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Abstract: The absolute structure of the 3D MOF anhydrous zinc (II) tartrate with space group I222 has
been determined for both [Zn(L-TAR)] and [Zn(D-TAR)] by electron diffraction using crystals of sub-
micron dimensions. Dynamical refinement gives a strong difference in R factors for the correct and
inverted structures. These anhydrous MOFs may be prepared phase pure from mild hydrothermal
conditions. Powder X-ray diffraction indicates that isostructural or pseudo-isostructural phases can
be similarly prepared for several other M2+ = Mg, Mn, Co, Ni and Cu. I222 is a relatively uncommon
space group since it involves intersecting two-fold axes that place constraints on molecular crystals.
However, in the case of MOFs the packing is dominated by satisfying the octahedral coordination
centers. These MOFs are dense 3D networks with chiral octahedral metal centers that may be classed
as ∆ (for L-TAR) or Λ (for D-TAR).

Keywords: electron diffraction; MOFs; chirality; absolute structure

1. Introduction

The development of electron diffraction (ED, also termed 3D-ED or micro-ED) as a
technique for structure determination applicable to organic molecular compounds, inor-
ganics, and metal–organic frameworks (MOFs) has emerged in the last 10 years [1–7]. The
advent of commercial electron diffractometers promises to usher in a new age of structural
determination for crystalline materials that, either due to lack of material or inherent prob-
lems of crystal growth, cannot produce single specimens of suitable size for in-house X-ray
diffractometers (typically around 50 µm, in certain cases even down to ca. 10 µm) [8].

In researching metal tartrates [9,10], which are of potential interest as fundamental
chiral metal–organic frameworks that might have chiral separation [11], chiral catalytic [12],
or chiro-optic applications [13] we found that simply formulated anhydrous materials
such as [Zn(L-TAR)] could be prepared straightforwardly under mild hydrothermal condi-
tions (Figure 1). At ambient conditions several metal tartrate phases had been crystallized
and X-ray structures previously reported, with both coordinated aqua ligands and pore-
included water molecules. These include [Zn(L-TAR)(H2O)]·1.5H2O (CSD codename
CUJBAK) [14], [Zn(D-TAR)(H2O)]·1.5H2O (CUJBAK01) [15], a diastereomeric framework
[Zn(L-TAR)(H2O)]·2H2O (KURNOB) [16], and a meso compound [Zn(m-TAR)(H2O)2]
(MUYPUU) [17]. The structure of an anhydrous phase has not been reported in the
Cambridge Structural Database (CSD) so far. This is likely due to the fact that whilst
hydrothermal preparation of [Zn(L-TAR)] was possible, the resulting micro-crystalline
powders precluded X-ray structure determination due to small particle size <10 microns.

The application of 3D-ED to the structure determination of MOFs with small particle
size has been well established [5–7,18,19]. We were curious to see whether the as grown
micro-crystals of [Zn(L-TAR)] could be amenable to structure determination using 3D-ED.
Furthermore, since the crystals should be homochiral, the determination of their absolute
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structure is also of interest. Recently it has been shown that by taking the effects of
dynamical diffraction into account during refinement one can perform reliable absolute
structure determinations from 3D-ED data of nanocrystalline samples [20,21].
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Figure 1. Synthesis and Structure of Molecular dimer SBU of product [Zn(L-TAR)] 1-L. Structure
diagram by Olex2 [22].

2. Materials and Methods

Metal acetates, tartaric acid and solvents used were of reagent grade supplied by
Meryer Chemicals (Shanghai).

2.1. Preparation of Metal Tartrate Phases

[Zn(L-TAR)] 1-L
This was prepared (Figure 1) by a one-pot hydrothermal reaction of zinc acetate

hydrate, (0.5 mmol) and L-tartaric acid (0.5 mmol) in 1 mL water. Reagents were heated
in a Teflon lined Parr pressure vessel (23 mL) for 2 d at 110 ◦C. Slow cooling afforded fine
white microcrystalline powder. (Yield 55%)

[Zn(D-TAR)] 1-D and other Zinc tartrates
The D-analogue was prepared in similar manner and yielded substituting D-tartaric

acid. Use of racemic D/L-tartaric acid afforded a conglomerate of 1-L and 1-D based on the
similar powder X-ray pattern obtained. Meso-tartaric acid afforded the known hydrated
phase (coden MUYPUU [17]) up to 140 ◦C.

Other [M(L-TAR)] Phases
Other anhydrous divalent [M(L-TAR)] phases were prepared for M2+ = Mg, Mn, Co,

Ni, and Cu in a similar manner to 1-L at 110 ◦C/2d. These were shown to be isostructural, or
pseudo-isostructural for Cu, by powder X-ray diffraction. The product phase for Ca2+ was
different, identified as a higher coordinated hydrated phase. For Fe2+ an inhomogeneous
mixture was obtained.

2.2. X-ray Crystallography

Powder X-ray diffraction data were obtained at room temperature using Cu-Kα

radiation by a PanAlytical X’Pert PRO diffractometer with 1D X’celerator detector or
on a PanAlytical Aeris benchtop powder X-ray diffractometer and measured in 2θ range 5
to 40◦ with step size of 0.02◦.

2.3. Electron Crystallography

Samples were finely dispersed on standard TEM grids (amorphous carbon on Cu)
and measured on an ELDICO ED-1 electron diffractometer at room temperature using the
software ELDIX [23]. The device is equipped with a LaB6 source operating at an acceleration
voltage of 160 kV (λ = 0.02851 Å) and a hybrid-pixel detector (Dectris QUADRO). Suitable
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crystals were identified in STEM imaging mode and diffraction was recorded in continuous
rotation mode with a beam diameter of ca. 750 nm. The later parts of measurements
showing significant beam damage were omitted. Further details can be found in Table 1.

Table 1. Three-dimensional-ED data collection details for the Zn tartrate samples (crystal size
estimated from STEM images).

[Zn(L-TAR)] [Zn(D-TAR)]

angular range [◦] −60 to +80 −65 to +25
rotation per frame [◦] 1.0 1.0

exposure time [s] 1.0 1.0
total exposure [s] 140 90
frames collected 140 90

frames used 1–80 1–70
crystal size [µm] 2.5 × 0.6 × 0.5 5.0 × 0.5 × 0.4

Data for kinematical refinement were processed and evaluated using the APEX4
software package [24]. After unit cell determination the frames were integrated and cor-
rected for Lorentz effects, scan speed, background, and absorption using SAINT and
SADABS [25,26]. Space group determination was based on systematic absences, E statis-
tics, and successful refinement of the structure. The structure was solved using ShelXD
and refined with ShelXL in conjunction with ShelXle [27–29]. Least squares refinements
were carried out within the kinematic approximation by minimizing Σw(Fobs

2-Fcalc
2)2 with

the ShelXL weighting scheme and using neutral electron scattering factors [28,30]. Due
to the low amount of data, all atoms were refined with isotropic displacement parame-
ters. H atoms were placed in calculated positions based on typical distances for neutron
diffraction and refined with a riding model and Uiso(H) = 1.2·Ueq(C), for hydroxy H atoms
Uiso(H) = 1.5·Ueq(O) was used and angles were refined freely.

Data for dynamical refinement were processed using the PETS2 software package [31].
After unit cell determination the frames were integrated, corrected for pattern orientation
and beam position, and merged into overlapping virtual frames with a tilt range of 3◦ and
an offset between frames of 2◦ [21]. Dynamical refinement was performed using JANA2020
starting with the structure from kinematical refinement as initial model [32]. Least squares
refinements were carried out by minimizing Σw(Iobs − Icalc)2 based on dynamical diffraction
intensities and assuming uniform thickness of the crystals. All atoms were refined with
isotropic displacement parameters. Hydrogen atoms were treated in the same way as for
kinematical refinement as a free refinement of bond lengths led to very long C-H bonds of
ca. 1.3 Å, which seems excessive even though a certain elongation as compared to neutron
diffraction data is expected [21].

2.4. Differential Scanning Calorimetry/Thermal Gravimetric Analysis

Thermal gravimetric analysis was conducted on TA instruments TGA analyzer under
N2 up to 800 ◦C. The plot (Figure 2, left) showed a single weight loss from [Zn(L-TAR)]
(formula weight 213.5 g/mol) in the region 350–450 ◦C (−62%). Residual mass of 38%
fits for ZnO (formula weight 81.4 g/mol). DSC measurements were made from ambient
to 400 ◦C under a nitrogen atmosphere on a Universal V4.5A TA Instrument (Waters). A
heating rate of 10 ◦C per minute was employed, a single endotherm was found with onset
at 355 ◦C and with minimum heat flow at 375 ◦C, corresponding to the decomposition
found in the TGA analysis.
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Figure 2. Thermal gravimetric analysis and differential scanning calorimetry for [Zn(L-TAR)] 1-L.

3. Results
3.1. Hydrothermal Preparation of Zinc L-Tartrate and Related Phases

The structural data in the literature for zinc tartrates are dominated by hydrated
phases that represent kinetic products of the system. In order to obtain the fundamental
anhydrous zinc(II) tartrates, we employed mild hydrothermal synthesis. We found that
conditions of 110 ◦C and 2 d were sufficient to eliminate crystallization of the hydrated
phases. Notably, use of D/L-tartaric acid appeared to form a conglomerate with similar
powder XRD to the [Zn(L-TAR)] and [Zn(D-TAR)] phases, albeit the pattern was a little
broader (see Figure 3).
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3.2. Structural Analysis of Zinc Tartrate by Electron Diffraction

From the hydrothermal syntheses no crystals suitable for single crystal X-ray diffrac-
tion could be obtained as 1-L and 1-D only form very small needles which are also heavily
intergrown. To circumvent these difficulties, we turned to 3D-ED, which allowed the
structure determination directly from the as synthesized nanocrystalline samples.

1-L and 1-D crystallize in the orthorhombic space group I222 with half a formula unit
in the asymmetric unit (Tables 2 and 3 and Figures 1 and 4). They are isostructural to
the reported Mn(II), Fe(II), Co(II), and Ni(II) tartrate coordination polymers, which are all
based on naturally occurring L-tartrate [33]. Zn is coordinated by six O atoms in a distorted
octahedral fashion with Zn-O distances between 2.00(2) Å and 2.36(4) Å. The longer Zn-O
distances occur for the “backward” coordinating O of the carboxylate (see O1 in Figure 4)
that chelates together with the hydroxy O forming a bite angle of 74.4(11)◦ to 75.8(7)◦ at the
metal. The coordination sphere is completed by the same chelate motif of another tartrate
molecule and two more carboxylate O atoms of different tartrates which coordinate in the
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common “forward” mode (see O2 in Figure 4). Thus, each Zn(II) ion is coordinated by
four different tartrates and each tartrate is connected to four different Zn(II) ions forming
a three-dimensional coordination polymer. The structure features no pores that could
accommodate water or other solvent molecules and is essentially a ‘condensed’ phase.

Table 2. Crystal structure and refinement details for Zn(L-TAR) 1-L and Zn(D-TAR) 1-D
(kin = kinematical refinement, dyn = dynamical refinement).

1-L 1-D
kin dyn kin dyn

CCDC number 2,242,890 2,242,892 2,242,891 2,242,894
chemical formula C4H4O6Zn

formula weight [g mol−1] 213.46
crystal system orthorhombic

a [Å] 5.14(6) 5.16(6)
b [Å] 8.97(10) 9.00(10)
c [Å] 11.82(13) 11.78(13)

α, β, γ [◦] 90, 90, 90 90, 90, 90
volume [Å3] 545(11) 547(11)
space group I222

Z 4
resolution [Å] 0.79 0.68 0.79 0.74

completeness [%] 65 71 70 85
Unique reflections

(measured/observed) 355/292 808/509 359/341 674/616

parameters 28 65 28 60
restraints 1 1 1 1

Rint 11.4 - 4.6 -
R1(obs)/MR1(obs) 1 16.7 11.8/11.6 17.2 14.2/14.4

wR2(all) 42.6 22.6 43.7 27.2
∆Vmin, ∆Vmax −0.29, 0.35 −0.16, 0.20 −0.32, 0.41 −0.22, 0.49

1 MR: merged R factor for dynamical refinement based on post-refinement merging of reflections for better
comparison with conventional R factor for kinematical refinement [21].

Table 3. Selected distances and angles for Zn(L-TAR) 1-L and Zn(D-TAR) 1-D (kin = kinematical
refinement, dyn = dynamical refinement). Symmetry generated atoms marked by *.

1-L 1-D
kin dyn kin dyn

Zn-O1 2.02(3) 2.02(2) 2.02(3) 2.04(2)
Zn-O2 * 2.00(4) 2.03(2) 2.06(3) 2.00(2)
Zn-O3 2.29(4) 2.33(2) 2.36(4) 2.288(19)
C1-O1 1.24(3) 1.273(17) 1.24(4) 1.189(19)
C1-O2 1.29(3) 1.260(15) 1.21(3) 1.27(2)
C1-C2 1.51(3) 1.51(3) 1.59(4) 1.56(3)
C2-O3 1.37(3) 1.423(18) 1.31(4) 1.44(2)

C2-C2 * 1.55(4) 1.54(3) 1.52(5) 1.55(2)
O1-Zn1-O3 74.9(10) 75.8(7) 74.4(11) 74.5(7)
Zn1-O1-C1 120.5(15) 118.6(9) 121.3(18) 118.9(10)
Zn1-O3-C2 110.8(16) 110.1(9) 109(2) 112.8(8)

Zn1 *-O2-C1 130.4(18) 128.3(14) 125.2(19) 128.5(12)
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3.3. Absolute Structure Determination of Zinc Tartrates by Dynamical Refinement

As the title compound was synthesized with both enantiomers of tartaric acid, dy-
namical refinement of both enantiomorphs was performed for each sample to confirm the
correct form. In both [Zn(L-TAR)] and [Zn(D-TAR)] the correct enantiomorph gives clearly
better R/MR factors (MR1 by 3.4% for 1-L and 1.9% for 1-D) than the inverted form (see
Table 4). For further validation z-scores were calculated yielding values of 4.29σ for 1-L and
3.50σ for 1-D which corresponds to probabilities of >99,9% that the absolute structures are
determined correctly (see Table 4) [21]. In addition, of course, the R factors also improve in
comparison to the kinematical refinement results (see Table 2).

Table 4. Dynamical refinement results for enantiomorphic Zn(L-TAR) 1-L and Zn(D-TAR) 1-D.

Sample 1-L 1-D

enantiomorph L-form D-form L-form D-form
R1(obs)/MR1(obs) 11.8/11.6 14.5/15.0 16.1/16.3 14.2/14.4

wR2(all) 22.6 28.4 30.5 27.2
z-score 1 4.288σ 3.502σ

probability 1 99.999% 99.977%
1 z-score and corresponding probability for correct enantiomorph determination based on the observed statis-
tics of reflections with better fit for the correct enantiomorph compared to a normal distribution of random
differences [21].
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Notably the H position on the hydroxy group differs between the dynamically (dyn)
and kinematically (kin) refined structures of 1-L while it is similar for 1-D. The H position
of 1-L-dyn corresponds to a hydrogen bond with a carboxylate O atom from an adjacent
ZO6 octahedron at a O-O distance of 3.21(3) Å. It also agrees with the literature reported
structure of the Co(II) analogue [33]. The H position of 1-L-kin seems rather unusual,
it features an unnatural C-O-H angle of 98(6)◦ and leads to a contact of 2.1(2) Å with
its symmetry equivalent. Although its position would at least correspond to a potential
hydrogen bond to a carboxylate O of the same tartarte molecule at a distance of 3.39(5) Å,
one cannot rely on the H position from kinematical refinement in this case. Starting the
refinement from the correct position obtained from 1-L-dyn still produces the same result.

3.4. Preparation and Characterization of Related Metal Tartrate Phases

As mentioned the structure of 1-L and 1-D was found analogous to several other
anhydrous M(II) tartrates, which were able to be characterized by single crystal X-ray
diffraction [33–35]. Similar hydrothermal syntheses (110 ◦C, 2 d, 0.5 mmol scale in 1 mL
water) using various divalent metals M2+ = Mg, Mn, Co, Ni, and Cu were carried out and
the micro-crystalline powders analyzed by powder X-ray diffraction. The results are shown
in Figures 5 and 6.
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calculated from the single crystal structures of ACOVEU [33] and VIJGUS [36], respectively.



Symmetry 2023, 15, 983 8 of 13

The solid lines represent the actual crystal planes from the single crystal structures, while
the dashed lines show the hkl indexed by DICVOL06 [37]. The indexed planes of the main
peaks all fit with the equivalent planes of the actual cells, showing Zn, Mn, Co, and Cu
formed anhydrous metal tartrates using these hydrothermal conditions.

The powder X-ray diffractograms of [Mg(D-TAR)(H2O)·1.5H2O] and [Ni(L-TAR)(H2O)·
1.5H2O] hydrates are calculated from the single crystal structures of JIFXIG [34] and
CIXKEZ02 [35], respectively. The two Mg and Ni metal tartrate products match well with
their corresponding calculated patterns, indicating that these two metals tend to form
hydrates under 110 ◦C hydrothermal conditions.

4. Discussion
4.1. Structure and Absolute Structure Determination

The zinc tartrate phases represent a typical application example for the 3D-ED tech-
nique when X-ray crystallography fails due to small particle size < 1 µm. The diffraction
patterns from numerous specimens were scanned but the majority showed twinning or
intergrowth problems. One benefit of electron diffraction is that in imaging mode indi-
vidual crystals can quickly be identified and then studied for diffraction. After a suitable
crystal was identified by its pattern, the intensity data were collected in continuous rotation
mode. Due to beam damage the maximum exposure for crystals is limited before structural
degradation occurs, so a rapid intensity data collection was necessitated. The orthorhombic
symmetry of the pattern meant that hkl coverage was acceptable just from one crystallite.

The successful solution and reasonable quality of the refined structural model using
the kinematic approximation gave R1 = 16.7% for [Zn(L-TAR)]. This then led us to attempt
a dynamical refinement in order to determine the absolute structure. This was carried out
using JANA2020 [32] which is so far the only publicly available program with this ability
and has been used to establish absolute structures in various cases, most of them organic
molecules related to pharma [20,21]. The application of this approach gave R1 = 11.8%
(MR1 = 11.6%) for the correct hand (2R, 3R) and R1 = 14.5% (MR1 = 15.0%) for the inverted
(2S, 3S) structure, whereas there is no difference in R1 at all for the inversion of the kinemat-
ically refined structure. The difference of approximately 3 percentage points along with a
z-score of ca. 4.3σ allows for unequivocal absolute structure identification. As a confirming
experiment, a fresh sample of [Zn(D-TAR)] was prepared and analyzed in the same way.
The results on the 1-D specimen are in good agreement with the data for 1-L except that
the dynamical diffraction models indicate the inverse absolute stereochemistry. The data
are summarized in the above tables.

So dynamical refinement indeed proved to be a reliable method for the identification of
the stereochemistry in these nanocrystalline samples. Dynamical refinement also proved to
be superior in the location of H atoms as the kinematical refinement of 1-L yielded a wrong
H position on the hydroxy group. Even though there have been reports of H atom locations
based on just kinematical refinement results, care has to be taken in the evaluation of such
results and often dynamical refinement will be necessary for the accurate identification of
all H sites [21]. As nanocrystalline samples such as in our case are a common challenge
encountered in MOF chemistry, 3D-ED has already gained considerable attention in this
field [2,4–7]. The ability to determine crystal structures from just a single crystallite and
even identify the absolute structure in the cases of chiral compounds will likely let the use
of 3D-ED grow rapidly in the future.

4.2. Topological Comparison of Zinc Tartrate Phases

The geometric details for the structure (metal–ligand and C-O bond lengths) are
in general agreement with expectations (Table 3), but the bond length uncertainties are
unavoidably higher for 3D-ED than for SC-XRD. The anhydrous phase can be briefly
compared with the previously reported zinc tartrates reported in the Cambridge Structural
Database [14–17].
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The next level of structural comparison for these MOFs is the structural building block
SBU. This is best seen as a molecular dimer comprising two octahedral M2+ dications and
two bridging µ2-tartrate-dianion ligands. In the anhydrous phase both tartrates are µ4

and provide six coordination sites for the metal. In the hydrated phases CUJBAK and
KURNOB the two tartrates are chemically distinct with one µ4- and one µ2-tartrate. The
keto oxygens of one ligand are not coordinated and the two vacated sites are occupied by
coordinated aqua groups. The distinction between the two hydrated frameworks is that
they are diastereomeric—the water and keto coordination are reversed as may be seen in
Figure 7. It may also be pointed out that the octahedral metal centers are also chiral and the
designation of ∆ can be ascribed for L-tartrate networks and Λ for D-tartrate analogues.
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Finally, the overall assembly of the [M(TAR)] SBUs into the MOF framework can be
considered. The I222 phase is completely 3D, whereas CUJBAK and KURNOB form 2D
topological networks (see Figure 8) that are distinct from each other and also entrap different
amounts of guest water molecules. The arrangement for I222 amounts to combining the
connectivity found in the two 2D networks since the dimer unit is the same, but the keto
ligation is the combination of what is found in the other two hydrated phases (see Figure 9).
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Figure 9. Packing diagram for 1-L (from dynamical refinement) viewed along [010] left and
[100], right.

The meso phase MUYPUU has two coordinated aqua molecules per Zn and this
forms a 1D chain polymer, that packs in an efficient interdigitated manner with itself,
entrapping no further water of crystallization (see Figure 10). This may hint at why this
hydrated form persists to even higher temperatures than the L-tartrate hydrated phases,
since hydrothermal preparation at 140 ◦C still yielded this hydrated phase type.
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4.3. Isostructurality with Other Bivalent Metal Tartrates

Hydrothermal preparation of [M(L-TAR)] analogues with Zn were carried out under
similar conditions for M2+ = Mg, Ca, Mn, Fe, Co, Ni, and Cu. In all cases microcrystalline
powders resulted. Powder X-ray diffractograms indicated that isostructural or pseudo
isostructural phases could be prepared for most of these metals with the exception of Ca and
Fe. The preparation of [Fe(L-TAR)] using Fe(OAc)2 in a similar manner was unsuccessful,
although [M(L-TAR)] phases M = Mn, Ni, Co, and Fe have been prepared and investigated
for their magnetic properties [33]. The structures of [Ni(L-TAR)] [35] and [Cu(L-TAR)] [36]
were obtained after dehydration of hydrated phases through single-crystal to single-crystal
transformations. Calcium prefers to adopt a hydrated structure with higher coordination
number [38].
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Reactions with L-(2R,3R)-tartaric and D-(2S,3S)-tartaric acid afforded the mirror image
chiral MOFs 1-L and 1-D. Notably tartaric acid has two other forms meso-2R,3S-tartaric
acid and racemic D/L-(2R,3R/2S,3S)-tartaric acid. Corresponding reactions substituting
these different stereochemical forms could allow for phase types with different crystal
structures incorporating inversion symmetry. However, the Zn(D/L-TAR) reaction gives a
powder XRD pattern that seems close to the L-TAR or D-TAR products indicating that a
conglomerate of these crystals is favored. In the meso-case the centrosymmetric hydrated
phase MUYPUU is still afforded at 110 ◦C. This phase also persists at 140 ◦C, but higher
temperature may still result in an anhydrous phase. Table 5 gives the unit cell data for the
phase types and corresponding entries that were retrieved from the CSD or PDF for the
bivalent anhydrous metal tartrates mentioned above.

Table 5. Crystal unit cell data for related anhydrous M(TAR) crystal phases.

Mg(D-TAR) Co(L-TAR) Ni(L-TAR) Cu(L-TAR)

reference [34] [33] [35] [36]
CCDC number 631943 230223 650895 927769

empirical formula C4H4O6Mg C4H4O6Co C4H4O6Ni C4H4O6Cu
formula weight 172.38 207 207.78 211.61
temperature [K] 293 120(2) 113(2) 200(2)
crystal system orthorhombic orthorhombic orthorhombic orthorhombic
space group I222 I222 I222 P21212

a [Å] 5.024(1) 5.057(2) 4.9740(11) 4.9808(5)
b [Å] 9.163(2) 9.117(3) 9.055(2) 8.9689(11)
c [Å] 11.455(2) 11.631(3) 11.472(2) 11.7511(13)
α [◦] 90 90 90 90
β [◦] 90 90 90 90
γ [◦] 90 90 90 90

volume [Å3] 527.2(2) 536.2(3) 516.68(19) 524.95(10)

Investigations of structure property relations for various optical and electrooptical
effects are in progress including chiro-photoluminescence of zinc tartrate.

5. Conclusions

The crystal structures of the 3D network coordination polymers [Zn(L-TAR)] and
[Zn(D-TAR) have been investigated by 3D-ED and were solved and refined using conven-
tional X-ray crystallography programs with both a kinematical and dynamical diffraction
approach. The absolute structures could also clearly be discriminated. Symmetry analysis
of the network in these 3D nets indicate that not only is the ligand chiral with two halves
related by a two-fold axis, but the octahedral metal centers are chiral as well and can be
classified as ∆ or Λ configuration. The current work shows that valuable and detailed
structural information on chiral nanocrystalline MOF materials can be provided by modern
electron diffraction techniques.
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