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Abstract: Generalized operators have recently been proposed with great potential applications. Here,
we present research carried out on Noether figury and perturbation to Noether symmetry for Hamil-
tonian systems within generalized operators. There are four parts, and each part contains two kinds
of generalized operator. Firstly, Hamilton equations are established. Secondly, the Noether symmetry
method is used for finding the solutions to the differential equations of motion, and conserved
quantities are obtained. Thirdly, perturbation to Noether symmetry and adiabatic invariants are
further explored. In the end, two examples are given to illustrate the methods and results.
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1. Introduction

In 1788, Lagrange published his famous book Analytical Mechanics, in which he
expressed the general equation of dynamics in the form of the Lagrange equation by intro-
ducing generalized coordinates. Then, in 1834, Hamilton developed Analytical Mechanics.
The Hamilton principle and Hamilton canonical equation are the core of Hamiltonian
mechanics. The Hamilton principle is highly universal and can be used for approximate
calculation [1,2]. The Hamilton principle is also extended to holonomic nonconservative
systems [3] and high-order systems [4]. As for the Hamilton canonical equation, it is not
only simpler in form than the Lagrange equation, but it is also more convenient for general
discussion when solving many complex mechanical problems, such as celestial mechan-
ics and vibration theory. What is more, Hamiltonian mechanics also contributes to the
formation and development of generalized Hamiltonian mechanics [5] and Birkhoffian me-
chanics [6]. Thanks to Hamiltonian mechanics, the rapid development of nonlinear science
in the last century has been possible. Hamiltonian mechanics is still a keyword today.

Fractional calculus has been widely considered. The latest developments in science,
bioengineering and applied mathematics show that the results obtained through fractional
calculus are more accurate [7,8]. In order to deal with dissipative forces in nonconservative
systems, Riewe [9,10] studied the fractional calculus of variational problems and estab-
lished fractional Lagrangian and Hamiltonian mechanics. After that, fractional Hamiltonian
mechanics was established on the basis of different fractional derivatives. For example,
Song [11] studied fractional singular systems and fractional constrained Hamilton equa-
tions using mixed derivatives. Baleanu [12] established fractional Hamilton formalism
within Caputo’s derivatives. Rabei [13] achieved the passage from the Lagrangian, con-
taining Riemann-Liouville fractional derivatives, to the Hamiltonian, and investigated
the classical fields with fractional derivatives—he considered two discrete problems and
one continuous to demonstrate the application of the formalism. Klimek [14] discussed
the models described by fractional order derivatives of the Riemann-Liouville type in
sequential form in Lagrangian and Hamiltonian formalism. Herzallah [15] presented frac-
tional Euler-Lagrange equations and transversality conditions for fractional variational
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problems in the sense of Caputo and Riemann-Liouville fractional derivatives, and then he
developed a fractional Hamiltonian formulation and some illustrative examples in detail.
Muslih [16] presented a Hamiltonian formulation of systems with linear velocities within
Riemann-Liouville fractional derivatives. Agrawal [17] introduced a three-parameter frac-
tional derivative, developed integration by parts formulae, and provided the corresponding
fractional Hamiltonian formulations. Nawafleh [18] investigated Caputo fractional deriva-
tives for classical field systems using fractional Hamiltonian formalism and provided
two continuous examples to demonstrate the application of the formalism. Notably, in
2010, Agrawal [19] introduced three general fractional operators, which we call gener-
alized operators. Generalized operators contain many special fractional operators, such
as Riemann-Liouville fractional operators, Caputo fractional operators, Riesz—Riemann—
Liouville fractional operators, Riesz—Caputo fractional operators, etc. In this paper, we
detail the beginning of our research, which is to establish Hamiltonian mechanics based on
these generalized operators.

After the fractional differential equations are established, the next step is to solve
them. An integral is a conserved quantity; therefore, scholars are committed to finding all
conserved quantities of mechanics systems. The Noether symmetry method is one of the
most useful methods for finding solutions to the differential equations of motion.

Noether symmetry and conserved quantity, which are useful for revealing the inherent
physical properties of the dynamic systems, were put forward by German mathematician
Emmy Noether [20]. Noether symmetry, from which the conserved quantity can be directly
derived, refers to the invariance of the Hamilton action under infinitesimal transformations.
A series of important achievements on Noether symmetry and conserved quantity for
constrained mechanics systems has already been obtained, such as classical Noether theo-
rems [21-26], fractional Noether theorems [27-35], Noether theorems on time scales [36-38],
Noether theorems with time delay [39], etc.

For general dynamic problems, we should study the invariance property of mechanics
systems, and the impact of this invariance on the behavior of the mechanics systems is also
increasingly being valued. Zhao [24] pointed out that symmetry is a very important and
universal property of mechanics systems. There is a close relationship between the change
in symmetry under the action of small disturbances and their invariants and the integrability
of mechanics systems, so it is necessary to study this carefully. The adiabatic invariant
belongs to this problem. The classical adiabatic invariant refers to a physical quantity
that changes more slowly than the change of the system’s changed parameter. Adiabatic
refers to regardless the reasons of the cause of the parameter’s change in mechanics system.
When discussing the adiabatic invariant, the problem of a slow-changing parameter is often
discussed, which can be transformed into a small perturbation problem to be studied. The
existence of invariants in a mechanics system often corresponds to its symmetry. Although
the adiabatic invariant refers to a quantity that is approximately constant under certain
conditions, there should be some symmetry corresponding to it, and the response of the
symmetry may not be changed or may be perturbed. In this paper, perturbation to Noether
symmetry and the corresponding adiabatic invariant of the Hamiltonian system are to be
discussed under generalized operators.

The structure of this paper is as follows. Section 2 briefly lists the definitions and
properties of the generalized operators. The fractional variational problems are studied in
Section 3. Noether symmetry and conserved quantity, perturbation to Noether symmetry
and adiabatic invariants are investigated in Sections 4 and 5, respectively. Section 6 presents
two examples to show the methods and results obtained in this paper. In Section 7, a
conclusion is given.

2. Preliminaries

Generalized operators K, A, and B are introduced by Agrawal [19]. Here, we only list
their definitions and integration by part formulae.
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The operators K, A, and B are defined as:

t b
8 F(t) = m/a ka(t,T) F(T)dT + w/t ke(T, ) f(T)dT, & > 0 (1)
% F(E) = DUKIECF(H), n—1<a<n, )
Byf(t) =Ky “D"f(t), n—1<a<mn, 3)

where f(t) is continuous and integrable, a < t < b, M =< a,t,b,m,w > is a parameter set,
m and w are two real numbers, 7 is an integer, and «, (, T) is a kernel that probably depend
on a parameter «.

Remark 1. Let i, (t, T) = (t — )" ' /T(a). When the conditions are different, the results are
different. For example, when M = My =< a,t,b,1,0 >, we can obtain:

W) = DKL) = s () 6= 07 odr = Dire), @

B (1) = Ky "D 1) = s [ =07 (52) S0 =087, 6

i.e., the operator A reduces to the Riemann—Liouville fractional operator to the left, and the operator
B reduces to the Caputo fractional operator to the left. When M = M3 = < a,t,b,1/2,1/2 >, we
can obtain:

W) = DK ) = g () [ e = Epgf, @

b n
B () = Kl D) = s [ =151 ) fde=EDis, @)

i.e., the operator A reduces to the Riesz—Riemann—Liouville fractional operator, and the operator B
reduces to the Riesz—Caputo fractional operator.

The integrations by parts formulae of operators K, A and B are

b b
| srsrbde = [ fersgta, ®
b . t=b
[ smass) /f B g dt+2 )y lig AT ], )
b t=b
[ 5B = (1" [ f0) g g+ Z DAy gD R, (0)

where M* =< a,t,b,w,m >, n —1 < a < n,and #n is an integer.
It is noted that in the following text we set n = 1, s0 0 < a < 1. The first thing we
intend to study is the variational problem.



Symmetry 2023, 15, 973

40f 15

3. Hamilton Equations within Generalized Operators
3.1. Hamilton Equation within Generalized Operator A

Let Ly = La(t,qy, qA,AMq a) be the Lagrangian within generalized operator A,

qa = (941,942, ,qan), da = (Qa1-942. " +9an) and Ajqa = (A Mqul AMAaz -,
A%19An), then the elements of the generalized moments p, = (pai1, a2, - ,Pan) and

P = (P4 P% -+, P%,) aredefined as pa; = 0L 4 /0] 4; and p%; = 0L /0A%,q i, and the
Hamiltonian Hy = Ha (t, qa, Pa,Pa) can be expressed as Ha = paifa; + p%:A%q4i — La,
i=1,2,---n

Hamilton action within generalized operator A has the form

b
Sy = / [Pai- G4+ P  A%qai — Ha(t, 4, pa, PR)]dE. (11)

Then,
5S4 =0, (12)

where § refers to the isochronous variation, with the commutative conditions
éA%/IqAZ' = A%/[é‘in/ l == 1/ 2/ e, n, (13)

and the boundary conditions

qa(4) = qaa qa (D) = qap (14)

where daa — (‘YAalz qAa2," " /‘7Aan)/ dap — (QAblz qAb2, " " * /QAbn)/ is called the Hamilton
principle within generalized operator A.
Using Equations (9), (13) and (14), we derive from Equation (12) that

b . .
6Sa = [, [6pai-qai+pai- 5in +0p%, - A%qai + P - 6A%q i

oH BH
- 85]2 5’7/&1 5PA1 - A (SPAJ dt

=J7 {7 (B"A‘A* P+ Pai+ A — mpAi( )Kl_,x(b, t) + WpAl.(g)Kl_a(t,a»&M
+(‘7Ai Wai )épAz ( MaAi — aHA) 5PAZ} dt = 0.

From the Hamiltonian Hy = pa; - §4; + P%;AM94i — La, the independence of 44 4;
and the arbitrariness of the interval [a, b], we obtain:

(15)

« . _9dHs - _ 9Hp
AMqu = 8,7 140 = 3pa,

. (16)
By P = —Pai — an + mph;(b)x1—o (b, t) — wpl(a)k1—o(t, a).

Equation (16) is called the Hamilton equation within generalized operator A.

Remark 2. Let 1, (t,7) = (t—7)* " '/T(«), when M = My, M = My and M = Mj. From
Equation (16), we can obtain the Hamilton equations within the left Riemann—Liouville fractional op-
eratot, the right Riemann—Liouville fractional operator, and the Riesz—Riemann—Liouville fractional
operator, respectively. These results are consistent with the ones in Ref. [29].

3.2. Hamilton Equation within Generalized Operator B

Let Ly = LB( ,qdp/ qB,BMqB) be the Lagrangian within generalized operator B,
ag = (981,982 4Bn), a8 = (dp1 952" rqsn) and Bfjqg = (By,qp1, By982, -
B%qBn), then the elements of the generalized moments pg = (pp1, PB2, ", PBn) and
P = (P31, Py - -+, P%,) are defined as pg; = dLp/9qy; and p%, = dLg/dB},qp;, and the
Hamiltonian Hg = Hg(t, qp, pg, P}) can be expressed as Hg = pg; - q5; + p'%5:BY98i — Lp,
i=1,2,---n
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Hamilton action within generalized operator B can be expressed as

b
Sp = /[, [pBi - 4g; + Phi - Brgsi — He(t, qg, Py, PR )] dt. (17)

Then,
0Sg =0, (18)

with the commutative conditions
0BMqpi = Byogpi, 1=1,2,---,n, (19)
and the boundary conditions
9g(4) = 9gas 98(0) = qpp (20)

where qg, = (9Ba1,9Ba2,* -, 4Ban), b = (qB61,9Bb2, -, qBon), is called the Hamilton
principle within generalized operator B.
Using Equations (10), (19) and (20), we derive from Equation (18) that

b . .
0S5 = [ [0pmi - dpi + Pii - 60p; + OP%; - Biadi + Phi - 0BYdni — Fok - O4pi
 9H

JH
s S — 3008 - opty | dt 1)
b : JH : JH JoH,
= Ia {_ (A%/I*p%i + Pt WBI?)5QB1' + (%i - Wé)‘SPBi + (B%Aqg,- - Wg)&p%i} dt =0.
From the Hamiltonian Hg = pp; - 4; + p§;Bi9si — LB, the independence of dqp; and
the arbitrariness of the interval [a, b], we obtain:

0Hp . 0Hpg )
Bj9pi = %, i = %/ MPBi = —PBi
1

0Hp

- —. 22
9qBi 2)

Equation (22) is called the Hamilton equation within generalized operator B.

Remark 3. Let 1, (t,7) = (t—7)* /T (). When M = My, M = M, and M = M3, from
Equation (22), we can obtain the Hamilton equations in terms of the left Caputo fractional operator,
the right Caputo fractional operator, and the Riesz—Caputo fractional operator, respectively. These
results are consistent with the ones in Ref. [29].

4. Noether Theorems within Generalized Operators

We already know that Noether symmetry means the invariance of the Hamilton action
under infinitesimal transformations, and the conserved quantity of the system can be di-
rectly derived from Noether symmetry. We begin with the definition of conserved quantity.

Definition 1. A quantity I is called a conserved quantity if and only if the condition d1/dt = 0 holds.

4.1. Noether Theorem within Generalized Operator A

Firstly, we give the infinitesimal transformations in terms of generalized operator A as

E=t+ At () = qai(t) + Aai, Pai(t) = pai(t) + Apai, Pyi(t) = plai(t) + Apy;- (23)
Expanding Equation (23), we have
F=t+048%/(t qALPAQPK) +0(04), ﬁAiO(E) = qai(t) + 0480, (t,qa, Pa PR) +0(024),
Pai(f) = pai(t) + 04t qa, Pa PR) +0(64), (24)
i (F) = Pli(t) + 0153 (t da, Pa,PR) +0(04).
where 84 is an infinitesimal parameter, 6940, 5?4 i 17941. and iyj‘fg are called infinitesimal gen-

erators within generalized operator A, and 0(64) means the higher-order infinity small
of 6 A-
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Then, letting AS 4 be the linear part of S4 — S 4 and neglecting the higher-order infinity
small of 6 4, we obtain:

ASp=5a—Sa= fﬁg {?Ai i+ P AL — Ha(t, s, Pa, PA)dE
—J7 [pai - dai + P - ASai — Ha(t, qs, pa,pg) ] dt
= fab{(pAi +Apai) ([Ga;i + A045) + (P + BP%;) - [AMdai + Aj0q4i
O AL A+ 0B 14i(0) St (b, 1) = ma - qai(a) 1 u(t,0)]
—Hy(t+ At, qp +Aqs, Po +APa, PR+APR) } - (1 + %At) dt
— [ [Pai Gai+ PS - Aldai — Ha(t,da, Pa PE)]dt
= fgb{PAi‘?Ai + PB4+ B ai - 0+ P AN A+ DAY i + PG Ay i
+APYAMIAi + Pa; - {WAb -q4i(b) $r1-a (b, t) —mAa- in(a)%Kl—a(t/ﬂ)}
—Ha(t,aa PasPE) — 5AA = SHANG 4 — G4 AP — SEAAPY; + (Pai-
+P A4 — Ha) %At}dt = I [Pai- i+ PSiAS49 41 — Ha(t da, Pa PF)]

b ; - p)
= 9Afu {pAiéAz + PaiAM ((:Al in‘.f?qo) + (P%i%A?\MAi - HA)éAo

(25)

(P A% — Ha)io — STAZ0 +w-qai(b) - p4,E% (b, aa (D), pa(b), PX(D))
X 8§10 (b, 8) =maai(a) - P45 (0, da (a), Pa (), PR () 1 o (t,a) .
where
A“qu = AMq4i + A\0q.4i + At%A%MAi + wAb - g 4(b) - %Kl,a(b,t) — mAa

d , 0 .0 — i (26)
Xqai(a) - Grx1-a(t,a), A =0a(Cai —qaiSao ), M=<a,t,bymw>.

It follows from Noether symmetry (AS4 = 0) that

0 : 9H 9H
paiCai + PhiAM (Chi = 44iCh0) + (p%i%A?\/lin - A>5Ao ATk T wph;

.0
%04i(0)E% (b, aa (D), PA (D), P (D)) Sxc1_a (b, t) + (P4 - A%qai — Ha)C a0
—mp%; - qai(a) - 8% (0,95 (a), pa(a), pg(a)) - $r1_o(t,a) =0, i=1,2,--- ,n.

(27)

Equation (27) is called the Noether identity within generalized operator A.
Finally, the conserved quantity within generalized operator A deduced by the Noether
symmetry is presented.

Theorem 1. For the Hamiltonian system within generalized operator A (Equation (16)), if the
infinitesimal generators CAO, §Al, ’7Az and n%; 0 satisfy the Noether identity (Equation (27)), then
there exists a conserved quantity:

t . .
Tpo = (pAlA%/IqAZ HA)’§940 + fa {pl}‘liA%/I(C?Lli - %uggxo) + (5941‘ - inC?AO)
X [BYppS; — mpai(b)k1—o (b, T) +WPA1‘( )1 (T, a) ]}d7+pAi‘§9qi
+w - qai(b) 'Cgo(b/QA(b) pa(b),p )f Pt d‘rK1 «(b,T)dT
—m-qai(a) - $9%(a,qa(a), pa(a), PR (a )f P’ (T) $-x1-a (T, 2)dT = const.

(28)
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Proof of Theorem 1. From Equations (16) and (27), we have:

« . 0H 4 aHA . E)HA 0Hy - & 0
dtIAO = (PAz MAAi +pA1thMqu T ot T 9ga 9Ai T 9paPai T gt Pai Ao

+(PhiAlai = HA)gAO + P AM (% — daiCh0) + (8% — daiCho) - [Bh- P
—mpl;(b)k1-a (0, T) + wp(@)k1—o(T,0)] + P4l + PAiéili
twply; qai(b)E%0 (b, aa (b), Pa(b), PR (b)) §r1-a(b,1)
—mp; - 44i(@)E% (4, a(2), Pa(a), PR (a)) k1o (t,0) (29)
— %Cm‘ + P ail; + (Pi}z’AvaﬂAi - %qm gf{;‘\] Pai — gf’i pAz)‘:Ao
+ (&% — 7.4i€%) - [Bsp Py — mpY;(0)k1—a (b, T) + wp®,(a)k1_o (T, )]
= (A%/ﬂAi - gpiﬁ) 'ﬁiig?qo + (8% — 9.4:8%) - {B%/I*Pi\i Pt %
—mp%;(b)x1_o (b, t) + wp;(a)r1_a(t,a)] = 0.

The proof is completed. [

If welet AS4 = —fab(d/dt) (AGY)dt, where AGY = 04GY (, qa, Pa, PS), then from
Equation (25), we have

9H,

5 ) o — TG+ wph; - 9.4i(b)

paiCai + PhiAM (Chi — 4ailho) + (PAz arAmaai —
.0 .0
Xé(?qo(br qA(b)rpA(b)fPK(b))%Klﬂx(b/t) + (P - AMdai — Ha)Cao +Ga
—mp%; - 4ai(a) - §%0 (0,4 (a), Pa(a), PR()) - §r1-a(t,a) =0, i=1,2,--- ,n.

Equation (30) is called the Noether quasi-identity within generalized operator A. In
this case, we have the following theorem.

(30)

Theorem 2. For the Hamiltonian system within the generalized operator A (Equation (16)), if
there exists a function G such that the infinitesimal generators &9, &9., 7%, and 750 satisfy the
Noether quasi-identity (Equation (30)), then there exists a conserved quantity

Inco = (P A% — Ha) &% + ity + [ {p%A% (8% — 3.4i€%0) + (8% — 4.41%0)
X [B%/I* pi‘u‘ mpAl( )Kl—tx(b/ T) + prz( )Kl—a(T/a)] }dT +w- QAi(b)
x&0(b, qA<b>,pA<b> &) J; pix %Kl a(b, T)AT — 1 - q4i(a)

%% (2, 9a(2), pa(a), PR () [, P%;(T) gx1 o (T, 8)dT + G = const.

(31)

Proof of Theorem 2. From Equations (16) and (30), we have dl4o/dt = 0.
The proof is completed. [J

Remark 4. Let x,(t,7) = (t—7)* /T («). When M = My, M = M, and M = Ms, from
Equations (27) and (30) and Theorems 1 and 2, we can obtain Noether identities, Noether quasi-
identities, and Noether theorems in terms of the left Riemann—Liouville fractional operator, the
right Riemann—Liouville fractional operator, and the Riesz—Riemann—Liouville fractional operator,
respectively. These results are consistent with the ones in Ref. [29].

4.2. Noether Theorem within Generalized Operator B

The infinitesimal transformations in terms of generalized operator B are

t=t+At, Gg,(t) = qpi(t) + Aqpi, Pp;(t) = ppi(t) + Appi, Pyi(t) = pi(t) + App. (32)

Expanding Equation (32), we have
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t=t+ 05800 (t, 9, Pp, PE) +0(08), Tp; (£) = qpi(t) + 08ZY;(t, ap, P, P§) + 0(68),
i (F) = pri(t) + 08113;(t, ap, Pp, PE) +0(65), (33)
P (F) = pi(t) + 0813 (, qg, Pp, PR) +0(63),

where 0 is an infinitesimal parameter, £3, &%, 7% and 7%’ are called infinitesimal gen-
erators within generalized operator B, and 0(fp) means the higher-order infinity small
of 93.

Similarly, letting ASp be the linear part of Sp — Sp and neglecting the higher-order
infinity small of 63, we obtain

ASp =S5 —Sp=J; {?Bi “qp; + Pi - Biylpi — HB(t/qB/ﬁBfﬁg)}dE
_fab [PBi - 0p; + P - By — Hi(t, qp, P, PE)] dt
= fab{(PBi + Apgi) (9p; + Adpi) + (Phi + APf) - [37\4‘781‘ + By0qgi + At - § B}y pi
+wAb - ()1 (b, 1) —mAa- gg;(a)x1—o(t,a)] — Hp(t + At, qg+Aqg, Py
+Apg, P§ +APg) ) - (1 +§ Af)df Sy [psi - i + P - Buami — Ha(t, ap, Pp, PE) | dt
= fab{PBi%i + pBidp; + Appidp; + Pl Bidsi + PhBYOqs: + pliAt g Bhdei
+ApEBiasi + P - [wAD - 4g;(D)x1—a (b, f) mAa - qg;(a)c1—o(t,a)]
—Hp(t, qp, Py, PF) — "5 O — G2 Aqsi — Go Oppi — Gt AP + (pridp,

(34)

+pal§iB%/I‘78i - HB)%N}C“ - fu [PBi : ‘731‘ + PBi M‘iBi - HB(t/ qs: PB/ Pg)]dt
: 3
= GBf [pBlng + phiB (8% — d5iCB0) + (p%i%B%/IQBi - %)5%0 + (Ph:BA9Bi

—HBi)é‘Bo anC W - qp(b) - P8R (b, qp (D), pe(b), PR ())K1 o (b, t)
—m - qp;(a )'P%i‘:%o(“rQB(a)/PB(“)rPg(“))Kl a(t, Hdt/

where
BY g, = Biyqi + BYy0qpi + At §iBygpi + WA - ;(b) - 514 (b, t) — mAa

. . 00N — (35)
Xqp;(a) - x1-a(t,a), Agp; = 0| Cpi — 9piCpo |, M =<a,t,bmw >.

Letting ASp = 0, we have

0
: d 9H 9H
peiCei + PE:BY (CB; — dpiCho) + (P%@B?\Mw - TtB)é%o ~ % Bi

.0 .
+(p%; - Byasi — Hp)&po + wpl; - q;(b) - 580 (b, qg(b), pp(b), pg (b))rc1—a(b, )
—mp; - qgi(a) - &% (a,qg(a), pg(a), pg(a)) - k1-4(t,a) =0, i=1,2,--- ,n

(36)

Equation (36) is called the Noether identity within generalized operator B.
Ifwelet ASp = — fab (d/dt) (AGY)dt, AGY = 05GY(t, qg, Pp, PY), then from Equation (34),
we have

pBiéBl—'_szB“ (CBI 73i5%0)+(l’0§i%37\443i aHB)%o ?ﬁﬁﬁ%
(P BYydn — i) Eno + wply - dsi(b) - €9 (b, /48(0), Pp(0), PH(0)) 10 (b,1) (37)
—mpt; - qgi(a) - 8% (a,q5(a), pr(a), py(a))k1—o(t,a) + G5 =0, i=1,2,-- ,n

Equation (37) is called the Noether quasi-identity within generalized operator B.
Therefore, we have the following theorem.
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Theorem 3. For the Hamiltonian system within generalized operator B (Equation (22)), if the
infinitesimal generators &%, &%, 1%, and n% satisfy the Noether identity (Equation (36)), then
there exists a conserved quantity

Ipo = (PﬂéiB%MBi—HB)C%(ﬁ‘f [P5:B3 (Ch _‘731 %0) + (Chi — qpiCRo) - AbpPhildT
+pBi’§%i+w'%l( )- 33 o(b, qB( ) PB f Pyi(T)x1- (b, T)dT (38)
—m - g, () - G3o(a,qg(a), pg(a f P (T) - K14 (T,a)dT = const.

Proof of Theorem 3. From Equations (22) and (36), we obtain:

dr « . 9Hp _ dHp - 9Hjp - aHB
ailBo = (Pgl Mqu+PBldtBMqB ~ 9t~ g IBi ~ 9pgPBi T 3 PBz Cho

+ (P BB — HB)éBO + PhiBy (8% — d5iC0) + (GBi — d8iCho) - At Phi

)
.0 )
+ppiCpi + PBiCE + wpg; - qBi(b)(:%O(b' qs(b), pe(b), pg (b))x1-a(b, t)
—mp; - 4p;(a)C30(a,qp(a), P (a), pg(a))x1— ac(t a) (39)
3 : : 9Hj - 3
= % B+ Prilhi + (P%iBz'x\MBi - %‘131 ag,f PBi — apB PBz> 0
(’5%1' - ‘7315%0) “Ad P

(B%MBz ) PitBo + (€% — 75iCho) - (A%/I*p%i +ppi+ 3%%) =0.

The proof is completed. [J

Theorem 4. For the Hamiltonian system within generalized operator B (Equation (22)), if there
exists a function G such that the infinitesimal generators &gy, Cpi, 11p; and 1'%; satisfy the Noether
quasi-identity (Equation (37)), then there exists a conserved quantity

Igco = (p§;iBiydsi — HB)C%O + fat [P5:Bi (50 - ‘7315%0) (5(1)31 - ‘7315%0) AfyphldT
+PBi§%i+w"73i(b)' 2 ol CIB(b) pg(b f Pi(T)k1-a (b, T)dT (40)
—m - qp;(a) ":%o(”/ qg(a), pp(a f pEi(T Kl—a(T/”)dT+ GB: const.

Proof of Theorem 4. From Equations (22) and (37), we have dlpg/dt = 0.
The proof is completed. []

Remark 5. Let i, (t,T) = (t —7)* /T (a). When M = My, M = M, and M = Mj from
Equation (36) and Equation (37) and Theorems 3 and 4, we can obtain Noether identities, Noether
quasi-identities, and Noether theorems in terms of the left Caputo fractional operator, the right
Caputo fractional operator and the Riesz—Caputo fractional operator, respectively. These results are
consistent with the ones in Ref. [29].

5. Adiabatic Invariants within Generalized Operators

First, we give the definition of an adiabatic invariant.

Definition 2. A quantity I, is called an adiabatic invariant if I, contains a parameter €, whose
highest power is z, and also satisfies that d1,/dt is in proportion to e#*1.

When the systems (Equations (16) and (22)) are disturbed by small forces, the con-
served quantities may also change.
Supposing that the Hamiltonian system (Equation (16)) is disturbed as

BigePhs = —Pai — Gt + mp (0 )Kl—a(b/;;* w?ﬂ%(ﬂggl—a(w) —eaWai(t, 9, P, PR), (1)
AMIAi = Gptor Gai = Gpir-
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In this case, if the function G4 and the infinitesimal generators ¢ a0, {a;, 774; and 17%; of
the disturbed system (Equation (41)) have the forms

GA = G% + EAG1 + ‘SAGZ = EAqur Cao = CAo + SA{;AO + EA‘:AO w =800
Nai = 19 T eallp; + €305 + SAWAZ/ nai = 1%+ EAUAI + e+ = ek, (42)
i=1,2,- ,s=0,1,2,-

then we have:

Theorem 5. For the disturbed Hamiltonian system ( Equation (41)), if there exists a function G
such that the infinitesimal generators £, %, n%; and n'; satisfy

.S .
Parbai + Pl A (S — daiCho) + (P Abugar — % ) S0 — S48
.S - S
+(Phi - Adai — Ha)Cao + wph; - 4ai(b) - o (b, qA(b)/PA(b)/PA(b>) gix1-a(b,t) + Gy (43)
—mpt; - .4i(a) - S0 (2,9 (a), PA(0), PR (D)) - Shr1-a(t0) = Wai (857" — G450 ) = 0,

where §;i =& AO = 0 when s = 0, then there exists an adiabatic invariant

Z . .
lag. = SE‘O‘C’SA{(pAzAMqAZ Ha)o + Ju (P (i — 04i€50) + (G4 — 7ai50)

X [Bfyg P — mpai(b )Kl—a(b,T)+wPAi( Yk1—a(T,a)] YT + paiCsy; )
+w - 4ai(b) - & (b, 9.4(b), PA(b (0)) [1 P (1) frra (b, T)dT
—m-qai(a) - E4o(a,94(a), pala), )f P (T) S xq o (T,0)dT + G }

Proof of Theorem 5. From Equations (41) and (43), we have:

d z - S e d oH 0Hy -
Slac: = Z 85;4{(PA1AMQA1 Ha)&po + (pAiA%/Iin T PaiarAMIAi — 3~ g, 9Ai

9 9 & A (xS : s s : s O
352 Pai— HA PAz)‘:Ao + P5iAM (S — 9aiCa0) + (Tai — 94i8%0) - [BisPas
—mPAi( )10 (b, T) + wpai(@)sro(T,@)] + p 485 + Paiai
+wph; - qai(0) - S (6,94 (D), pa(b), pi (b)) Gr1-a(b, 1)

a0 (A PAE) ) rcn) w
= SéOESA{ AL+ Wai ((:Az —da; ixol) (gif Gait 5 Wai PAz)gfqo +PaiChi
(8% — q4i€a0) - [Bh P — mpai(0)x1-oa(b, T) + wpai(a)ki—o(T,a)] }
= % e [eaWai (@ — o) + War (857" — daiie) ] = —&5 Wi (G — daiC0)-
This proof is completed. [J
We assume that the Hamiltonian system (Equation (22)) is disturbed as
ASpPhi = —Ppi — ;H; —esWsi(t, qp, P, PB ), Budsi = 3;3, 5 = gij (46)

In this case, if the function G and the infinitesimal generators o, ¢;, #78; and 17, of
the disturbed system (Equation (46)) have the forms

Gp = GY +epgGh + €3G + - = e5,Gy, Cpo = &9y + eplhy T €383, + -+ = €58,
i = g + e+ epng; + o = 8513771531' i = 1y +€Af7%} e+ = e (47)
i=1,2,- ,s=20,1,2,-

then we have:
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Theorem 6. For the disturbed Hamiltonian system ( Equation(46)), if there exists a function Gy
such that the infinitesimal generators C, &, np; and ng; satisfy

oH oH
puici + VB (5 — dsiSho) + (p%i%B%/IqBi* B)‘fso 37s; OB

+(pli - MqBi_HB)éBO+wai'qBi(b) ~ 3o (b, 98(), pE(b), pi (b)) x1—a (b, 2 (48)
—mp; - 4i(a) - Txo (ﬂ, q5(a), pp(a), py(a)) - x1-a(t,a) — Wp; (5%1‘ —45i%Ho ) +Gp =0,
where ;" = Cpy L — 0 when s = 0, then there exists an adiabatic invariant

; i .
pez = sgos%{(p%iB%MBi — Hp) &30+ J, [PhiB3 (85 — T5iSho) + (65 — 95:850)
X ftl’j‘w P AT + ppidy; +w - q‘Bi(b) -850 (b,q8(b), pa(D), p% (b)) @9)
X Jo Phi(OF1-a (b, T)AT — - qp;(a) - S0 (2, 95(a), pi(a), piy(a))
t
X fa p%i(r)Kl—tx(Tl Ll)dT + G%}

Proof of Theorem 6. From Equations (46) and (48), we have:

S1nc. = ey { (P Biani — Ha)dno + 4pr dpe go OHn  OHp,
df 'BGz EB L \PBi®Mm1TBi — B)@Bo P B + P § Bidsi — % g5 1Bi

SZB, PBi — aHB pBl)‘:BO + PiBiy (Chi — 05iCho) + (83 — d5iCho) - AlrePhi
+ppCh + el + WP dpi(b) - S0 (b,q5(0), pr(b), Py (B))k1_a(b, 1)
—mply; - d5i(a) - E50(a,95(0), P (@), P () - K1—a(t,) + G (50)
Z 5 [%Zlf Cpi T Wi (CSBZ' — {3 Séo]) (giﬁ i + BpBIi f’Bi) Bo + PBiCEi
+(Chi — 8iCho) - Ahre Phi
= éOESB {*SBWBi(gséi —4piCho) + Wi (CSBi — g SBolﬂ —€5" Wai (Ch — 95iCo)-

This proof is completed. [

Remark 6. Let i, (t,T) = (t — )" ' /T(«). When M = My, M = My and M = M3, we can
obtain the adiabatic invariants in terms of the left Riemann—Liouville fractional operator, the right
Riemann—Liouville fractional operator, the Riesz—Riemann—Liouville fractional operator, the left
Caputo fractional operator, the right Caputo fractional operator, and the Riesz—Caputo fractional
operator from Theorem 5 and Theorem 6, respectively. These results are consistent with the ones
obtained in Ref. [29].

Remark 7. If we let « — 1, all the six cases in Remark 14 are simplified to the classical adiabatic
invariant, which can also be found in Ref. [29].

Remark 8. When z = 0, the conserved quantities of Theorems 2 and 4 can be obtained from the
adiabatic invariants of Theorem 5 and Theorem 6, respectively.

6. Examples

In this section, two examples are given to illustrate the results and methods.
Example 1. The Hamiltonian system within the generalized operator A.
For the Lagrangian,
La= %m [(A%MAl)Z + (AMqa2)* + o + ‘7342} : (51)

try to study its conserved quantity and adiabatic invariant.
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From Equation (51), we have

L L L :
Par = aA%AI';Al = mAy a1, Pap = 8A%42A2 = mAyqaz par = ﬁ — Mav
) _ 1 2 2
Paz = 5.0 =My, Ha = 5 [(Pﬁu) +(Ph) "+ P+ Piz}'
Then, Equation (16) gives the Hamilton equation
A = Llya  pa D U N B § g =L
MIA1 = 5 PA1 AmIA2 = P a2 941 = mPAL Ga2 = 5 PA2,
By Pa1 = —Par +mp (0)Kk1-a(b, £) — wpiyy (@)1 —a(t a), (53)
Bl Py = —Pan +mpl, (D)x1—a (b, t) — wp’,(a)k1—o(t, a).

Under the condition (d/dt)x, (¢, T) = —(d/d7)x«(t, T), we can verify that

5940 =1 ‘3941 = 5942 =0, G% =0 (54)

satisfy the Noether quasi-identity (Equation (30)). Therefore, from Theorem 2, we have

Lago = Pa1 - AMfar + Pap - Avdaz — Ha — fut {Pﬁu : %A%/Iqu + 41 [Bi Pl
—mp%y (b)x1 o (b, T) +wply (a)k1o(T,0)] + Py - AL G2
+0 42 [Big- P — mpla (D)x1-a (b, T) +wplyp(a)k1-a(T,0)] }dT
2 [(Pilf + (Puﬁxz)z —Ph1— P%qz} - fat {Pﬁn Cdr AMAaL + a1 [BiPo
_mplfql(b)xl—a(b/ ) +wp’yy (”)Kl—a('r/”)] + P - %A%/MAZ
+G 40 [ Bl Pp — mp%o (D) k1—a (b, T) +wp, (a)k1-o(T,a)] }dT = const.

(55)

When the system is disturbed by —esWa1 (£, qa, Pa,PR) = —€4d42 and —esWar (1,
da Pa PX) = —€4qa1, then we can find that

Cao=1 ¢ =Cn =0, G} = —qaqa (56)
is a solution to Equation (43). Therefore, from Theorem 5, we obtain
Ingr = Laco +€a(laco — Ga1942)- (57)

Specifically, let &, (t,T) = (t —7)* /T (&), M = My (or M = M, or M = M3) and
a — 1, we have

Ipcoc = —Hyp = const, Iygic = —Ha —ea(Ha +941942)- (58)

Example 2. The Hamiltonian system within the generalized operator B.

For the Lagrangian,

1 .
Ly =3 {(B?/MB)Z + ‘132} — 8, (59)
try to find its conserved quantity and adiabatic invariant.

From Equation (59), we have

oL oL .
Pp = aB?‘VIL;B = B\4qs, P8 = a:‘TB =qp Hp =
B

[(p)°+ph] +a5. (60)

N =

Then, Equation (22) gives the Hamilton equation

BMqs = Py, 4 = PB, AP = —pp — L. (61)
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Under the condition (d/dt)x, (¢, T) = —(d/d7)x«(t, T), we can verify that
&0 =12%=0G3=0 (62)

satisfy the Noether quasi-identity (Equation (37)). Therefore, from Theorem 4, we have

IBGO = p% . B%/[‘]B — HB — f; ([]BA%/I*}?% + P% . %B%Aq3>d’f

5 " (63)
=1 {(p"é) —pi— qu} -/ (qBAﬁ‘W Py + % %Bﬁdqg)dr = const.

When the system is disturbed by —egWgi(t, qg, P, PR) = —€8(29p1 + 1), then we
can find that

Cho=1 b =0, Gy = —q% — qm (64)

is a solution to Equation (48). Therefore, from Theorem 6, we have
Ipg1 = Ipco + €3 (IBGO — 5 — 0731)- (65)

Specifically, let . (t,T) = (f — )" 1/T(x), M = M; (or M = M, or M = M3) and
a — 1, we have

Ipcoc = —Hp = const, Iggic = —Hp — ea(Hp + q%; + qp1)- (66)

Remark 9. We only provide two illustrative examples to explain the obtained methods and results.
In fact, the symmetry of the Hamiltonian system can be applied to many problems, such as the Lotka
biochemical oscillator model, the Toda lattice with three particles, the Emden equation, etc. [22,23].

7. Conclusions

On the basis of the generalized operators, fractional variational problems are studied,
Hamilton equations are established, and several special cases of the Hamilton equations are
presented. Some results are consistent with the existing ones, while some are new. In order
to reduce the degrees of the freedom of the differential equations and to better analyze
the dynamic behaviors of the system, Noether symmetry and conserved quantities as
well as perturbation to Noether symmetry and the corresponding adiabatic invariants are
investigated. Hamilton equations (Equations (16) and (22)), Noether theorems (Theorems
1-4) and adiabatic invariants (Theorems 5 and 6) are all new work.

However, only the Noether symmetry method is studied here. In fact, fractional sym-
metry analysis and conservation laws can be adopted for many specific equations [40-43].
Particularly, for constrained mechanics systems, except for the Noether symmetry method,
the Lie symmetry method and the Mei symmetry method are also two useful methods for
solving differential equations of motion. The Lie symmetry is a kind of invariance of the
differential equations under the infinitesimal transformations of time and coordinates. The
Mei symmetry is a kind of invariance under which the transformed dynamical functions
still satisfy the original differential equations of motion. The relationships between the
three symmetry methods can be read in Ref. [21]. Therefore, the Lie symmetry method and
the Mei symmetry method are to be studied in the near future.
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