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Abstract: The creation of two-dimensional copulas is crucial for the proposal of novel families of
two-dimensional distributions and the analysis of original dependence structures between two
quantitative variables. Such copulas can be developed in a variety of ways. In this article, we
provide theoretical contributions to this subject; we emphasize a new parametric ratio scheme to
create copulas of the following form: C(x, y) = (b + 1)xy/[b + φ(x, y)], where b is a constant and
φ(x, y) is a two-dimensional function. As a notable feature, this form can operate an original trade-
off between the product copula and more versatile copulas (not symmetric, with tail dependence,
etc.). Instead of a global study, we examine seven concrete examples of such copulas, which have
never been considered before. Most of them are extended versions of existing non-ratio copulas,
such as the Celebioglu–Cuadras, Ali-Mikhail-Haq, and Gumbel–Barnett copulas. We discuss their
attractive properties, including their symmetry, dominance, dependence, and correlation features.
Some graphics and tables are given as complementary works. Our findings expand the horizons of
new two-dimensional distributional or dependence modeling.
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1. Introduction

In [1,2], Sklar introduced the concept of copula and established the main theorem
that now bears his name. In the two-dimensional (2D) case, a copula is the 2D function
that connects a 2D cumulative distribution function (CDF) to its marginal CDFs. In more
detail, if (X, Y) is a random vector with CDF H(x, y), and with marginal CDFs F(x) and
G(y), respectively, then there exists a 2D copula C(x, y) such that H(x, y) = C[F(x), G(y)],
(x, y) ∈ R2. Thus, C(x, y) measures the connection that exists between F(x) and G(y), as
well as the (stochastic) dependence between X and Y; the independence case corresponds to
the product copula C(x, y) = xy = Π(x, y). The following definition puts the mathematical
basis of a 2D copula in an absolutely continuous setting.

Definition 1. In the setting of the absolutely continuous case, a 2D copula is a differentiable 2D
function C(x, y), (x, y) ∈ [0, 1]2 satisfying the following properties:

Boundary (B) properties: For any (x, y) ∈ [0, 1]2, we have C(x, 0) = C(0, y) = 0, C(x, 1) = x
and C(1, y) = y,

Positive mixed partial derivative (PMPD) property: For any (x, y) ∈ [0, 1]2, we have

∂

∂x∂y
C(x, y) ≥ 0,

where the mixed derivative is supposed to exist almost everywhere.
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Examples include the Ali-Mikhail-Haq (AMH), Farlie–Gumbel–Morgenstern (FGM),
Galambos, Gumbel–Barnett (GB), Marshall–Olkin, Plackett, Cuadras–Augé, Raftery, Brow-
nian motion, Bertino, Celebioglu–Cuadras (CC) and Andronov copulas. We refer to [3,4]
for a complete and solid overview of the topic foundation.

The research on copula is currently ongoing, and what follows is only a short overview
of recent works. On the basis of copulas, the authors in [5] suggested a 2D inverse Weibull
distribution and its use in a special risk model. The authors in [6] described a method
for a 2D hydrologic correlation analysis using a Bayesian model-averaging copula. The
authors in [7] introduced a new class of 2D FGM copulas. The authors of [8] created a
novel family of 2D copulas using a unit Weibull distribution distortion. Several families of
copulas are related to one another, as established in [9]. Two generalized 2D FGM copulas
were elaborated in [10]. The authors in [11] highlighted a class of bivariate 2D copula
transformations. An extension of the GB copula was developed in [12]. The authors in [13]
elaborated on a new 2D copula via the Rüschendorf method. The authors in [14] developed
and presented applications for 2D copulas using the counter-monotonic shock method.
Based on the FGM copula, the authors in [15] proposed a 2D generalized half-logistic
distribution and its application to household financial affordability in KSA. The author
of [16] proposed a new collection of new trigonometric and hyperbolic FGM-type copulas.
On the other hand, copulas have been shown to be effective in a variety of important fields,
including economics, medicine, civil engineering, social science, and environmental science
(see [17–19]).

A branch of copula theory involves developing new and original 2D copulas to
provide new 2D models for dealing with the diverse dependence structures emerging from
contemporary data. Beyond the norm, interesting copula functionalities have emerged,
opening up new avenues for research. Among them, we may mention the trigonometric
copulas that are able to model circular-type dependencies (see [20–22]), and the ratio-type
copulas that can be considered understudied beyond the classical schemes (see [23–27],
among others). The findings of this article contribute to this last aspect; we offer original
copulas of the following parameter–ratio form:

C(x, y) =
(b + 1)xy

b + φ(x, y)
, (x, y) ∈ [0, 1]2, (1)

where b denotes a certain constant and φ(x, y) represents a certain function satisfying
φ(1, y) = φ(x, 1) = 1, among other properties to be specified. This function may also
depend on some parameters. The form in Equation (1) is derived from the AMH cop-
ula, a paragon of the Archimedean family. We recall that it is defined with b = 0 and
φ(x, y) = 1 + a(1− x)(1− y), with a ∈ [−1, 1], or equivalently, with φ(x, y) = 1− a(1−
x)(1− y), with a ∈ [−1, 1]. The interests of the form in Equation (1) are: (i) when b→ +∞,
we have C(x, y) = xy; we thus rediscover the benchmark product copula (the same re-
mark holds if we may have φ(x, y) = 1), and (ii) if we choose φ(x, y) = xy/C∗(x, y),
where C∗(x, y) denotes a certain copula, then, by taking b = 0, the copula C(x, y) in
Equation (1) corresponds to C∗(x, y). As a result, the parameter b operates an original
trade-off between the product copula and C∗(x, y). In this sense, the copula C(x, y) can be
viewed as a one-parameter ratio-generalization of C∗(x, y) and, thus, as a flexibly modified
version. Another viewpoint is that C(x, y) can be written as C(x, y) = P(x, y)Π(x, y)
or C(x, y) = Π(x, y) + Q(x, y), where P(x, y) = (b + 1)/[b + φ(x, y)] and Q(x, y) =
xy[P(x, y)− 1] = xy[1− φ(x, y)]/[b + φ(x, y)]. These secondary functions thus perturb the
product copula. The idea of perturbing the functionalities of the product copula is not new
(see [28,29], and the references therein), but the considered weighted ratio form for P(x, y)
remains the original angle of the article.

Due to the mathematical complexity of the form in Equation (1), a general study
is nearly impossible. For this reason, we exhibit a collection of seven copulas of this
form with various functions φ(x, y), mainly of polynomial, exponential, and logarithmic
types. The behavior of φ(x, y) may be affected by additional parameters. For each of
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them, admissible ranges of values are determined. All the copulas presented are new
in the literature, and most of them are well-referenced extended ones. The proofs are
detailed and self-contained. In them, the main tedious point remains the PMPD property,
which necessitates technical differentiation developments and prudent factorization. For
each proposed copula, we examine their properties, including shapes, varied symmetry,
dependence, and correlations. In particular, their shapes are shown graphically, and tables
of values are given for some correlation measures. Among the main findings, we elaborate
on a three-parameter extended version of the AMH copula, making it more flexible and
adaptable in a statistical sense. In view of the existing theoretical and applied works on
the AMH copula (see [30–32], among others), the potential of interest of this extension
is certain.

The rest of the article comprises the two following sections: Section 2 provides the list
of valid copulas in the suggested ratio form, as well as detailed proofs and discussions.
Section 3 contains a summary of the findings, along with a complementary discussion
and perspectives.

2. Original Ratio-Type Copulas

This section presents seven original ratio-type copulas of the form in Equation (1),
each defined with a specific function φ(x, y).

2.1. First Copula

The first copula considers the form in Equation (1) with the 2D one-parameter loga-
rithmic function φ(x, y) = 1 + a log(x) log(y).

Proposition 1. Let C(x, y) be the following 2D function:

C(x, y) =
(b + 1)xy

b + 1 + a log(x) log(y)
, (x, y) ∈ [0, 1]2. (2)

Then, for a ∈ [0, 1] and b ≥ a− 1, C(x, y) is a 2D copula.

Proof. First, C(x, y) can be written as

C(x, y) =
xy

1 + c log(x) log(y)
, (x, y) ∈ [0, 1]2,

where c = a/(b + 1). Thus, the conditions a ∈ [0, 1] and b ≥ a− 1 imply that c ∈ [0, 1]. Let
us prove that, under this modified form, C(x, y) is a 2D copula based on Definition 1.

On the B property: For any (x, y) ∈ [0, 1]2, we have

C(x, 0) = lim
y→0

xy
1 + c log(x) log(y)

= 0

and, in a similar way, C(0, y) = 0. Since log(1) = 0, it is immediate that C(x, 1) = x and
C(1, y) = y. The B property is proved.

On the PMPD property: Applying several differentiation rules and factorizing in a way to
be able to conclude, we have

∂

∂x∂y
C(x, y) =

1
[1 + c log(x) log(y)]3

×

{c log(x) log(y)[c log(x) log(y) + c + 2]− c log(xy)[c log(x) log(y) + 1] + 1− c}.
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For any (x, y) ∈ [0, 1]2, we have log(x) log(y) ≥ 0, − log(xy) ≥ 0 and since c ∈ [0, 1],
we have 1− c ≥ 0, and all of the main terms in the above equations are non-negative.
Therefore, we have

∂

∂x∂y
C(x, y) ≥ 0,

and the PMPD property is established.

This ends the proof.

Remark 1. In Proposition 1, the value a = 0 implies no role for b; we have C(x, y) = xy. The
interrogative case a = 0 and b = −1 is excluded.

The copula defined in Equation (2) is called the original ratio-type 1 (OR1) copula.
As far as we know, it is a new addition to the literature and is one of the few copulas
that involves a product of logarithmic terms in the denominator. Let us now connect it
with some existing copulas. To begin, as mentioned in Remark 1, it corresponds to the
product copula when a = 0, i.e., C(x, y) = Π(x, y). Furthermore, based on the inequality
log(u) ≤ u − 1 for any u > 0, we have log(x) log(y) ≥ (1 − x)(1 − y) ≥ 0 for any
(x, y) ∈ [0, 1]2, and the following copula dominances hold:

C(x, y) ≤ CAMH(x, y) ≤ Π(x, y), (3)

where CAMH(x, y) is the AMH copula defined by

CAMH(x, y) =
xy

1 + c(1− x)(1− y)
, (4)

with c = a/(b + 1) ∈ [0, 1].
Clearly, for b = 0, C(x, y) has the same form as the AMH copula, except that the

separable polynomial function ψ(x, y) = (1− x)(1− y) is replaced by the separable two-
logarithmic function ϕ(x, y) = log(x) log(y). In this sense, the OR1 copula can be viewed
as a natural two-logarithmic extension of the AMH copula. On the other hand, copula
dominance results, as in Equation (3), are important to have information on the quadrant
dependence and to compare the correlation properties of the involved copulas. This is
especially true for the Spearman correlation measure (to be presented later). For instance,
based on Equation (3), we can say that the OR1 copula is negatively quadrant dependent
and has negative Spearman correlation measure values that are lower than those associated
with the AMH copula.

Concerning its main properties, the OR1 copula is diagonally symmetric and, for
a 6= 0, it is not radially symmetric, is not Archimedean, and has no tail dependence. It has
the following medial correlation measure (also called Blomqvist beta):

β = 4C
(

1
2

,
1
2

)
− 1 = − a log2(2)

b + 1 + a log2(2)
.

It is always negative; the OR1 copula is designed to model negative correlations. The
Spearman correlation measure is given by the following integral expression:

ρ = 12
∫ 1

0

∫ 1

0
[C(x, y)− xy]dxdy = −12a

∫ 1

0

∫ 1

0

xy log(x) log(y)
b + 1 + a log(x) log(y)

dxdy.

It does not have a closed-form expression. As a numerical study, Table 1 presents some of
its values for several admissible values of a and b.
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Table 1. Numerical analysis of the Spearman correlation measure for the OR1 copula and selected
parameter values.

a→ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

b = 0 −0.0688 −0.1282 −0.181 −0.2288 −0.2725 −0.313 −0.3506 −0.3858 −0.4189 −0.4502

b = 1 −0.0358 −0.0688 −0.0994 −0.1282 −0.1553 −0.181 −0.2054 −0.2288 −0.2511 −0.2725

b = 2 −0.0242 −0.0471 −0.0688 −0.0894 −0.1092 −0.1282 −0.1464 −0.164 −0.181 −0.1974

This table confirms that the OR1 copula is adapted to model the negative dependence,
and, for the considered parameter values, we have ρ ∈ [−0.46, 0].

For illustrative purposes and visual validation, with the use of the free software R
(see [33]), Figure 1 shows two complementary plots of the OR1 copula for a = 1/2 and
b = −1/2.
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Figure 1. Plots of the OR1 copula for a = 1/2 and b = −1/2: standard (left) and intensity con-
tour (right).

We observe the typical shapes of a copula, with the clear fact that the OR1 copula
is valid. As a last result, the OR1 copula satisfies the Fréchet–Hoeffding inequalities: for
any (x, y) ∈ [0, 1]2, we have max(x + y− 1, 0) ≤ C(x, y) ≤ min(x, y), which can also be
expressed as

max(x + y− 1, 0) ≤ (b + 1)xy
b + 1 + a log(x) log(y)

≤ min(x, y).

(It is understood, for a ∈ [0, 1] and b ≥ a − 1). It is not claimed that these inequalities
are sharp, but 2D inequalities remain relatively rare and important, so that they can find
interest in diverse multivariate analysis settings.

2.2. Second Copula

The second copula considers the form in Equation (1) with the 2D one-parameter
polynomial-logarithmic function φ(x, y) = 1− a(1− x) log(y); in comparison to the previ-
ously considered φ(x, y), the term −(1− x) has replaced log(x).

Proposition 2. Let C(x, y) be the following 2D function:

C(x, y) =
(b + 1)xy

b + 1− a(1− x) log(y)
, (x, y) ∈ [0, 1]2. (5)

Then, for a ∈ [0, 1] and b ≥ a− 1, C(x, y) is a 2D copula.
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Proof. First of all, C(x, y) can be written as

C(x, y) =
xy

1− c(1− x) log(y)
, (x, y) ∈ [0, 1]2,

where c = a/(b + 1). Hence, the conditions a ∈ [0, 1] and b ≥ a− 1 imply that c ∈ [0, 1].
Let us prove that, under this simplified form, C(x, y) is a 2D copula based on Definition 1.

On the B property: For any (x, y) ∈ [0, 1]2, we have

C(x, 0) = lim
y→0

xy
1− c(1− x) log(y)

= 0

and
C(0, y) =

0× y
1− c(1− 0) log(y)

= 0.

Since log(1) = 0, it is immediate that C(x, 1) = x and, similarly, since 1− x = 0 for x = 1,
we have C(1, y) = y. This proves the B property.

On the PMPD property: Combining various differentiation rules and factorizing in a way
that allows us to draw conclusions, we have

∂

∂x∂y
C(x, y) =

1
[1− c(1− x) log(y)]3

×{
c2(1− x) log2(y)− c log(y)[c(1− x) + 2− x]− 2cx + c + 1

}
.

For any (x, y) ∈ [0, 1]2, we have − log(y) ≥ 0 and, since c ∈ [0, 1], we have

−2cx + c + 1 ≥ 2c(1− x) ≥ 0.

Hence, all of the main terms in the above equations are non-negative. Therefore, we have

∂

∂x∂y
C(x, y) ≥ 0.

The PMPD property holds.

The proof is complete.

Remark 2. In Proposition 2, the value a = 0 implies no role for b; we have C(x, y) = xy. The
interrogative case a = 0 and b = −1 is excluded.

The copula defined in Equation (5) is named the original ratio-type 2 (OR2) copula. As
far as we are aware, it has never been brought up in the literature. Now, let us link it to some
existing copulas. To begin, referring to Remark 2, it corresponds to the product copula when
a = 0, i.e., C(x, y) = Π(x, y). Furthermore, for any (x, y) ∈ [0, 1]2, since log(x) log(y) ≥
−(1− x) log(y) ≥ (1− x)(1− y) ≥ 0, the following copula dominances hold:

COR1(x, y) ≤ C(x, y) ≤ CAMH(x, y),

where COR1(x, y) is the OR1 copula as defined in Equation (2) and CAMH(x, y) is described
in Equation (4). For b = 0, C(x, y) has the same denominator term as the AMH copula,
except that the separable polynomial function is replaced by the separable polynomial–
logarithmic function Q(x, y) = −(1 − x) log(y). In this sense, it can be viewed as a
modification, and as a trade-off between the OR1 and AMH copulas.
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Concerning its main properties, for a 6= 0, the OR2 copula is not diagonally symmetric,
radially symmetric, or Archimedean, and has no tail dependence. Its medial correlation
measure is

β = − a log(2)
2(b + 1) + a log(2)

.

It is, of course, always negative; the OR2 copula is designed to model negative correlations.
The Spearman correlation measure does not have a closed-form expression, motivating
numerical work. Table 2 presents some of its numerical values for several admissible values
of a and b.

Table 2. Numerical analysis of the Spearman correlation measure for the OR2 copula and selected
parameter values.

a→ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

b = 0 −0.0477 −0.0914 −0.1319 −0.1697 −0.2052 −0.2386 −0.2703 −0.3003 −0.3289 −0.3562

b = 1 −0.0244 −0.0477 −0.07 −0.0914 −0.1121 −0.1319 −0.1512 −0.1697 −0.1877 −0.2052

b = 2 −0.0164 −0.0323 −0.0477 −0.0627 −0.0773 −0.0914 −0.1053 −0.1188 −0.1319 −0.1448

Thus, we have ρ ∈ [−0.36, 0], which is acceptable, and this table confirms that the OR2
copula is adjusted to model negative dependence.

For illustrative purposes and visual validation, Figure 2 displays the plots of the OR2
copula for a = 1/2 and b = −1/2.
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Figure 2. Plots of the OR2 copula for a = 1/2 and b = −1/2: standard (left) and intensity contour
(right).

We observe the typical shapes of a copula, given the clear fact that the OR2 copula
is valid.

One final copula fact is that the OR2 copula satisfies the Fréchet–Hoeffding inequalities,
implying that, for any (x, y) ∈ [0, 1]2,

max(x + y− 1, 0) ≤ (b + 1)xy
b + 1− a(1− x) log(y)

≤ min(x, y).

These inequalities can find applications in diverse multivariate analysis settings.

2.3. Third Copula

The third copula considers the form in Equation (1) for the 2D one-parameter expo-
nential function φ(x, y) = exp[a(1− x)(1− y)], which is of a completely different nature to
the two previously considered functions φ(x, y).
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Proposition 3. Let C(x, y) be the following 2D function:

C(x, y) =
(b + 1)xy

b + exp[a(1− x)(1− y)]
, (x, y) ∈ [0, 1]2. (6)

Then, for a ∈ [−1, 1] and b ≥ 0, C(x, y) is a 2D copula.

Proof. Let us demonstrate that C(x, y) is a 2D copula based on Definition 1.

On the B property: For any (x, y) ∈ [0, 1]2, we have

C(x, 0) =
(b + 1)x× 0

b + exp[a(1− x)(1− 0)]
= 0

and, similarly, we have C(0, y) = 0. On the other hand, we have

C(x, 1) =
(b + 1)x× 1

b + exp[a(1− x)(1− 1)]
=

b + 1
b + 1

x = x

and, similarly, we have C(1, y) = y. The B property is demonstrated.

On the PMPD property: By differentiating and factorizing in a way that allows us to draw
conclusions, we have

∂

∂x∂y
C(x, y) =

b + 1
{b + exp[a(1− x)(1− y)]}3×{

exp[2a(1− x)(1− y)]
[

a2xy(1− x)(1− y) + a(−3xy + x + y) + 1
]

+ b exp[a(1− x)(1− y)]
[
−a2xy(1− x)(1− y) + a(−3xy + x + y) + 2

]
+ b2

}
.

Let us investigate a sharp lower bound for the term a(−3xy + x + y), which appears two
times. For any (x, y) ∈ [0, 1]2, we have

−3xy + x + y = −xy + x(1− y) + y(1− x) ≥ −xy ≥ −1

and, on the other hand,

−3xy + x + y = −(1− x)(1− y)− 2xy + 1 ≤ 1.

So −3xy + x + y ∈ [−1, 1]. Therefore, we have a(−3xy + x + y) ≥ −|a|. Since the exponen-
tial terms are non-negative and b ≥ 0, we have

∂

∂x∂y
C(x, y) ≥ b + 1

{b + exp[a(1− x)(1− y)]}3×{
exp[2a(1− x)(1− y)]

[
a2xy(1− x)(1− y) + 1− |a|

]
+ b exp[a(1− x)(1− y)]

[
−a2xy(1− x)(1− y) + 2− |a|

]
+ b2

}
.

For any (x, y) ∈ [0, 1]2, since |a| ≤ 1, it is clear that

a2xy(1− x)(1− y) + 1− |a| ≥ 0,

and, since a2xy(1− x)(1− y) ≤ a2 ≤ 1, we have

−a2xy(1− x)(1− y) + 2− |a| = [1− a2xy(1− x)(1− y)] + 1− |a| ≥ 0.
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Combining the above inequalities, we obtain

∂

∂x∂y
C(x, y) ≥ 0.

The PMPD property is, thus, satisfied.

This ends the proof.

The copula defined in Equation (6) is named the original ratio-type 3 (OR3) copula.
It is worth noting that, for a = 0, the OR3 copula is reduced to the product copula,

and, for b = 0, it becomes

C(x, y) = xy exp[−a(1− x)(1− y)], (x, y) ∈ [0, 1]2,

which corresponds to the CC copula established in [34,35]. See also [36].
Owing to the inequality exp(u) ≥ 1+ u for any u ∈ R, we have exp[a(1− x)(1− y)] ≥

1 + a(1− x)(1− y) ≥ 0 for any (x, y) ∈ [0, 1]2 and a ∈ [−1, 1], implying the following
copula dominance:

C(x, y) ≤ CAMH(x, y),

where CAMH(x, y) is the AMH copula defined in Equation (4) with a/(b + 1) (instead of c).
Certain power series of the OR3 copula can be established. For instance, for any

(x, y) ∈ [0, 1)2, a ∈ [−1, 0), and b ≥ 0, it follows from the geometric and binomial series that

C(x, y) =
xy

1− {1− exp[a(1− x)(1− y)]}/(b + 1)

= xy
+∞

∑
k=0

k

∑
`=0

(
k
`

)
(−1)`

(b + 1)k exp[a`(1− x)(1− y)].

One can observe that it is an infinite series involving the CC copula with a varying pa-
rameter. Such series expansion can be used for various analytical purposes (expansions of
correlation measures, calculus of moments, etc.).

The main properties are now investigated. The OR3 copula is diagonally symmetric,
and, for a 6= 0, it is not radially symmetric, is not Archimedean, and has no tail dependence.

Furthermore, the OR3 copula has the following medial correlation measure:

β =
1− exp(a/4)
b + exp(a/4)

.

It is negative for a ∈ (0, 1], and non-negative for a ∈ [−1, 0); the OR3 copula can model var-
ious types of correlations. There is no closed-form expression for the Spearman correlation
measure. For an idea of its numerical behavior, we calculate it for several admissible values
of a and b and collect the results in Table 3.

The obtained range of values for ρ is [−0.30, 0.39]. This shows that the OR3 copula is
adjusted to model weak or moderate negative or positive dependence.

For illustrative purposes and visual validation, Figure 3 displays some plots of the
OR3 copula for a = −1 and b = 1.

Table 3. Numerical analysis of the Spearman correlation measure for the OR3 copula and selected
parameter values.

a→ −1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0

b = 0 0.3806 0.2961 0.2162 0.1403 0.0684 0 −0.065 −0.127 −0.186 −0.2423 −0.2962

b = 1 0.1654 0.1327 0.0997 0.0666 0.0333 0 −0.0333 −0.0666 −0.0997 −0.1327 −0.1654

b = 2 0.106 0.0857 0.0649 0.0437 0.022 0 −0.0224 −0.0451 −0.0682 −0.0915 −0.1151
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Figure 3. Plots of the OR3 copula for a = −1 and b = 1: standard (left) and intensity contour (right).

We see the standard copula shapes while also observing that the OR3 copula is valid.
As a last copula fact, the OR3 copula satisfies the Fréchet–Hoeffding inequalities, and

so, for any (x, y) ∈ [0, 1]2, we have

max(x + y− 1, 0) ≤ (b + 1)xy
b + exp[a(1− x)(1− y)]

≤ min(x, y).

These inequalities can be used in a variety of multivariate analysis contexts.

2.4. Fourth Copula

The fourth copula considers the form in Equation (1) with the 2D one-parameter
ratio–polynomial function φ(x, y) = (xa + ya)/(1 + xaya).

Proposition 4. Let C(x, y) be the following 2D function:

C(x, y) =
(b + 1)xy

b + (xa + ya)/(1 + xaya)
, (x, y) ∈ [0, 1]2. (7)

Then, for a ∈ [−1, 1] and b ≥ 0, C(x, y) is a 2D copula.

Proof. Since, for a ∈ [0, 1], we have

xa + ya

1 + xaya =
x−a + y−a

1 + x−ay−a ,

we can restrict our attention to the case a ∈ [0, 1] instead of a ∈ [−1, 1]. Thus, under this
condition, let us prove that C(x, y) is a 2D copula based on Definition 1.

On the B property: For any (x, y) ∈ [0, 1]2, we have

C(x, 0) =
(b + 1)x× 0

b + (xa + 0a)/(1 + xa × 0a)
= 0

and, similarly, we have C(0, y) = 0. On the other hand, we have

C(x, 1) =
(b + 1)x× 1

b + (xa + 1a)/(1 + xa × 1a)
=

b + 1
b + 1

x = x

and, similarly, we have C(1, y) = y. The B property is proved.
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On the PMPD property: Using several differentiation and factorization strategies, we
establish

∂

∂x∂y
C(x, y) =

b + 1

[bxaya + (xa + ya) + b]3
×{

b(2a2xaya + A)(xa + ya) + x2a
[
2a2y2a + 2y2a + 2ay2a + 1− a

]
+ xa

[
2a2 + y2a + ay2a + 2(1− a)

]
ya + b2(1 + xaya)3 + (a + 1)x3aya + (1− a)y2a

}
,

where
A = a(x2ay2a − 1) + 2(1 + xaya)2.

Let us focus on the term A, which is the main interrogative of its sign. For any (x, y) ∈ [0, 1]2,
since (1 + xaya)2 ≥ 1 and a ∈ [0, 1], we have

A ≥ ax2ay2a + 2− a ≥ 1 ≥ 0.

Furthermore, since b ≥ 0 and 1− a ≥ 0, all of the other main terms are immediately
non-negative. Therefore, we have

∂

∂x∂y
C(x, y) ≥ 0.

The PMPD property is established.

The desired result is obtained.

The copula defined in Equation (7) is named the original ratio-type 4 (OR4) copula. As
an immediate remark, for a = 0, it is reduced to the product copula. An alternative form of
the OR4 copula is

C(x, y) =
(b + 1)xy(1 + xaya)

bxaya + xa + ya + b
, (x, y) ∈ [0, 1]2.

In particular, for a = b = 1, it is reduced to

C(x, y) =
2xy(1 + xy)
(1 + x)(1 + y)

, (x, y) ∈ [0, 1]2,

which is a special case of a ratio copula described in [37].
Now, let us remark that, for any (x, y) ∈ [0, 1]2, we have (1− xa)(1− ya) ≥ 0, which

implies that (xa + ya)/(1 + xaya) ≤ 1. As a result, the following copula dominance holds:

C(x, y) ≥ Π(x, y). (8)

The main properties of the OR4 copula are now listed. To begin with, it is diagonally
symmetric and, for a 6= 0, it is not radially symmetric, is not Archimedean, and has no tail
dependence. The associated medial correlation measure is given by

β =
1− 2a+1/(1 + 22a)

b + 2a+1/(1 + 22a)
.

This measure is always positive; the OR4 copula is adapted to model positive correlations.
The Spearman correlation measure does not have a closed-form expression. As a numerical
work, Table 4 presents some of its numerical values for several admissible values of a and b.
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Table 4. Numerical analysis of the Spearman correlation measure for the OR4 copula and selected
parameter values.

a→ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

b = 0 0.0038 0.015 0.0338 0.06 0.0939 0.1354 0.1847 0.2421 0.3077 0.3819

b = 1 0.0019 0.0074 0.0165 0.0289 0.0443 0.0624 0.0828 0.1053 0.1295 0.1551

b = 2 0.0012 0.0049 0.0109 0.019 0.029 0.0406 0.0536 0.0677 0.0827 0.0984

Hence, for the considered parameter values, we have ρ ∈ [0, 0.39]. This confirms that
the OR4 copula is adjusted to model moderate positive dependence.

For illustrative purposes and visual validation, Figure 4 displays some plots of the
OR4 copula for a = b = 1/2.
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Figure 4. Plots of the OR4 copula for a = b = 1/2: standard (left) and intensity contour (right).

We observe the typical shapes of a copula, given the clear fact that the OR4 is valid.
As a last copula fact, the OR4 copula satisfies the Fréchet–Hoeffding inequalities.

Hence, for any (x, y) ∈ [0, 1]2, we have

max(x + y− 1, 0) ≤ (b + 1)xy
b + (xa + ya)/(1 + xaya)

≤ min(x, y).

These inequalities can find applications in diverse multivariate analysis settings.

2.5. Fifth Copula

The fifth copula can be viewed as complementary to the OR4 copula; we consider
the form in Equation (1) with the 2D one-parameter ratio–polynomial function φ(x, y) =
(1 + xaya)/(xa + ya), corresponding to the exact inverse function φ(x, y) of the previous
section.

Proposition 5. Let C(x, y) be the following 2D function:

C(x, y) =
(b + 1)xy

b + (1 + xaya)/(xa + ya)
, (x, y) ∈ [0, 1]2. (9)

Then, for a ∈ [−1, 1] and b ≥ 0, C(x, y) is a 2D copula.
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Proof. Since, for a ∈ [0, 1], we have

1 + xaya

xa + ya =
1 + x−ay−a

x−a + y−a ,

we can restrict our attention to the case a ∈ [0, 1] instead of a ∈ [−1, 1]. Thus, under this
condition, let us prove that C(x, y) is a 2D copula based on Definition 1.

On the B property: For any (x, y) ∈ [0, 1]2, we have

C(x, 0) =
(b + 1)x× 0

b + (1 + xa × 0a)/(xa + 0a)
= 0

and, similarly, we have C(0, y) = 0. On the other hand, we have

C(x, 1) =
(b + 1)x× 1

b + (1 + xa × 1a)/(xa + 1a)
=

b + 1
b + 1

x = x

and, similarly, we have C(1, y) = y. This proves the B property.

On the PMPD property: Differentiating and arranging the obtained terms in a manageable
way, we obtain

∂

∂x∂y
C(x, y) =

b + 1

[b(xa + ya) + 1 + xaya]3
×{

xa
[
2(1− a2)y2a + 2b(1− a2)ya + 2b(y2a + 1)ya + 3b2y2a + ab(2− y2a)ya + a + 1

]
+ x2a

[
3b2ya + (a + 2)b[2(1− a)y2a + 1] + (1− a)(y2a + 2a + 2)ya

]
+ x3a(ya + b)[(1− a)ya + b] + ya(bya + 1)(bya + a + 1)

}
.

For any (x, y) ∈ [0, 1]2, since b ≥ 0 and a ∈ [0, 1], all of the main terms are immediately
non-negative. Therefore, we have

∂

∂x∂y
C(x, y) ≥ 0.

The PMPD property is thus satisfied.

This ends the proof.

The copula defined in Equation (9) is named the original ratio-type 5 (OR5) copula.
For a = 0, it is reduced to the product copula. An alternative form of the OR5 copula is

C(x, y) =
(b + 1)xy(xa + ya)

1 + b(xa + ya) + xaya , (x, y) ∈ [0, 1]2.

In particular, for a = b = 1, it is reduced to

C(x, y) =
2xy(x + y)

(1 + x)(1 + y)
, (x, y) ∈ [0, 1]2.

Because we have (1− xa)(1− ya) ≥ 0 for any (x, y) ∈ [0, 1]2, we have (1+ xaya)/(xa +
ya) ≥ 1. As a result, the following copula dominance holds:

C(x, y) ≤ Π(x, y).
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We now list the key characteristics of the OR5 copula. To begin, it is diagonally
symmetric, and, for a 6= 0, it is not radially symmetric, is not Archimedean, and has no tail
dependence. The associated medial correlation measure is given by

β =
1− (1 + 22a)/2a+1

b + (1 + 22a)/2a+1 .

It is always negative; the OR5 copula is designed to model negative correlations. The
Spearman correlation measure does not have a closed-form expression. As an indicator,
Table 5 presents some of its numerical values for several admissible values of a and b.

Table 5. Numerical analysis of the Spearman correlation measure for the OR5 copula and selected
parameter values.

a→ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

b = 0 −0.0037 −0.0147 −0.0324 −0.0558 −0.0843 −0.1167 −0.1523 −0.1903 −0.2301 −0.2711

b = 1 −0.0019 −0.0074 −0.0165 −0.0289 −0.0443 −0.0624 −0.0828 −0.1053 −0.1295 −0.1551

b = 2 −0.0012 −0.005 −0.0111 −0.0195 −0.0301 −0.0426 −0.057 −0.0731 −0.0906 −0.1094

For the selected parameter values, we see that ρ ∈ [−0.28, 0], which is acceptable in
terms of range. Thus, the OR5 copula can be chosen to model negative dependence.

For illustrative purposes and visual validation, Figure 5 displays some plots of the
OR5 copula for a = b = 1/2.
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Figure 5. Plots of the OR5 copula for a = b = 1/2: standard (left) and intensity contour (right).

This figure clearly demonstrates the validity of the OR5 copula.
As the other copulas, the OR5 copula satisfies the Fréchet–Hoeffding inequalities.

Thanks to them, for any (x, y) ∈ [0, 1]2, the following inequalities hold:

max(x + y− 1, 0) ≤ (b + 1)xy
b + (1 + xaya)/(xa + ya)

≤ min(x, y).

They can find applications in diverse multivariate analysis settings.

2.6. Sixth Copula

The sixth copula aims to generalize the AMH copula; we consider the form in Equation
(1) with the 2D two-parameter polynomial function φ(x, y) = [1 + c(1− x)(1− y)]a.
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Proposition 6. Let C(x, y) be the following 2D function:

C(x, y) =
(b + 1)xy

b + [1 + c(1− x)(1− y)]a
, (x, y) ∈ [0, 1]2. (10)

Then, for a ∈ [0, 1], c ∈ [−1, 1], and one of the following cases for b:

Case 1 b ≥ ac− 1 if c ∈ [0, 1],

Case 2 b ≥ −c− 1 if c ∈ [−1, 0),

C(x, y) is a 2D copula.

Proof. As a preliminary result, let us prove that C(x, y) is non-negative. For any (x, y) ∈
[0, 1]2 and since b ≥ −1, it is clear that (b + 1)xy ≥ 0. Let us now focus on the denominator
term by distinguishing Cases 1 and 2.

For Case 1: For any (x, y) ∈ [0, 1]2, a ∈ [0, 1] and c ∈ [0, 1], since b ≥ ac− 1 ≥ −1, we have

b + [1 + c(1− x)(1− y)]a ≥ b + 1 ≥ 0.

For Case 2: For any (x, y) ∈ [0, 1]2, a ∈ [0, 1] and c ∈ [−1, 0), since b ≥ −c− 1, we have

b + [1 + c(1− x)(1− y)]a ≥ b + (1 + c)a > (1 + c)a[1− (1 + c)1−a] ≥ 0.

The function C(x, y) is, thus, well defined; the extreme case where the denominator term
can be equal to 0 will be discussed in Remark 3. Let us now prove that C(x, y) is a 2D
copula based on Definition 1.

On the B property: For any (x, y) ∈ [0, 1]2, we have

C(x, 0) =
(b + 1)x× 0

b + [1 + c(1− 0)(1− y)]a
= 0

and, similarly, we have C(0, y) = 0. On the other hand, we have

C(x, 1) =
(b + 1)x× 1

b + [1 + c(1− x)(1− 1)]a
=

b + 1
b + 1a x = x

and, similarly, we have C(1, y) = y. The B property is demonstrated.

On the PMPD property: Let us distinguish Cases 1 and 2.

For Case 1: By combining several differentiation rules and factorizing in a way to be able
to conclude, we have

∂

∂x∂y
C(x, y) =

b + 1

{b + [1 + c(1− x)(1− y)]a}3×{
2a2c2xy(1− x)(1− y)[1 + c(1− x)(1− y)]2(a−1)

+ (1− a)ac2xy(1− x)(1− y)[1 + c(1− x)(1− y)]a−2{b + [1 + c(1− x)(1− y)]a}
+ acx(1− y)[1 + c(1− x)(1− y)]a−1{b + [1 + c(1− x)(1− y)]a}
+ acy(1− x)[1 + c(1− x)(1− y)]a−1{b + [1 + c(1− x)(1− y)]a}

+ {b + [1 + c(1− x)(1− y)]a} × A
}

,

where
A = b + [1 + c(1− x)(1− y)]a − acxy[1 + c(1− x)(1− y)]a−1.
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Let us focus on the term A, which is the main interrogative of its sign. For any (x, y) ∈ [0, 1]2,
since a ∈ [0, 1] and c ∈ [0, 1], we have [1 + c(1− x)(1− y)]a ≥ 1 and acxy[1 + c(1− x)(1−
y)]a−1 ≤ acxy ≤ ac. As a result, since b ≥ ac− 1, we have

A ≥ b + 1− ac ≥ 0.

Furthermore, since a ∈ [0, 1] and c ∈ [0, 1], all of the other main terms are immediately
non-negative. Therefore, we have

∂

∂x∂y
C(x, y) ≥ 0.

For Case 2: With the same differentiation as that of Case 1, but a completely different
factorization, we obtain

∂

∂x∂y
C(x, y) =

b + 1

{b + [1 + c(1− x)(1− y)]a}3×{
2a2c2xy(1− x)(1− y)[1 + c(1− x)(1− y)]2(a−1)

+ (1− a)ac2xy(1− x)(1− y)[1 + c(1− x)(1− y)]a−2{b + [1 + c(1− x)(1− y)]a}
− acxy[1 + c(1− x)(1− y)]a−1{b + [1 + c(1− x)(1− y)]a}

+ {b + [1 + c(1− x)(1− y)]a} × B
}

,

where

B = b + [1 + c(1− x)(1− y)]a−1{1 + c[ax(1− y) + ay(1− x) + (1− x)(1− y)]}.

Let us focus on the term B, which is the main interrogative of its sign. For any (x, y) ∈ [0, 1]2,
since a ∈ [0, 1] and c ∈ [−1, 0), we have

1 + c[ax(1− y) + ay(1− x) + (1− x)(1− y)]

≥ 1 + c[x(1− y) + y(1− x) + (1− x)(1− y)]

= 1 + c(1− xy) ≥ 1 + c,

which is non-negative. Furthermore, since a ∈ [0, 1] and c ∈ [−1, 0), we have [1 + c(1−
x)(1− y)]a−1 ≥ 1. As a result, since b ≥ −c− 1, we have

B ≥ b + [1 + c(1− x)(1− y)]a−1(1 + c) ≥ b + 1 + c ≥ 0.

On the other hand, since a ∈ [0, 1] and c ∈ [−1, 0), all of the other main terms are immedi-
ately non-negative. As a result, we find

∂

∂x∂y
C(x, y) ≥ 0.

Hence, for Cases 1 and 2, the PMPD property holds.

The proof is now complete.

Remark 3. In Proposition 6, the values a = 0 or c = 0 imply no role for b; we have C(x, y) = xy.
The interrogative cases a = 0 or c = 0 and b = −1 are excluded.

Remark 4. Since a ∈ [0, 1], eventually, Cases 1 and 2 can be replaced by the more restrictive but
unique condition: b ≥ |c| − 1.
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The copula defined in Equation (10) is named the original ratio-type 6 (OR6) copula.
For a = 0 or c = 0, it is reduced to the product copula. For b = 0 and a = 1, it is reduced to
the AMH copula as defined in Equation (4) with c ∈ [−1, 1]. All the other parameter values
give a new copula, as far as we know. In particular, for c = −1, the following original
expression is obtained:

C(x, y) =
(b + 1)xy

b + (x + y− xy)a , (x, y) ∈ [0, 1]2.

Various copula dominance results can be established. The most significant one is
based on the generalized Bernoulli inequality with a power exponent in the range of
[0, 1] (see [38]). This inequality gives [1 + c(1− x)(1− y)]a ≤ 1 + ac(1− x)(1− y), which
implies that

C(x, y) ≥ CAMH(x, y),

where CAMH(x, y) is given in Equation (4) with the constant ac/(b + 1) (instead of c).
Concerning its main properties, the OR6 copula is diagonally symmetric. For a 6= 0, it

is not radially symmetric. For a 6= 0 and a 6= 1, it is not Archimedean. In addition, it has no
tail dependence except for the cases a = 1, b = 0, and c = −1, where a left-tail dependence
is established. It has the following medial correlation measure:

β =
1− (1 + c/4)a

b + (1 + c/4)a ,

which is negative for c ∈ [−1, 0), and negative for a ∈ (0, 1]; the OR6 copula is designed to
model negative or positive correlations. The Spearman correlation measure does not have
a closed-form expression. As a numerical indicator, Table 6 presents some of its numerical
values for several admissible values of a, b, and c.

Table 6. Numerical analysis of the Spearman correlation measure for the OR6 copula and selected
parameter values.

a→ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

b = 0,
(c = −1) 0.0398 0.0811 0.124 0.1686 0.2149 0.2632 0.3135 0.366 0.4209 0.4784

b = 1,
(c = −1) 0.0196 0.0391 0.0586 0.078 0.0974 0.1166 0.1358 0.1548 0.1737 0.1924

b = 2 ,
(c = −1) 0.013 0.0258 0.0384 0.0508 0.0631 0.0752 0.0871 0.0988 0.1103 0.1217

b = 0,
(c =
1/2)

−0.0156 −0.0311 −0.0464 −0.0615 −0.0765 −0.0913 −0.1059 −0.1204 −0.1347 −0.1489

b = 1,
(c =
1/2)

−0.0079 −0.0157 −0.0236 −0.0315 −0.0393 −0.0472 −0.055 −0.0629 −0.0707 −0.0785

b = 2 ,
(c =
1/2)

−0.0053 −0.0105 −0.0158 −0.0211 −0.0265 −0.0318 −0.0372 −0.0426 −0.048 −0.0534

b = 0,
(c = 1) −0.0296 −0.0586 −0.0871 −0.1149 −0.1423 −0.169 −0.1953 −0.221 −0.2463 −0.2711

b = 1,
(c = 1) −0.015 −0.0299 −0.0449 −0.0598 −0.0747 −0.0896 −0.1045 −0.1193 −0.1341 −0.1489

b = 2 ,
(c = 1) −0.01 −0.0201 −0.0302 −0.0404 −0.0507 −0.061 −0.0714 −0.0818 −0.0923 −0.1028

Hence, for the considered parameter values, we have ρ ∈ [−0.28, 0.48]. Thus, the OR6
copula is designed to model negative or positive dependence.
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For illustrative purposes and visual validation, Figure 6 displays some plots of the
OR6 copula for a = b = c = 1/2.
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Figure 6. Plots of the OR6 copula for a = b = c = 1/2: standard (left) and intensity contour (right).

This figure clearly demonstrates the validity of the OR6 copula. Indeed, we observe
the typical shapes of a copula.

As a last copula fact, the OR6 copula satisfies the Fréchet–Hoeffding inequalities, and
as a result, for any (x, y) ∈ [0, 1]2, we have

max(x + y− 1, 0) ≤ (b + 1)xy
b + [1 + c(1− x)(1− y)]a

≤ min(x, y).

These inequalities can find applications in diverse multivariate analysis settings.

2.7. Seventh Copula

The seventh and last copula of the list can be viewed as a two-logarithmic version of the
OR3 copula; we consider the form in Equation (1) with the 2D one-parameter exponential
logarithmic function φ(x, y) = exp[a log(x) log(y)].

Proposition 7. Let C(x, y) be the following 2D function:

C(x, y) =
(b + 1)xy

b + exp[a log(x) log(y)]
, (x, y) ∈ [0, 1]2. (11)

Then, for a ∈ [0, 1] and b ∈ [0, 1], C(x, y) is a 2D copula.

Proof. Let us prove that C(x, y) is a 2D copula based on Definition 1.

On the B property: For any (x, y) ∈ [0, 1]2, we have

C(x, 0) = lim
y→0

(b + 1)xy
b + exp[a log(x) log(y)]

= 0

and, similarly, we have C(0, y) = 0. On the other hand, since log(1) = 0, we have

C(x, 1) = lim
y→1

(b + 1)xy
b + exp[a log(x) log(1)]

=
b + 1
b + 1

x = x

and, similarly, we have C(1, y) = y. The B property is established.
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On the PMPD property: With appropriate differentiation techniques and factorizing in a
way to be able to conclude, we have

∂

∂x∂y
C(x, y) =

b + 1

{b + exp[a log(x) log(y)]}3×{
a exp[a log(x) log(y)]{A− log(x) exp[a log(x) log(y)]− b log(x)}

+ {exp[a log(x) log(y)] + b}×

{(1− a) exp[a log(x) log(y)]− a log(y) exp[a log(x) log(y)] + b}
}

,

where
A = a log(x) log(y){exp[a log(x) log(y)]− b}.

Let us focus on A, which is the main interrogative of its sign. For any (x, y) ∈ [0, 1]2, we
have − log(x) ≥ 0 and log(x) log(y) ≥ 0. Furthermore, since a ∈ [0, 1] and b ∈ [0, 1], we
have exp[a log(x) log(y)] ≥ 1 and

A ≥ a log(x) log(y)(1− b) ≥ 0.

On the other hand, since a ∈ [0, 1] and b ∈ [0, 1], all of the other main terms are immediately
non-negative. As a result, we have

∂

∂x∂y
C(x, y) ≥ 0.

This demonstrates the PMPD property.

This ends the proof.

The copula defined in Equation (11) is named the original ratio-type 7 (OR7) copula.
For a = 0, it is reduced to the product copula, and, for b = 0, it becomes

C(x, y) = xy exp[−a log(x) log(y)], (x, y) ∈ [0, 1]2,

which corresponds to the GB copula.
Owing to the inequality exp(u) ≥ 1+ u for any u ∈ R, we have exp[a log(x) log(y)] ≥

1 + a log(x) log(y) ≥ 0 for any (x, y) ∈ [0, 1]2 and a ∈ [0, 1], implying the following
copula dominance:

C(x, y) ≤ COR1(x, y),

where COR1(x, y) is the OR1 copula defined in Equation (2).
Concerning its main properties, the OR7 copula is diagonally symmetric and, for

a 6= 0, it is not radially symmetric, is not Archimedean, has no tail dependence, and has the
following medial correlation measure:

β =
1− exp[a log2(2)]
b + exp[a log2(2)]

.

This measure is always negative; the OR7 copula is designed to model negative correlations.
The Spearman correlation measure does not have a closed-form expression. For information,
Table 7 presents some of its numerical values for several admissible values of a and b.

In our setting, we have ρ ∈ [−0.53, 0], showing that the OR7 copula is able to model
negative dependence.
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Table 7. Numerical analysis of the Spearman correlation measure for the OR7 copula and selected
parameter values.

a→ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

b = 0 −0.0715 −0.1369 −0.1972 −0.2531 −0.3053 −0.3542 −0.4002 −0.4437 −0.4848 −0.5239

b = 1/2 −0.0491 −0.0963 −0.1416 −0.1849 −0.2263 −0.2659 −0.3039 −0.3404 −0.3754 −0.409

b = 1 −0.0374 −0.0745 −0.1109 −0.1464 −0.181 −0.2147 −0.2473 −0.279 −0.3098 −0.3396

For illustrative purposes and visual validation, Figure 7 shows the standard and
intensity contour plots of the OR7 copula for a = b = 1/2.
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Figure 7. Plots of the OR7 copula for a = b = 1/2: standard (left) and intensity contour (right).

This figure clearly demonstrates the validity of the OR7 copula; the typical shapes of a
copula are observed.

As a last copula fact, the OR7 copula satisfies the Fréchet–Hoeffding inequalities, from
which we derive the following result: for any (x, y) ∈ [0, 1]2, we have

max(x + y− 1, 0) ≤ (b + 1)xy
b + 1 + a log(x) log(y)

≤ min(x, y).

These inequalities can find applications in diverse multivariate analysis settings.

3. Summary, Discussion, and Perspectives
3.1. Summary

For the objectives of dependence modeling, two-dimensional copula creation is essen-
tial. In this study, we presented theoretical advances in the field and highlighted a novel
parametric ratio scheme. The seven copulas elaborated on in this article are presented in
Table 8.

The ideas below have been developed throughout this article.

• They are new in the literature, simple, original in form, and operational for well-
identified parameter values; it is, however, not claimed that the given ranges of values
are the optimal ones.

• They generalize well-known copulas, making them more flexible in terms of function-
alities. In particular, the OR3, OR6, and OR7 copulas generalize the CC, AMH and GB
copulas, respectively.

• They benefit from attractive properties, such as symmetric, dependent, dominant, and
correlation features.
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Table 8. New copulas proposed in this article.

Names of the Copulas C(x, y) Parameter Conditions

OR1 (b + 1)xy
b + 1 + a log(x) log(y)

a ∈ [0, 1] and b ≥ a− 1

OR2 (b + 1)xy
b + 1− a(1− x) log(y)

a ∈ [0, 1] and b ≥ a− 1

OR3 (b + 1)xy
b + exp[a(1− x)(1− y)]

a ∈ [−1, 1] and b ≥ 0

OR4 (b + 1)xy
b + (xa + ya)/(1 + xaya)

a ∈ [−1, 1] and b ≥ 0

OR5 (b + 1)xy
b + (1 + xaya)/(xa + ya)

a ∈ [−1, 1] and b ≥ 0

OR6 (b + 1)xy
b + [1 + c(1− x)(1− y)]a

a ∈ [0, 1], c ∈ [−1, 1] and
b ≥ |c| − 1

OR7 (b + 1)xy
b + exp[a log(x) log(y)]

a ∈ [0, 1] and b ∈ [0, 1]

3.2. Discussion

Thus, we focused on special copulas of the parameter–ratio form given in Equation (1).
As noticed in the proofs of some results, as in the proofs of Propositions 1 and 2, for instance,
it is sometimes more convenient to consider the following general copula form:

C(x, y) =
xy

1 + cϕ(x, y)
, (x, y) ∈ [0, 1]2,

where c denotes a real number and ϕ(x, y) represents a certain two-dimensional function.
One can remark that this form and the one in Equation (1) correspond with the following
configuration: ϕ(x, y) = φ(x, y)− 1 and c = 1/(b + 1). This general form, perhaps more
connected with that of the AMH copula, could have been the subject of a similar study.

Along the article, we examined concrete, operational, and motivated examples of
functions φ(x, y), instead of a global study based on φ(x, y). The reason is that the consider-
ation of φ(x, y) in full generality significantly complicates the developments, especially the
necessary differentiations and factorizations to prove the PMPD property (see Definition 1).
The investigations reveal that there is no universal factorization scheme to prove the PMPD
property for all examples. The level of functional complexity is too high for a global study,
according to our viewpoint. However, this challenge can perhaps be achieved through a
certain analysis strategy that we actually left for future research.

Anyway, based on the general form in Equation (1), under the assumption that C(x, y)
defines a valid copula, some results can be exhibited. For instance, one can remark that

∂

∂b
C(x, y) =

xy[φ(x, y)− 1]
[φ(x, y) + b]2

.

Therefore, if φ(x, y) ≥ 1 for any (x, y) ∈ [0, 1]2, then ∂C(x, y)/(∂b) ≥ 0, implying that
C(x, y) ≤ limb→+∞ C(x, y) = xy, so that C(x, y) is negatively quadrant dependent, and
if φ(x, y) ≤ 1 for any (x, y) ∈ [0, 1]2, the contrary holds: C(x, y) is positively quadrant
dependent. Such properties were implicitly demonstrated for the suggested copulas of
the article, often with the use of direct inequalities, and the notion of copula dominance
results involving the product copula Π(x, y) into the article (see Equations (3) and (8),
for instance).

The simulation and parameter estimation of copulas are two important aspects that
were not developed in the article. For these aspects, we can consider using standard
methods that have demonstrated their efficiency for most well-established copulas, as
described in [4]. In particular, for the parameter estimation, we can perform the omnibus
estimation method elaborated in [39], among others.



Symmetry 2023, 15, 977 22 of 23

3.3. Perspectives

Other copulas can be immediately derived from those proposed, such as the corre-
sponding survival, x-flipping, and y-flipping copulas (see [4]). Each of them may be of in-
terest for specific applied scenarios involving the dependence of two quantitative variables.
Moreover, we restricted our attention to the absolutely continuous case, implying differ-
entiable functions φ(x, y) in Equation (1), but it can be of interest to consider min−max
functions, at least for the constructions of copulas reaching the Fréchet–Hoeffding bounds.
Another logical perspective of this article is the creation of copulas having a similar ratio
form but with greater dimensions. Their applications for data analysis are also hot topics.
A high level of knowledge is, however, required for this applied aspect, which we leave to
further study.
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