
m

√
Lm

Fe
+

√
1 + νm+1

√
Lm+1

Fe
=
√

λ
p
2 +

√
1 + νm+1

√
Lm+1

Fe
≤
√

λ2, (16)

Tm+1 =

√
λ
′
1√

1 + νm+1

√
lm+1

Rm+1
+

√
λ
′
2√

1 + νm+1

√
Lm+1

Fe
≤ Tdl

m+1. (17)

Here
√

λ
′
1,
√

λ
′
2 are obtained with ν

′
= (ν1, ν2, · · · , νm−1, ν

′
m, νm+1), ∀i ∈ M′

1M
′
1 =

M1 ∪ {m + 1} according to Equations (A14) and (A15) (
√

λ
p
1 and

√
λ

p
2 are obtained with

νp). The reason for taking the inequality in Equations (15) and (16) is to ensure there
is no violation of the resource constraints C1 and C2. Equation (17) guarantees that the
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allocated resource for rm+1 meets its deadline requirement. In this regard, compared with
Equations (13) and (14), Equations (15) and (16) can be rewritten as:

√
1 + νm+1

√
lm+1

Rm+1
≤ ∆1, (18)

√
1 + νm+1

√
Lm+1

Fe
≤ ∆2. (19)

Furthermore, the value of νm+1 for the newly accepted request rm+1 can be decided
with the following formula:

νm+1 = min
{

Rm+1

lm+1
(∆1)

2 − 1,
Fe

Lm+1
(∆2)

2 − 1
}

, Tm+1 ≤ Tdl
m+1. (20)

Unfortunately, a single trial of “water pumping” may not necessarily result in success-
ful “water refilling”, so situations where multiple trials of “water pumping” are necessary
to ensure successful refilling should be considered. Denote S (S ⊂ M1) as the current set
of “pumped requests”, containing the requests having shrunken ν (νi → ν

p
i ∀i ∈ S), and

U (U ⊂ M1,U ⋂ S = ∅ and U ⋃ S =M1) as the set of “unpumped requests”. According
to a predetermined rule, (the pumping policy P), a request can be selected from U to
perform “water pumping”. Assuming rm+1 is the chosen request to be “refilled”, based on
another predetermined rule, the refilling policy R, after several pumping trials, νm+1 can
be determined without violating the following constraints:

√
λ
′
1 = ∑

i∈S

√
1 + ν

p
i

√
li
Ri

+ ∑
j∈U

√
1 + νj

√
lj

Rj
+
√

1 + νm+1

√
lm+1

Rm+1
≤
√

λ1, (21)

√
λ
′
2 = ∑

i∈S

√
1 + ν

p
i

√
Li
Fe

+ ∑
j∈U

√
1 + νj

√
Lj

Fe
+
√

1 + νm+1

√
Lm+1

Fe
≤
√

λ2, (22)

Compared with Equations (18) and (19), Equations (21) and (22) can be rewritten as
follows:

Σ∆
′
1 =

√
λ1 −

√
λ
′
1 = ∑

i∈S
(1− ai)

√
1 + νi

√
li
Ri
−
√

1 + νm+1

√
lm+1

Rm+1
≥ 0, (23)

Σ∆
′
2 =

√
λ2 −

√
λ
′
2 = ∑

i∈S
(1− ai)

√
1 + νi

√
Li
Fe
−
√

1 + νm+1

√
Lm+1

Fe
≥ 0. (24)

In this way, the νm+1, after multiple pumping trials of can be obtained from:

νm+1 = min
{

Rm+1

lm+1
(Σ∆

′
1)

2 − 1,
Fe

Lm+1
(Σ∆2

′)2 − 1
}

, (25)
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It should be noted that requests ri, ∀i ∈ S do not violate the deadline requirements
after accepting the new request rm+1. Equation (11) indicates that the processing time
of a pumped request is extended to its deadline. Equations (15) and (21) guarantee that√

λ
′
1 ≤
√

λ1. Similarly,
√

λ
′
2 ≤
√

λ2 holds. As a result, the processing delay of a pumped
request can be reformulated as:

T
′
m =

√
λ
′
1√

1 + ν
′
m

√
lm
Rm

+

√
λ
′
2√

1 + ν
′
m

√
Lm

Fe
≤

√
λ1√

1 + ν
′
m

√
lm
Rm

+

√
λ2√

1 + ν
′
m

√
Lm

Fe
= Tdl

m . (26)

The WPR is all about how to allocate network resources to provide near-to-deadline
services for accepted computation offloading requests. The algorithm converges to its final
result by continuously pumping and refilling until no request can be successfully added.
The whole procedure of the WPR algorithm is summarized in Algorithm 1, and some
notations are listed in Table 2.

Table 2. Summary of notations used in the WPR algorithm.

Notation Description

P the pumping policy deciding the pumping order of the accepted requests
R the refilling policy deciding the refilling order of the rejected requests
αm the bandwidth fraction allocated to request rm
βm the computing resource fraction allocated to request rm

M1,Mc
1,M0 the set of accepted requests, current accepted requests, and rejected requests

Ml
1 the latest set after the last successful refilling
U the set of “unpumped requests” U ⊂ M1,U ⋂ S = ∅ and U ⋃ S =M1
S S ⊂ M1 the set of “pumped requests”, νi → ν

p
i , ∀i ∈ S according to Equation (11)

λ1, λ
p
1 , λ

′
1 the Lagrange multipliers obtained with ν, νp, ν

′
according to Equation (8)

ν the Lagrange multipliers of accepted requests ν = (ν1, ν2, · · · , νm), ∀m ∈ M1
νp the Lagrange multipliers of accepted requests νp = (ν1, ν2, · · · , ν

p
m), ∀m ∈ M1

Σ∆
′
1, Σ∆

′
2 the cumulative “pumped water” after multiple pumping trials

4.4. Complexity Analysis

The proposed WPR algorithm provides a solution to Problem (P1) and offers flexibility
in designing service strategies by allowing the choice of requests to shrink during each
iteration. It is important to note that the WPR algorithm converges within at most M
refilling iterations, provided that the exit condition in Line 14 of Algorithm 1 is not met.
Assuming that |Mc

1| = m1, the last successful one-to-one pumping and refilling happens
at this point in time. After this moment, multiple rounds of pumping are necessary to
ensure a successful refilling. Once |Mc

1| = m2, no further refilling attempts will succeed,
which means the end of the algorithm. Therefore, the total pumping procedure will
take m1 + (m1 + 1) + (m1 + 2) + · · ·+ (m2 − 1) + m2 ≤ |M|2 iterations. Thus, the time
complexity of the WPR algorithm is O(M2).
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Algorithm 1 : Water Pumping and Refilling
Input: initial accepted requests setM1, initial ν ofM1, pumping policy P and refilling

policy R;
Output: final accepted requests setM f

1 , final ν ofM1;
1: current set of accepted requests that have not been pumped U =M1;
2: current shrunk set S = ∅, last νl = ν of the accepted requestsM1 after a successful

refilling;
3: current rejected requests setM0 =M−Mc

1, current νc of current accepted requests
Mc

1;
4: lastMl

1 =Mc
1 after reset (used as the condition to exit the loop) Σ∆1 = 0, Σ∆2 = 0;

5: while U 6= ∅ do:
6: get the request rm to be pumped from U according to P, U = U − {m};
7: get am and update ν

′
m with Equation (12) (the water pumping), update νc;

8: get ∆1, ∆2 with Equations (13) and (14), update Σ∆1+ = ∆1, Σ∆2+ = ∆2;
9: get the request rm+1 to be refilled from M0, according to R, obtain νm+1 with

Equation (25) (water refilling), and check whether rm+1 exceeds its deadline;
10: if the water refilling succeeds in accommodating rm+1 then
11: Mc

1 = Mc
1 ∪ {m + 1}, νc = νc ∪ {νm+1}, νl = νc, U = U ∪ {m + 1}, M0 =

M0 − {m + 1}, Σ∆1 = 0, Σ∆2 = 0;
12: else
13: Mc

1 =Mc
1, νc = νc,M0 =M0;

14: if U = ∅ then . reset U until no new request is accepted
15: ifMc

1 6=Ml
1 then

16: Ml
1 =Mc

1;
17: U =Mc

1, Σ∆1 = 0, Σ∆2 = 0;
18: else
19: return schemeMc

1, νl .

20: return schemeMc
1, νl .

5. Simulation Results and Discussion

In this section, we present results and discussions concerning the edge-enabled asym-
metrical network under different parameters.

5.1. Simulation Setting

The system parameters are defined as follows. The bandwidth of the BS is 8× 106 MHz,
and the computing capacity of the connected edge server is Fe = 1 × 1010 CPU cy-
cles/second. The channel model utilized in this study was the same as the one presented
in [38]. UDs upload task data with a fixed transmission power pm = 0.2 ∀m ∈ M. The
system contains M = 20 UDs, and it considers only one type of computation application,
denoted by K = 1. Accordingly, F = 10 input files are considered, with the input size
l f
m (in bits) ranging from

[
lmin = 1× 106, lmax = 20× 106]. Specifically, the input size of

rm with input file f takes the value of l f
m = lmin + ( f − 1) lmax−lmin

F following uniform dis-
tribution, Zipf distribution [41,42] (skewness factor α = 1) prioritizing small loads and
Zipf distribution prioritizing large loads. The computation load (Lm) of each task ranges
from

[
Lmin = 0.5× 108, Lmax = 4× 108] (in CPU cycles) and computation load of rm with

input file f takes a value of L f
m = Lmin + ( f − 1) Lmax−Lmin

F following the same distribution

as l f
m. Tdl

m = 0.4 and the penalty factor η = 10. Unless otherwise specified, the results
were obtained based on uniform distribution. In this paper, the default policy P selects
the request rm with the highest am in U to pump first and R tries to refill the request ri

with the smallest
√

λ1

√
li
Ri

+
√

λ2

√
Li
Fe inM0. It should be noted that other P and R can

be customized and adopted, such as smallest file size first (SFWPR), and best channel
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condition first (which is not considered in this paper). The following baseline algorithms
were used in this paper:

• Delay cost minimization (DCM): this scheme allocates resources for accepted requests
with the aim of minimizing system delay costs. In cases where a request is rejected,
the DCM scheme imposes a penalty instead of the processing delay.

• Water pumping and refilling, basing on DCM (WPDCM): this scheme uses results
obtained from DCM as the inputM1 of WPR and sets each item of ν to 1.

• Water pumping and refilling (WPR): The initialM1 only includes the request with the

smallest
√

λ1

√
li
Ri

+
√

λ2

√
Li
Fe which is the refilling policy R used by default.

• Smallest input file first water pumping and refilling (SFWPR): using the default policy
P while refilling requests with the smallest input size. The initialM1 only includes
the request with the smallest input size.

5.2. Result Discussion

Figure 2 illustrates the relationship between the number of UDs and the acceptance
ratio of offloading requests in the system. As the number of UDs requesting computation
offloading increased, the acceptance ratio of requests tended to decrease. The reason for
this is clear, the limited system resources could not deal with requests beyond the system’s
capabilty. The WPR-based algorithms achieved a higher acceptance ratio than the DCM
algorithm. The reason for this is that the DCM algorithm prioritized minimization of the
sum processing delay of the accepted requests, which came at the expense of reducing
the system’s capacity to handle a high volume of user requests. In other words, while
minimizing processing delay is a desirable goal to improve system performance, it may
result in reduced capacity to handle additional user requests. Moreover, the WPR scheme
proposed in this study demonstrated competitive performance, and the highest acceptance
ratio among all the schemes considered, including WPDCM. Therefore, the proposed WPR
algorithm can be used as a supplementary algorithm to DCM and as an independent
algorithm, offering competitive results.
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Figure 2. Acceptance ratio versus UDs.

Figure 3a illustrates that the aggregate system delay cost increased proportionally
with the number of offloading user devices (UDs). This escalation is primarily attributed to
the penalty incurred by rejecting redundant offloading requests that exceed the system’s
resource capacity. Notably, the DCM algorithm incurred the highest delay cost, mainly due
to its low acceptance ratio. In contrast, Figure 3b illustrates that the WPR-based algorithm
achieved a higher acceptance ratio than the DCM algorithm. The DCM algorithm aimed to
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minimize the processing delay of each accepted request, while the WPR-based algorithm
permitted the processing delay of an accepted request to approximate its deadline. This
approach left more system resources available to accommodate additional requests.
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(b)
Figure 3. Delay cost versus UDs: (a) sum delay cost of all UDs; (b) average processing delay for an
accepted request.

From Figure 4, several conclusions can be drawn. Firstly, it can be observed that all
schemes achieved higher acceptance ratios when the input size of the majority of tasks had
a small range, as depicted in Figure 4a,b. This is due to the fact that smaller service loads
require fewer resources. Secondly, the proposed SFWPR scheme outperforms the DCM
scheme in maximizing the acceptance ratio When more tasks carried smaller input sizes.
As shown in Figure 4b, the acceptance ratio of SFWPR was higher than that of DCM and
was very close to those of WPR and WPDCM. However, it should be noted that SFWPR
might not be suitable for scenarios wherein tasks with large input sizes constitute the
majority. Lastly, as the input size of tasks increased, the acceptance ratio decreased, due to
the increased service load.

Figure 5 presents the performance of different schemes when the maximum computa-
tion load shifted from 1× 108 CPU cycles to 4× 108 CPU cycles. Similar to the observations
obtained from Figure 4, it was observed that all schemes achieved higher acceptance ratios
when the computation load of tasks varied in a small range. Due to the small range of
computation loads, SFWPR outperforms DCM in the uniform distribution (Figure 5a) and
the Zipf distribution prioritizing small input files (Figure 5b). However, as the maximum
computation load increases, the performance of SFWPR degrades rapidly, and it becomes
inferior to DCM in the Zipf distribution prioritizing large input files case (Figure 5c). This
is because the minor difference in computation load meant the refilling policy R for SFWPR
and WPR were approximately the same. Moreover, the evident degradation shown in
Figure 5c suggests that SFWPR was sensitive to computing load.

Figure 6 depicts the achieved acceptance ratio of various schemes while varying the
system bandwidth from 6× 106 hertz to 1.8× 107 hertz. It was observed that a larger
bandwidth led to a higher acceptance ratio for all schemes. The primary reason for this
phenomenon is that the over-provisioned bandwidth reduced the pressure on computing
resources. With shorter transmission delay, there is a more considerable margin of compen-
sation for computational delay. As a result, SFWPR outperforms DCM due to the additional
supplement of system bandwidth, as compared to the results presented in Figure 2.

Figure 7 illustrates how the performance of the schemes mentioned above differed
as the edge computational capacity increased from 5 × 109 CPU cycles per second to
30× 109 CPU cycles per second. It can be concluded that the performance of SFWPR
degraded rapidly as the computational capacity became smaller. This is attributed to its
refilling policy R, which inherently required more computing resources than the WPR
scheme. Moreover, the performance gap between the WPR-based schemes (WPDCM, WPR)
and DCM widened as the edge computational capacity increased, indicating the superior
flexibility of WPR-based schemes in resource allocation.
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Figure 4. Acceptance ratio versus maximum file size: (a) uniform distribution; (b) Zipf distribution
prioritizing small input files; (c) Zipf distribution prioritizing large input files.



Symmetry 2023, 15, 985 16 of 21

� � � �
��"��!������! � ����������×108�

��
	

����

���	

����


��

��
 �

��
��

��
 ��

���
�����
���
�����

(a)

� � � �
��!�� ����� �������������×108�

����

����

����

���	

���


����

�
��
��
��
��
��
��

���

��
����
���
�����

(b)

� � � �
��!�� ����� �������������×108�

��	�

��		

��
�

��
	

����

�
��
��
��
��
��
��

���

��
����
���
�����

(c)
Figure 5. Acceptance ratio versus maximum computation load: (a) uniform distribution; (b) Zipf
distribution prioritizing small input files; (c) Zipf distribution prioritizing large input files.
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Figure 6. Acceptance ratio versus system bandwidth.
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Figure 7. Acceptance ratio versus edge computational capacity.

6. Conclusions

The current minimum latency scheme is inadequate in fully utilizing resources of the
asymmetrical system to provide satisfactory computation offloading service for UDs with
a maximum request acceptance ratio. In this paper, we propose a water pumping and
refilling algorithm that exploits the margin between the delay-minimum scheme and the
near-deadline scheme to achieve the maximal acceptance ratio. We first solve the resource
allocation sub-problem of the delay-minimum scheme, which provided inspiration for the
design of the water pumping and refilling algorithm. The water pumping algorithm can
function not only as a supplementary algorithm to a given scheme, but also as a standalone
algorithm to obtain the resource allocation scheme following a customizable refilling policy
R. The simulation results demonstrated that our proposed algorithm outperforms delay-
minimum schemes in achieving a high acceptance ratio.

In the future, we plan to investigate computation offloading and resource allocation
schemes under energy consumption constraints. Additionally, we will explore system
models with collaborations between multiple base stations.
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Appendix A

Proof. The resulting Karush–Kuhn–Tucker (KKT) conditions can be denoted as follows:

∂L
∂αm

= λ1 −
(1 + νm)lm

α2
mRm

= 0, ∀m ∈ M1, (A1)

∂L
∂βm

= λ2 −
(1 + νm)Lm

β2
mFe

= 0, ∀m ∈ M1, (A2)

∑
m∈M1

αm − 1 ≤ 0, (A3)

λ1( ∑
m∈M1

αm − 1) = 0, (A4)

∑
m∈M1

βm − 1 ≤ 0, (A5)

λ2( ∑
m∈M1

βm − 1) = 0, (A6)

νm(
lm

αmRm
+

Lm

βmFe
− Tdl

m ) = 0, ∀m ∈ M1, (A7)

lm
αmRm

+
Lm

βmFe
− Tdl

m ≤ 0, (A8)

λ1, λ2 ≥ 0. (A9)

With some manipulation to Equations (A1) and (A2), we can obtain the bandwidth
and computing resources allocation solution as follows:

αm =

√
(1+νm)lm

Rm√
λ1

, (A10)

βm =

√
(1+νm)Lm

Fe√
λ2

. (A11)

With the contradiction technique adopted in Appendix B in [7], we have:

∑
m∈M1

αm − 1 = 0, (A12)

∑
m∈M1

βm − 1 = 0. (A13)
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Substituting Equation (A10) and Equation (A11) into Equation (A12) and Equation (A13)
respectively, the Lagrange multipliers

√
λ1,
√

λ2 can be derived as:

√
λ1 = ∑

i∈M1

√
(1 + νi)li

Ri
, (A14)

√
λ2 = ∑

j∈M1

√
(1 + νj)Lj

Fe
. (A15)

Finally, combining Equation (A10) with Equation (A14) and Equation (A11) with Equa-
tion (A15), the bandwidth and computing resources allocation scheme to Problem (P2.1)
can be denoted as follows:

(αm, βm) =


√

(1+νm)lm
Rm

∑
i∈M1

√
(1+νi)li

Ri

,

√
(1+νm)Lm

Fe

∑
i∈M1

√
(1+νi)Li

Fe

, ∀m ∈ M1. (A16)

This ends the proof.

Appendix B
Proof. The sum of upload transmission time of UDs inM1 can be written as follows

∑
m∈M1

lm
αmRm

= ∑
m∈M1

lm
αmRm

∑
m∈M1

αm ≥
(

∑
m∈M1

√
lm

αmRm

√
αm

)2

=

(
∑

m∈M1

√
lm
Rm

)2

. (A17)

The first equality comes from Equation (A12) and the inequality comes from Cauchy–
Buniakowsky–Schwarz inequality where the equality holds for all UDs inM1:√

l1
α1R1√
α1

=

√
l2

α2R2√
α2

= · · · =

√
lm

αmRm√
αm

= c, (A18)

where c is a constant. With some manipulation, we have

√
lm

αm2Rm
=

√
λ1√

(1 + νm)
=

∑
i∈M1

√
(1+νi)li

Ri√
(1 + νm)

, (A19)

where the first equality comes from Equation (A10) and the second equality comes from
Equation (A16). Thus, to achieve the minimum of Equation (A17), we need to determine
the values of νm, ∀m ∈ M1 to guarantee

√
λ1√

(1+νm)
= c. An intuitive scheme is to assign

νm, ∀m ∈ M1 with equal values (for example, 1).
Similarly, we can conclude that the sum of edge processing time ∑

m∈M1

Lm
βm Fe achieves

its minimum

(
∑

m∈M1

√
Lm
Fe

)2

if:

√
Lm

βm
2Fe

=

√
λ2√

(1 + νm)
=

∑
i∈M1

√
(1+νi)Li

Fe√
(1 + νm)

= d, ∀m ∈ M1, (A20)
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where d is a constant. Thus, setting equal value to νm ∀m ∈ M1 can obtain the minimum

delay cost

(
∑

m∈M1

√
lm
Rm

)2

+

(
∑

m∈M1

√
Lm
Fe

)2

, ∀m ∈ M1. Accordingly, the optimal Lagrange

multipliers λ1, λ2 and resource allocation decisions can be denoted as

λ∗1 =

(
∑

i∈M1

√
li
Ri

)2

, λ∗2 =

(
∑

i∈M1

√
Li
Fe

)2

, (A21)

α∗m =

√
lm
Rm

∑
i∈M1

√
li
Ri

, β∗m =

√
Lm
Fe

∑
i∈M1

√
Li
Fe

. (A22)

This ends the proof.
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