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Abstract: In this study, our goal was to establish improved inequalities that enhance the asymptotic
and oscillatory behaviors of solutions to even-order neutral differential equations. In the oscillation
theory of neutral differential equations, the connection between the solution and its corresponding
function plays a critical role. We refined these relationships by leveraging the modified monotonic
properties of positive solutions and introduced new conditions that ensure the absence of positive
solutions, confirming the oscillation of all solutions to the studied equation. Based on the concept
of symmetry between the positive and negative solutions of the studied equation, we obtained
criteria that guarantee the oscillation of all solutions by excluding positive solutions only. In order to
demonstrate the significance of our findings, we examined certain instances of the studied equation
and compared them with previous results in the literature.
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1. Introduction

The objective of this research paper was to examine the oscillatory characteristics of
solutions to an even-order quasi-linear neutral differential equation expressed as follows:(

a(s)
(

H(n−1)(s)
)α)′

+ q(s)hα(σ(s)) = 0, s ≥ s0, (1)

where H(s) = h(s) + φ(s)h($(s)). We assume throughout this paper that:

(H1) n ≥ 4, α is the ratio of two positive odd integers;
(H2) a, $, σ ∈ C1([s0, ∞)), and q(s) ∈ C([s0, ∞));
(H3) $(s) ≤ s, σ(s) ≤ s, σ′(s) > 0, and lims→∞ $(s) = lims→∞ σ(s) = ∞;
(H4) a(s) > 0, a′(s) ≥ 0, 0 ≤ φ(s) < φ0 and q(s) ≥ 0;
(H5) π0(s0) < ∞, where

π0(s) :=
∫ ∞

s

1
a1/α(υ)

dυ,

and
πi(s) :=

∫ ∞

s
πi−1(υ)dυ, i = 1, 2, . . . , n− 2.
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A function h ∈ Cn−1([Sh, ∞)), Sh > s0, is said to be a solution of (1), which has the
property a(H(n−1))α ∈ C1[Sh, ∞) and satisfies Equation (1) for all h ∈ [Sh, ∞). We consider
only those solutions h of (1) that exist on some half-line [Sh, ∞) and satisfy the condition

sup{|h(s)| : s > S} > 0, for all S ≥ Sh.

Differential equations play a crucial role in solving real-world problems across many
fields, including physics, engineering, biology, economics, and more. These equations help
to model complex systems by describing how variables change over time based on their
current values and rates of change. Through the use of mathematical tools and techniques,
differential equations can be solved to provide insights into the behavior of the system being
modeled and to make predictions about its future behavior. Applications of differential
equations include modeling the spread of diseases, predicting weather patterns, analyzing
the behavior of electrical circuits, designing control systems, and many more. In general,
differential equations provide a powerful and versatile framework for understanding and
solving real-world problems; see [1–3].

Neutral differential equations are an important type of differential equation that arises
in many areas of science and engineering. They include a time delay in both the derivatives
and the function itself and can be linear or nonlinear. Neutral differential equations
have applications in control theory, neuroscience, chemical kinetics, population dynamics,
and electrical engineering. They are used to model systems that have delayed feedback,
such as control systems, neural networks, chemical reactions, populations, and electronic
circuits; see [4–7].

The oscillation theory is one of many theories that fall under the qualitative theory.
The qualitative theory is the theory concerned with studying the qualitative behavior of
solutions to differential inequalities such as stability, periodicity, symmetry, oscillation,
and others. The principle of symmetry between positive and negative solutions, which
means that every negative value of a positive solution is also a solution and vice versa, is
the main reason why the study focuses on excluding positive solutions only.

In general, neutral differential equations can have oscillatory solutions depending
on the specific parameters and initial conditions of the equation. However, conditions
for oscillatory behavior in neutral differential equations can be more complicated than in
regular differential equations due to the presence of delayed and advanced terms.

In recent times, the field of oscillation theory has witnessed significant growth and
advancement. It now encompasses the examination of oscillation for solutions of vari-
ous types of differential equations, including ordinary, fractional, and partial differential
equations with delay and neutral terms. Of these, the study of delay differential equa-
tions, particularly in noncanonical cases, has garnered the most attention, as evidenced by
works such as [8–10] for delay differential equations and [11–15] for neutral differential
equations. Moaaz et al. [16,17] contributed to this expansion by extending the analysis to
even-order equations.

Numerous studies have delved into the topic of even-order NDE oscillation and pro-
posed various techniques for determining oscillation standards for the analyzed equations.
This has been extensively researched in the canonical case; that is,∫ ∞

s0

1
a1/α(υ)

dυ = ∞, (2)

see [18–21].
Below, we will highlight some of the findings from previous years papers that have

played a critical role in the advancement of research on even-order differential equations.
Baculíková [9] investigated the monotonic characteristics of non-oscillatory solutions

for the linear equation (
a(s)h′(s)

)′
+ q(s)h($(s)) = 0,
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in both delay and advanced cases. Additionally, Baculíková [22] enhanced the findings by
providing criteria for oscillation in the NDE(

a(s)
(
(h(s) + φ(s)h($(s)))′

)α)′
+ q(s)hα(σ(s)) = 0.

Muhib et al. [23] investigated the asymptotic properties of positive solutions to the
fourth-order neutral differential equation(

a(s)(h(s) + φ(s)h($(s)))′′′
)′

+ f (s, h(σ(s))) = 0,

which involves the noncanonical operator given by∫ ∞

s0

1
a1/α(υ)

dυ < ∞. (3)

In [24], Almarri et al. established asymptotic properties of positive solutions to the
even-order neutral differential equation(

a(s)(h(s) + φ(s)h($(s)))(n−1)
)′

+ q(s)h(σ(s)) = 0,

under the condition (3).
Xing et al. [25] investigated oscillation theorems for the equation(

a(s)
(
(h(s) + φ(s)h($(s)))(n−1)

)α)′
+ q(s)hα(σ(s)) = 0,

under the condition (2).
The initial step of our investigation involved the classification of positive solutions to

the studied equation according to the signs of their derivatives. Then, for some positive
solutions, we obtained additional monotonic characteristics. We improved the relationship
between the solution and the associated function of the studied equation based on these
properties. We also utilized these new relationships to rule out the possibility of positive
solutions. We also present an example to demonstrate the importance of our results.

2. Auxiliary Results

In this section, we will establish some important lemmas that we will use to prove the
main results.

The study of the asymptotic and oscillatory behavior of solutions of neutral-type
differential equations heavily relies on the connection between the solution h and its
corresponding function H. Typically, the canonical case of second-order equations uses the
traditional relationship

h(s) > (1− φ(s))H(s), (4)

whereas positive decreasing solutions in the non-canonical case often use the relationship

h(s) >
(

1− φ(s)
π0($(s))

π0(s)

)
H(s), (5)

see [26,27].

Lemma 1 ([28]). Let f ∈ Cn([s0, ∞),R+). If f (n)(s) is eventually of one sign for all large s, then
there exist a sh ≥ s0 and an integer l, 0 ≤ l ≤ n, with n + l even for f (n)(s) ≥ 0, or n + l odd for
f (n)(s) ≤ 0 such that

l > 0 yields f (k)(s) > 0 for s ≥ sh, k = 0, 1, . . . , l − 1,
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and
l ≤ n− 1 yields (−1)l+k f (k)(s) > 0 for s ≥ sh, k = l, l + 1, . . . , n− 1.

Lemma 2 ([29]). Let w ∈ Cm([s0, ∞), (0, ∞)), w(i)(s) > 0 for i = 1, 2, . . . , m,
and w(m+1)(s) ≤ 0, eventually. Then,

w(s)
w′(s)

≥ ε

m
s,

for every ε ∈ (0, 1).

Lemma 3 ([30], Lemma 2.2.3). Suppose that f ∈ Cm([s0, ∞),R+). Assume that f (m)(s)
is of fixed sign and not identically zero on [s0, ∞) and that there exists s1 ≥ s0 such that
f (m−1)(s) f (m)(s) ≤ 0 for all s1 ≥ s0. If lims→∞ f (s) 6= 0, then, for every ε ∈ (0, 1), there
exists sδ ∈ [s1, ∞) such that the inequality

f (s) ≥ ε

(m− 1)!
sm−1

∣∣∣ f (m−1)(s)
∣∣∣,

holds for all s ∈ [sδ, ∞).

Lemma 4 ([31]). Suppose that h(s) is a positive solution to Equation (1). Then, a(s)
(

H(n−1)(s)
)α

is a decreasing function, and H(s) satisfies one of the following cases:

(N1) H(r)(s) > 0 for r = 0, 1, n− 1 and H(n)(s) < 0;

(N2) H(r)(s) > 0 for r = 0, 1, n− 2 and H(n−1)(s) < 0;

(N3) (−1)r H(r)(s) > 0 for r = 0, 1, 2, . . . , n− 1,

eventually.

Proof. Using Equation (1) and Lemma 1 leads to the proof of this lemma.

Notation 1. For more details on determining the sign of derivatives—for example, in the case where
n = 4—see [32].

Notation 2. The symbol Ωi refers to the set of all solutions that are eventually positive and whose
corresponding function satisfies (Ni) for i = 1, 2, 3. For convenience, we define

F[0](s) = F(s) and F[j](s) = F
(

F[j−1](s)
)

, for j = 1, 2, . . . , κ. (6)

Notation 3. In order to simplify, we define the functions for any positive integer κ

φ1(s; κ) =
κ

∑
r=0

(
2r

∏
γ=0

φ
(

$[γ](s)
))[ 1

φ
(
$[2r](s)

) − 1

](
$[2r](s)

s

)(n−2)/ε

, (7)

φ2(s; κ) =
κ

∑
r=0

(
2r

∏
γ=0

φ
(

$[γ](s)
)) 1

φ
(
$[2r](s)

) − πn−2

(
$[2r+1](s)

)
πn−2

(
$[2r](s)

)
, (8)

and

φ̂2(s; κ) =
κ

∑
r=0

(
2r

∏
γ=0

φ
(

$[γ](s)
)) 1

φ
(
$[2r](s)

) − πn−2

(
$[2r+1](s)

)
πn−2

(
$[2r](s)

)
πkm

n−2

(
$[2r](s)

)
πkm

n−2(s)
. (9)
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Lemma 5 ([33], Lemma 1). Assume that h is an eventually positive solution of (1). Then, it
follows that, eventually,

h(s) >
κ

∑
r=0

(
2r

∏
γ=0

φ
(

$[γ](s)
))H

(
$[2r](s)

)
φ
(
$[2r](s)

) − H
(

$[2r+1](s)
), (10)

for any integer κ ≥ 0.

In the following section, we highlight the improved asymptotic and monotonic prop-
erties of the positive solutions for the studied equation. Additionally, we establish certain
conditions that guarantee the absence of positive solutions satisfying (N1), (N2), and (N3)
within Category Ω2, Ω2, and Ω3, respectively.

3. Asymptotic and Monotonic Properties

This section presents the improved asymptotic and monotonous properties of the
positive solutions of the studied equation. It is divided into three subsections, which are
as follows:

3.1. Category Ω2

Lemma 6. Assume that h ∈ Ω2. Then, eventually,

(S1,1) H(s) ≥ ε
n−2 sH′(s);

(S1,2) H(s) ≥ ε
(n−2)! s

n−2H(n−2)(s) for all ε ∈ (0, 1);

(S1,3) H(n−2)(s) ≥ −a1/α(s)π0(s)H(n−1)(s);
(S1,4) H(n−2)(s)/π0(s) is increasing;
(S1,5) h(s) ≥ φ1(s; κ)H(s);

(S1,6)
(

a(s)
(

H(n−1)(s)
)α)′

≤ −q(s)φα
1 (σ(s); κ)Hα(σ(s)).

Proof. Assume that h ∈ Ω2.

(S1,1) Using Lemma 2 with m = n− 2 and w = H, we have

H(s) ≥ ε

n− 2
sH′(s).

(S1,2) Using Lemma 3 with m = n− 1 and f = H, we have

H(s) ≥ ε0

(n− 2)!
sn−2H(n−2)(s),

for all ε0 ∈ (0, 1).

(S1,3) Since a1/α(s)H(n−1)(s) is decreasing, we obtain

H(n−2)(s) ≥ −
∫ ∞

s
H(n−1)(υ)dυ ≥ −a1/α(s)π0(s)H(n−1)(s).

(S1,4) From (S1,3), we obtain(
H(n−2)(s)

π0(s)

)′
=

1
a1/α(s)π2

0(s)

(
a1/α(s)π0(s)H(n−1)(s) + H(n−2)(s)

)
≥ 0.
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(S1,5) From Lemma 5, (10) holds. Based on the properties of solutions in the class Ω2, we

conclude that H
(

$[2r](s)
)
≥ H

(
$[2r+1](s)

)
for i = 1, 2, . . .. Thus, (10) becomes

h(s) >
κ

∑
r=0

(
2r

∏
γ=0

φ
(

$[γ](s)
))[ 1

φ
(
$[2r](s)

) − 1

]
H
(

$[2r](s)
)

.

Using (S1,1), we obtain

H
(

$[2r](s)
)
≥
(

$[2r](s)
s

)(n−2)/ε

H(s),

which, with (11), gives

h(s) >
κ

∑
r=0

(
2r

∏
γ=0

φ
(

$[γ](s)
))[ 1

φ
(
$[2r](s)

) − 1

](
$[2r](s)

s

)(n−2)/ε

H(s)

= φ1(s; κ)H(s).

(S1,6) Equation (1) with (S1,5) becomes(
a(s)

(
H(n−1)(s)

)α)′
= −q(s)hα(σ(s))

≤ −q(s)φα
1 (σ(s); κ)Hα(σ(s)).

Therefore, the proof of the Lemma is complete.

Remark 1. The verification of φ1(s; 0) = 1− φ(s) is straightforward. Substituting κ = 0 into
(S1,5) yields the classical relation (4).

Lemma 7. Assume that h ∈ Ω2 and that there are δ > 0 and s1 ≥ s0 such that

1
α

a1/α(s)π1+α
0 (s)

(
σn−2(s)

)α
q(s)φα

1 (σ(s); κ) ≥ ((n− 2)!)αδ, (11)

We obtain, for s ≥ s1,

(S2,1) lims→∞ H(n−2)(s) = 0;

(S2,2) H(n−2)(s)/π
β0
0 (s) is decreasing;

(S2,3) lims→∞ H(n−2)(s)/π
β0
0 (s) = 0;

(S2,4) H(n−2)(s)/π
1−β0
0 (s) is increasing;

for s ≥ s0, where β0 = εδ1/α, ε ∈ (0, 1) and α ≤ 1.

Proof. Assume that h ∈ Ω2 and that there are δ > 0 and s1 ≥ s0 such that (11) holds.

(S2,1) Given that h ∈ Ω2, we can conclude that (S1,1)–(S1,6) in Lemma 6 hold for all s ≥ s1,
where s1 is sufficiently large. Since H(n−2)(s) is a positive decreasing function, it
follows that lims→∞ H(n−2)(s) = `1 ≥ 0. We claim that `1 = 0. If we suppose not,
then H(n−2)(s) ≥ `1 > 0 eventually, which, together with (S1,2), yields

H(s) ≥ ε

(n− 2)!
sn−2H(n−2)(s)

≥ ε`1

(n− 2)!
sn−2,

for all ε ∈ (0, 1). Thus, from (S1,6), we obtain
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(
a(s)

(
H(n−1)(s)

)α)′
≤ −q(s)φα

1 (σ(s); κ)Hα(σ(s))

≤ −
(

ε`1

(n− 2)!
σn−2(s)

)α

q(s)φα
1 (σ(s); κ)

≤ −εα`α
1

(
σn−2(s)

)α

((n− 2)!)α q(s)φα
1 (σ(s); κ),

which, with (11), gives(
a(s)

(
H(n−1)(s)

)α)′
≤ −α`α

1εαδ
1

a1/α(s)π1+α
0 (s)

≤ −α`α
1 βα

0
1

a1/α(s)π1+α
0 (s)

.

Integrating the previous inequality from s2 to s, we have

a(s)
(

H(n−1)(s)
)α

≤ a(s2)
(

H(n−1)(s2)
)α
− α`α

1 βα
0

∫ s

s2

1
a1/α(υ)π1+α

0 (υ)
dυ

≤ βα
0`

α
1

(
1

πα
0 (s2)

− 1
πα

0 (s)

)
. (12)

Since π−α
0 (s) → ∞ as s → ∞, there is a s3 ≥ s2 such that π−α

0 (s) − π−α
0 (s2) ≥

µ0π−α
0 (s) for all µ0 ∈ (0, 1). Hence, (12) becomes

H(n−1)(s) ≤ −`1µ1/α
0 β0

1
a1/α(s)π0(s)

,

for all s ≥ s3. Integrating the last inequality from s3 to s, we find that

H(n−2)(s) ≤ H(n−2)(s3)− `1µ1/α
0 β0

∫ s

s3

1
a1/α(υ)π0(υ)

dυ

≤ H(n−2)(s3)− `1µ1/α
0 β0 ln

π0(s3)

π0(s)
→ −∞ as s→ ∞,

which is a contradiction. Then, `1 = 0.
(S2,2) From (11), (S1,2), and (S1,6), we obtain

(
a(s)

(
H(n−1)(s)

)α)′
≤ −

αβα
0

a1/α(s)π1+α
0 (s)

(
H(n−2)(σ(s))

)α
.

By integrating the last inequality from s1 to s and taking into account that H(n−1)(s) <
0, we obtain

a(s)
(

H(n−1)(s)
)α
≤ a(s1)

(
H(n−1)(s1)

)α
+

βα
0

πα
0 (s1)

(
H(n−2)(s)

)α
−

βα
0

πα
0 (s)

(
H(n−2)(s)

)α
.

Because H(n−2)(s)→ 0 as s→ ∞, there is a s2 ≥ s1 such that

a(s1)
(

H(n−1)(s1)
)α

+
βα

0
πα

0 (s1)

(
H(n−2)(s)

)α
≤ 0,

for s ≥ s2. Therefore, we have

a(s)
(

H(n−1)(s)
)α
≤ −

βα
0

πα
0 (s)

(
H(n−2)(s)

)α
,
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or equivalent
a1/α(s)H(n−1)(s)π0(s) + β0H(n−2)(s) ≤ 0. (13)

Thus, (
H(n−2)(s)

π
β0
0 (s)

)′
=

a1/α(s)H(n−1)(s)π0(s) + β0H(n−2)(s)

a1/α(s)π1+β0
0 (s)

≤ 0.

(S2,3) Since H(n−2)(s)/π
β0
0 (s) is a positive decreasing function, lims→∞ H(n−2)(s)/π

β0
0 (s) =

`2 ≥ 0. We claim that `2 = 0. If not, then H(n−2)(s)/π
β0
0 (s) ≥ `2 > 0 eventually. Now,

we introduce the function

w(s) =
H(n−2)(s) + π0(s)a1/α(s)H(n−1)(s)

π
β0
0 (s)

.

In view of (S1,3), we observe that w(s) > 0 and

w′(s) =
H(n−1)(s) + π0(s)

(
a1/α(s)H(n−1)(s)

)′
− H(n−1)(s)

π
β0
0 (s)

+β0
H(n−2)(s) + π0(s)a1/α(s)H(n−1)(s)

a1/α(s)π1+β0
0 (s)

=

(
a1/α(s)H(n−1)(s)

)′
π

β0−1
0 (s)

+ β0
H(n−2)(s)

a1/α(s)π1+β0
0 (s)

+ β0
H(n−1)(s)

π
β0
0 (s)

=
1
α

(
a(s)

(
H(n−1)(s)

)α)′(
a1/α(s)H(n−1)(s)

)1−α

π
β0−1
0 (s)

+β0
H(n−2)(s)

a1/α(s)π1+β0
0 (s)

+ β0
H(n−1)(s)

π
β0
0 (s)

.

Using (S1,2), (S1,6), and (11), we obtain

(
a(s)

(
H(n−1)(s)

)α)′
≤ −

(
ε

(n− 2)!
σn−2(s)

)α

q(s)φα
1 (σ(s); κ)

(
H(n−2)(σ(s))

)α

≤ −αβα
0

1
a1/α(s)π1+α

0 (s)

(
H(n−2)(σ(s))

)α
.

(14)

From (13), we know that

a1/α(s)H(n−1)(s) ≤ −β0
H(n−2)(s)

π0(s)
,

and (
a1/α(s)H(n−1)(s)

)1−α
≥
(

β0
H(n−2)(s)

π0(s)

)1−α

. (15)

Using (14) and (15), we obtain

w′(s) ≤ −
βα

0

π
β0−1
0 (s)

1
a1/α(s)π1+α

0 (s)

(
H(n−2)(σ(s))

)α
(

β0
H(n−2)(s)

π0(s)

)1−α

+β0
H(n−2)(s)

a1/α(s)π1+β0
0 (s)

+ β0
H(n−1)(s)

π
β0
0 (s)

.
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Since H(n−1)(s) < 0 and σ(s) ≤ s, we obtain H(n−2)(σ(s)) ≥ H(n−2)(s), and then

w′(s) ≤ −
βα

0

π
β0−1
0 (s)

1
a1/α(s)π1+α

0 (s)

(
H(n−2)(s)

)α
(

β0
H(n−2)(s)

π0(s)

)1−α

+β0
H(n−2)(s)

a1/α(s)π1+β0
0 (s)

+ β0
H(n−1)(s)

π
β0
0 (s)

≤ −β0
H(n−2)(s)

a1/α(s)π1+β0
0 (s)

+ β0
H(n−2)(s)

a1/α(s)π1+β0
0 (s)

+ β0
H(n−1)(s)

π
β0
0 (s)

≤ β0
H(n−1)(s)

π
β0
0 (s)

.

Using the fact that H(n−2)(s)/π
β0
0 (s) ≥ `2 and (13), we obtain

w′(s) ≤ β0
H(n−1)(s)

π
β0
0 (s)

≤ β0
1

π
β0
0 (s)

(
−β0H(n−2)(s)
a1/α(s)π0(s)

)

≤ −H(n−2)(s)

π
β0
0 (s)

β2
0

a1/α(s)π0(s)
≤

−`2β2
0

a1/α(s)π0(s)
< 0.

We can conclude that the function w(s) converges to a non-negative constant since it
is a positive decreasing function. By integrating the previous inequality from s3 to ∞,
we obtain

−w(s3) ≤ −β2
0`2 lim

s→∞
ln

π0(s3)

π0(s)
,

or, equivalently,

w(s3) ≥ β2
0c2 lim

s→∞
ln

π0(s3)

π0(s)
→ ∞,

which is a contradiction, and we obtain that `2 = 0.
(S2,4) Now, we have (

a1/α(s)H(n−1)(s)π0(s) + H(n−2)(s)
)′

=
(

a1/α(s)H(n−1)(s)
)′

π0(s)− H(n−1)(s) + H(n−1)(s)

=
(

a1/α(s)H(n−1)(s)
)′

π0(s)

=
1
α

(
a(s)

(
H(n−1)(s)

)α)′(
a1/α(s)H(n−1)(s)

)1−α
π0(s),

which, with (14) and (15), we obtain(
a1/α(s)H(n−1)(s)π0(s) + H(n−2)(s)

)′
≤ −βα

0
1

a1/α(s)π1+α
0 (s)

(
H(n−2)(σ(s))

)α
(

β0
H(n−2)(s)

π0(s)

)1−α

π0(s)

≤ −βα
0

1
a1/α(s)πα

0 (s)

(
H(n−2)(s)

)α
(

β0
H(n−2)(s)

π0(s)

)1−α

≤ −β0

a1/α(s)π0(s)
H(n−2)(s).
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By integrating the previous inequality from s to ∞, we derive

−a1/α(s)H(n−1)(s)π0(s)− H(n−2)(s) ≤ −β0

∫ ∞

s

1
a1/α(υ)π0(υ)

H(n−2)(υ)dυ,

or, equivalently,

a1/α(s)H(n−1)(s)π0(s) + H(n−2)(s) ≥ β0

∫ ∞

s

1
a1/α(υ)π0(υ)

H(n−2)(υ)dυ

≥ β0
H(n−2)(s)

π0(s)

∫ ∞

s

1
a1/α(υ)

dυ ≥ β0H(n−2)(s);

that is,
a1/α(s)H(n−1)(s)π0(s) + (1− β0)H(n−2)(s) ≥ 0.

Thus, (
H(n−2)(s)

π
1−β0
0 (s)

)′
=

π0(s)a1/α(s)H(n−1)(s) + (1− β0)H(n−2)(s)

a1/α(s)π2−β0
0 (s)

≥ 0. (16)

Therefore, the proof of the Lemma is complete.

Assuming that β0 ≤ 1/2, the properties stated in Lemma 7 can be further improved
as demonstrated in the following lemma.

Lemma 8. Suppose that h ∈ Ω2 and (11) holds. If condition

lim
s→∞

π0(σ(s))
π0(s)

= λ < ∞, (17)

and there exists an increasing sequence
{

β j
}m

j=1 defined as

β j := β0
λβ j−1(

1− β j−1
)1/α

,

with α ≤ 1, β0 = εδ1/α, βm−1 ≤ 1/2, and βm, ε ∈ (0, 1). Then, eventually,

(S3,1) H(n−2)(s)/π
βm
0 (s) is decreasing;

(S3,2) lims→∞ H(n−2)(s)/π
βm
0 (s) = 0.

Proof. Since h ∈ Ω2, we can conclude that (S1,1)–(S1,5) in Lemma 6 are satisfied for all
s ≥ s1, s1 large enough. Furthermore, from Lemma 7, we have that (S2,1)–(S2,4) hold.

Now, assume that β0 ≤ 1/2 and

β1 := β0
λβ0

(1− β0)
1/α

.

Next, we will prove that (S3,1) and (S3,2) at m = 1. As in the proof of Lemma 7, we
arrive at (

a(s)
(

H(n−1)(s)
)α)′

≤ −αβα
0

1
a1/α(s)π1+α

0 (s)

(
H(n−2)(σ(s))

)α
.

Integrating the last inequality from s1 to s, and using (S2,2) and (17), we obtain
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a(s)
(

H(n−1)(s)
)α

≤ a(s1)
(

H(n−1)(s1)
)α
− αβα

0

∫ s

s1

1
a1/α(υ)π1+α

0 (υ)

(
H(n−2)(σ(υ))

)α
dυ

≤ a(s1)
(

H(n−1)(s1)
)α
− αβα

0

∫ s

s1

1
a1/α(υ)π1+α

0 (υ)
π

αβ0
0 (σ(υ))

(
H(n−2)(υ)

π
β0
0 (υ)

)α

dυ

≤ a(s1)
(

H(n−1)(s1)
)α
− αβα

0

(
H(n−2)(s)

π
β0
0 (s)

)α ∫ s

s1

π
−1−α+αβ0
0 (υ)

a1/α(υ)

π
αβ0
0 (σ(υ))

π
αβ0
0 (υ)

dυ

≤ a(s1)
(

H(n−1)(s1)
)α
− αβα

0λαβ0

(
H(n−2)(s)

π
β0
0 (s)

)α ∫ s

s1

π
−1−α+αβ0
0 (υ)

a1/α(υ)
dυ

≤ a(s1)
(

H(n−1)(s1)
)α
−

βα
0λαβ0

1− β0

(
H(n−2)(s)

π
β0
0 (s)

)α(
1

π
α(1−β0)
0 (s)

− 1

π
α(1−β0)
0 (s1)

)

≤ a(s1)
(

H(n−1)(s1)
)α

+ βα
1

1

π
α(1−β0)
0 (s1)

(
H(n−2)(s)

π
β0
0 (s)

)α

− βα
1

(
H(n−2)(s)

π0(s)

)α

.

Using the fact that H(n−2)(s)/π
β0
0 (s)→ 0 as s→ ∞, we have that

a(s1)
(

H(n−1)(s1)
)α

+ βα
1

1

π
α(1−β0)
0 (s1)

(
H(n−2)(s)

π
β0
0 (s)

)α

≤ 0.

Therefore,

a(s)
(

H(n−1)(s)
)α
≤ −βα

1

(
H(n−2)(s)

π0(s)

)α

,

or, equivalently,
a1/α(s)H(n−1)(s)π0(s) + β1H(n−2)(s) ≤ 0;

then, (
H(n−2)(s)

π
β1
0 (s)

)′
=

π0(s)a1/α(s)H(n−1)(s) + β1H(n−2)(s)

a1/α(s)π1+β1
0 (s)

≤ 0.

Using the same method as before, we can show that

lim
s→∞

H(n−2)(s)

π
β1
0 (s)

= 0,

and (
H(n−2)(s)

π
1−β1
0 (s)

)′
≥ 0.

In a similar manner, for βk−1 < βk ≤ 1/2, we can demonstrate that

a1/α(s)H(n−1)(s)π0(s) + βk H(n−2)(s) ≤ 0, (18)

and

lim
s→∞

H(n−2)(s)

π
βk
0 (s)

= 0,

for k = 2, 3, . . . , m. Hence, we have completed the proof of the lemma.
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Theorem 1. If (11) holds and
β0 > 1/2, (19)

for some µ0 ∈ (0, 1), then we have Ω2 = ∅, where βm is defined as in Lemma 7.

Proof. Assume for contradiction that h ∈ Ω2. By Lemma 7, we know that H(n−2)(s)/π
β0
0 (s)

is decreasing for s ≥ s1and H(n−2)(s)/π
1−β0
0 (s) is increasing for s ≥ s1. This implies that

β0 ≤ 1/2,

which is a contradiction. The proof is complete.

Theorem 2. Assume that (11) and (17) hold. If there is a positive integer m such that

lim inf
s→∞

∫ s

σ(s)
π0(υ)π

α−1
0 (σ(υ))

(
σn−2(υ)

)α
q(υ)φα

1 (σ(υ); κ)dυ >
αβα−1

m (1− βm)((n− 2)!)α

e
, (20)

then we can conclude that Ω2 = ∅, where α ≤ 1.

Proof. Suppose the opposite: that h ∈ Ω2. Then, based on Lemma 8, we know that (S3,1)
and (S3,2) hold.

Now, we define the function

w(s) = a1/α(s)H(n−1)(s)π0(s) + H(n−2)(s).

It follows from (S1,3) that w(s) > 0 for s ≥ s1. From (S3,1), we obtain

a1/α(s)H(n−1)(s)π0(s) ≤ −βm H(n−2)(s).

Then, from the definition of w(s), we have

w(s) = a1/α(s)H(n−1)(s)π0(s) + βmH(n−2)(s)− βmH(n−2)(s) + H(n−2)(s)

≤ (1− βm)H(n−2)(s). (21)

Using Lemma 6, we find that (S1,1)− (S1,5) hold. From (S1,2) and (S1,6), we obtain

w′(s) =
(

a1/α(s)H(n−1)(s)
)′

π0(s)

≤ 1
α

(
a(s)

(
H(n−1)(s)

)α)′(
a1/α(s)H(n−1)(s)

)1−α
π0(s)

≤ − 1
α

q(s)φα
1 (σ(s); κ)Hα(σ(s))

(
a1/α(s)H(n−1)(s)

)1−α
π0(s)

≤ − 1
α

q(s)φα
1 (σ(s); κ)Hα(σ(s))

(
βm

H(n−2)(s)
π0(s)

)1−α

π0(s)

≤ − 1
α

β1−α
m q(s)φα

1 (σ(s); κ)π0(s)Hα(σ(s))

(
H(n−2)(s)

π0(s)

)1−α

≤ − 1
α

β1−α
m q(s)φα

1 (σ(s); κ)π0(s)
(

ε

(n− 2)!
σn−2(s)

)α(
H(n−2)(σ(s))

)α
(

H(n−2)(s)
π0(s)

)1−α

.

Applying (S1,4) from Lemma 6, we can observe that H(n−2)(s)/π0(s) is increasing.
Therefore, we have

H(n−2)(σ(s))
π0(σ(s))

≤ H(n−2)(s)
π0(s)

,
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and (
H(n−2)(σ(s))

π0(σ(s))

)1−α

≤
(

H(n−2)(s)
π0(s)

)1−α

.

Therefore,

w′(s) ≤ − 1
α

β1−α
m q(s)φα

1 (σ(s); κ)π0(s)
(

ε

(n− 2)!
σn−2(s)

)α

×
(

H(n−2)(σ(s))
)α
(

H(n−2)(σ(s))
π0(σ(s))

)1−α

≤ − 1
α

β1−α
m εα

((n− 2)!)α q(s)φα
1 (σ(s); κ)

π0(s)
π1−α

0 (σ(s))

(
σn−2(s)

)α
H(n−2)(σ(s)),

which, from (21), gives

w′(s) +
1
α

εαβ1−α
m

((n− 2)!)α(1− βm)

π0(s)
π1−α

0 (σ(s))

(
σn−2(s)

)α
q(s)φα

1 (σ(s); κ)w(σ(s)) ≤ 0. (22)

Therefore, we can conclude that w(s) satisfies the differential inequality (22) with
positive values. However, according to Theorem 2.1.1 in [5], condition (20) ensures that (22)
is oscillatory. This leads to a contradiction, completing the proof of the theorem.

3.2. Category Ω3

Lemma 9. Assume that h ∈ Ω3. Then, eventually,

(S4,1) H(s)/πn−2(s) is increasing;
(S4,1) (−1)i+1H(n−i−2)(s) ≤ a1/α(s)H(n−1)(s)πi(s), for i = 0, 1, 2, . . . , n− 2.

Proof. Assume that h ∈ Ω3.

(S4,1) From (1), we have that a(s)
(

H(n−1)(s)
)α

is decreasing, and hence

a1/α(s)H(n−1)(s)
∫ ∞

s

1
a1/α(υ)

dυ ≥
∫ ∞

s

1
a1/α(υ)

a1/α(υ)H(n−1)(υ)dυ

= lim
s→∞

H(n−2)(s)− H(n−2)(s).
(23)

Since H(n−2)(s) is a positive decreasing function, we have that H(n−2)(s) converges
to a non-negative constant when s→ ∞. Thus, (23) becomes

−H(n−2)(s) ≤ a1/α(s)H(n−1)(s)π0(s),

which implies that(
H(n−2)(s)

π0(s)

)′
=

a1/α(s)π0(s)H(n−1)(s) + H(n−2)(s)
a1/α(s)π2

0(s)
≥ 0,

which leads to

−H(n−3)(s) =
∫ ∞

s

H(n−2)(υ)

π0(υ)
π0(υ)dυ ≥ H(n−2)(s)

π0(s)
π1(s).
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This implies that(
H(n−3)(s)

π1(s)

)′
=

π1(s)H(n−2)(s) + H(n−3)(s)π0(s)
π2

1(s)
≤ 0.

Similarly, we repeat the same previous process (n− 4) times and obtain(
H′(s)

πn−3(s)

)′
≤ 0.

Now,

−H(s) =
∫ ∞

s

H′(υ)
πn−3(υ)

πn−3(υ)dυ ≤ H′(s)
πn−3(s)

πn−2(s).

This implies that(
H(s)

πn−2(s)

)′
=

πn−2(s)H′(s) + H(s)πn−3(s)
π2

n−2(s)
≥ 0.

(S4,2) Assume that h ∈ Ω3. Then, we obtain

a1/α(s)H(n−1)(s)π0(s) ≥
∫ ∞

s

a1/α(υ)H(n−1)(υ)

a1/α(υ)
dυ ≥ −H(n−2)(s),

or, equivalently,
H(n−2)(s) ≥ −a1/α(s)H(n−1)(s)π0(s).

Integrating the last inequality from s to ∞, we obtain

−H(n−3)(s) ≥ −
∫ ∞

s
a1/α(υ)H(n−1)(υ)π0(υ)dυ

≥ −a1/α(s)H(n−1)(s)
∫ ∞

s
π0(υ)dυ

≥ −a1/α(s)H(n−1)(s)π1(s),

or, equivalently,
H(n−3)(s) ≤ a1/α(s)H(n−1)(s)π1(s).

Integrating the last inequality from s to ∞, we have

−H(n−4)(s) ≤
∫ ∞

s
a1/α(υ)H(n−1)(υ)π1(υ)dυ

≤ a1/α(s)H(n−1)(s)
∫ ∞

s
π1(υ)dυ

≤ a1/α(s)H(n−1)(s)π2(s),

or, equivalently,
H(n−4)(s) ≥ −a1/α(s)H(n−1)(s)π2(s).

Through the repeated integration of the previous inequalities from s to ∞, we obtain

(−1)i+1H(n−i−2)(s) ≤ a1/α(s)H(n−1)(s)πi(s),

for i = 0, 1, 2, . . . , n− 2.

Hence, we have completed the proof of the lemma.

Lemma 10. Suppose that h ∈ Ω3. Then, eventually,
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(S5,1) h(s) > φ2(s, κ)H(s);

(S5,2)
(

a(s)
(

H(n−1)(s)
)α)′

≤ −q(s)φα
2 (σ(s); κ)Hα(σ(s)).

Proof. Suppose that h ∈ Ω3.

(S5,1) From Lemma 5, we have that (10) holds. From (S4,1), we conclude that

H
(

$[2r+1](s)
)
≤

πn−2

(
$[2r+1](s)

)
πn−2

(
$[2r](s)

) H
(

$[2r](s)
)

,

which, with (10), gives

h(s) >
κ

∑
r=0

(
2r

∏
γ=0

φ
(

$[γ](s)
)) 1

φ
(
$[2r](s)

) − πn−2

(
$[2r+1](s)

)
πn−2

(
$[2r](s)

)
H
(

$[2r](s)
)

. (24)

Since H is decreasing, then (24) becomes

h(s) >
κ

∑
r=0

(
2r

∏
γ=0

φ
(

$[γ](s)
)) 1

φ
(
$[2r](s)

) − πn−2

(
$[2r+1](s)

)
πn−2

(
$[2r](s)

)
H(s)

= φ2(s, κ)H(s).

(S5,2) Equation (1) with (S5,1) becomes(
r(s)

(
H(n−1)(s)

)α)′
= −q(s)hα(σ(s))

≤ −q(s)φα
1 (σ(s); κ)Hα(σ(s)).

Therefore, the proof of the Lemma is complete.

Remark 2. The verification of

φ2(s; 0) = 1− φ(s)
πn−2($(s))

πn−2(s)

is straightforward. Substituting κ = 0 and n = 2 into (S5,1) yields the classical relation (5).

Lemma 11. Assume that h ∈ Ω3. If

∫ ∞

s0

(
1

a(w)

∫ w

s0

q(υ)φα
2 (σ(υ); κ)dυ

)1/α

dw = ∞, (25)

and there exists a k0 ∈ (0, 1) such that

1
α

πα+1
n−2(s)π

−1
n−3(s)q(s)φ

α
2 (σ(s); κ) ≥ kα

0 , (26)

then

(S6,1) lims→∞ H(s) = 0;

(S6,2) H(s)/πk0
n−2(s) is decreasing;

(S6,3) lims→∞ H(s)/π
β0
n−2(s) = 0;

Proof. Assume that h ∈ Ω3.
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(S6,1) Since H is positive decreasing, we have that lims→∞ H(s) = `3 ≥ 0. Assume the
contrary, that `3 > 0. Then, there exists a s2 ≥ s1 with H(s) ≥ `3 for s ≥ s2. Then,
from (S5,2), we obtain(

a(s)
(

H(n−1)(s)
)α)′

≤ −q(s)φα
2 (σ(s); κ)Hα(σ(s)) ≤ −`α

3q(s)φα
2 (σ(s); κ).

Integrating the inequality twice from s2 to s, we obtain

a(s)
(

H(n−1)(s)
)α
− a(s2)

(
H(n−1)(s2)

)α
≤ −`α

3

∫ s

s2

q(υ)φα
2 (σ(υ); κ)dυ.

Using case (N3), we have H(n−1)(s) < 0 for s ≥ s1. Then, a(s2)
(

H(n−1)(s2)
)α

< 0,
and so

H(n−1)(s) ≤ − `3

a1/α(s)

∫ s

s2

q(υ)φα
2 (σ(υ); κ)dυ.

Then,

H(n−2)(s) ≤ H(n−2)(s2)− `3

∫ s

s2

(
1

a(w)

∫ w

s2

q(υ)φα
2 (σ(υ); κ)dυ

)1/α

dw→ −∞ as s→ ∞,

a contradiction with the positivity of h(n−2)(s). Therefore, `3 = 0.
(S6,2) Integrating (S5,2) from s2 to s and using (26), we obtain

a(s)
(

H(n−1)(s)
)α

≤ a(s2)
(

H(n−1)(s2)
)α
−
∫ s

s2

q(υ)φα
2 (σ(υ); κ)Hα(σ(υ))dυ

≤ a(s2)
(

H(n−1)(s2)
)α
− Hα(s)

∫ s

s2

q(υ)φα
2 (σ(υ); κ)dυ

≤ a(s2)
(

H(n−1)(s2)
)α
− Hα(s)

∫ s

s2

αkα
0

πn−3(υ)

πα+1
n−2(υ)

dυ

≤ a(s2)
(

H(n−1)(s2)
)α

+ kα
0

Hα(s)
πα

n−2(s2)
− kα

0
Hα(s)

πα
n−2(s)

,

which, with (S6,1), gives

a(s)
(

H(n−1)(s)
)α
≤ −kα

0
Hα(s)

πα
n−2(s)

,

or, equivalently,

a1/α(s)H(n−1)(s) ≤ −k0
H(s)

πn−2(s)
. (27)

Thus, from (S4,2) at i = n− 3, we have

H′(s)
πn−3(s)

≤ −k0
H(s)

πn−2(s)
,

or, equivalently,
πn−2(s)H′(s) + k0πn−3(s)H(s) ≤ 0. (28)

Consequently, (
H(s)

πk0
n−2(s)

)′
=

πn−2(s)H′(s) + k0πn−3(s)H(s)

πk0+1
n−2 (s)

≤ 0.
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(S6,3) Given that H(s)/πk0
n−2(s) is a positive decreasing function, it follows that

lim
s→∞

H(s)/πk0
n−2(s) = `4 ≥ 0.

Assume the contrary, that `4 > 0. Then, there exists a s2 ≥ s1 with H(s)/πk0
n−2(s) ≥ `4

for s ≥ s2. Next, we define

ϕ(s) :=
H(s) + a1/α(s)H(n−1)(s)πn−2(s)

πk0
n−2(s)

.

Then, from (S4,2), ϕ(s) ≥ 0 for s ≥ s2. Differentiating ϕ(s) and (S4,2), we find

ϕ′(s)

=
1

π2k0
n−2(s)

[
πk0

n−2(s)
(

H′(s)− a1/α(s)H(n−1)(s)πn−3(s) +
(

a1/α(s)h(n−1)(s)
)′

πn−2(s)
)

+k0πk0−1
n−2 (s)πn−3(s)

(
H(s) + a1/α(s)H(n−1)(s)πn−2(s)

)]
≤ 1

πk0+1
n−2 (s)

[(
a1/α(s)H(n−1)(s)

)′
π2

n−2(s) + k0πn−3(s)
(

H(s) + a1/α(s)H(n−1)(s)πn−2(s)
)]

≤ 1

πk0+1
n−2 (s)

[
1
α

(
a(s)

(
H(n−1)(s)

)α)′(
a1/α(s)H(n−1)(s)

)1−α
π2

n−2(s)

+k0πn−3(s)
(

H(s) + a1/α(s)H(n−1)(s)πn−2(s)
)]

.

Using (S5,2), we find

ϕ′(s) ≤ 1

πk0+1
n−2 (s)

[
−1
α

q(s)φα
2 (σ(s); κ)Hα(σ(s))

(
a1/α(s)H(n−1)(s)

)1−α
π2

n−2(s)

+k0πn−3(s)H(s) + k0πn−3(s)a1/α(s)H(n−1)(s)πn−2(s)
]
.

Since α ≤ 1, H(n−1)(s) ≤ 0, and

a1/α(s)H(n−1)(s) ≤ −k0
H(s)

πn−2(s)
,

also

−a1/α(s)H(n−1)(s) ≥ k0
H(s)

πn−2(s)
,

which implies that

(
a1/α(s)H(n−1)(s)

)1−α
≥
(

k0
H(s)

πn−2(s)

)1−α

.
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Then,

ϕ′(s) ≤ 1

πk0+1
n−2 (s)

[
−1
α

q(s)φα
2 (σ(s); κ)Hα(s)

(
k0

H(s)
πn−2(s)

)1−α

π2
n−2(s)

+k0πn−3(s)H(s) + k0πn−3(s)a1/α(s)H(n−1)(s)πn−2(s)
]

≤ 1

πk0+1
n−2 (s)

[
−k1−α

0
α

q(s)φα
2 (σ(s); κ)πα+1

n−2(s)H(s)

+k0πn−3(s)H(s) + k0πn−3(s)a1/α(s)H(n−1)(s)πn−2(s)
]
.

Using (26), we obtain

ϕ′(s) ≤ 1

πk0+1
n−2 (s)

[
−k0πn−3(s)H(s) + k0πn−3(s)H(s) + k0πn−3(s)a1/α(s)H(n−1)(s)πn−2(s)

]
=

1

πk0
n−2(s)

k0πn−3(s)a1/α(s)H(n−1)(s).
(29)

Using the fact that H(s)/πk0
n−2(s) ≥ `4 with (27), we obtain

a1/α(s)H(n−1)(s) ≤ −k0
H(s)

πn−2(s)
≤ −k0`4πk0−1

n−2 (s). (30)

Combining (29) and (30), we obtain

ϕ′(s) ≤ −k2
0`4

πn−3(s)
πn−2(s)

< 0.

By integrating the last inequality from s2 to s, we find

ϕ(s2) ≥ k2
0`4 ln

πn−2(s2)

πn−2(s)
→ ∞ as s→ ∞,

a contradiction, and so `4 = 0.

Therefore, the proof of the Lemma is complete.

Lemma 12. Assume that h(s) ∈ Ω3 and (25) and (26) hold for some k0 ∈ (0, 1). If ki−1 ≤ ki < 1
for all i = 1, 2, . . . , m− 1, then

(S7,1,m) H(s)/πkm
n−2(s) is decreasing;

(S7,2,m) lims→∞ H(s)/πkm
n−2(s) = 0;

where

k j = k0
λ

kj−1
1(

1− k j−1
)1/α

, j = 1, 2, . . . , m, (31)

and
πn−2(σ(s))

πn−2(s)
≥ λ1, for all s ≥ s1, (32)

for some λ ≥ 1.

Proof. Assuming that h(s) ∈ Ω3, we can use Theorem 11 to conclude that
(S6,1)–(S6,3) are satisfied. Furthermore, by applying induction and Lemma 12, we can
establish that (S7,1,0)–(S7,3,0) hold.
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Assuming that (S7,1,m−1)–(S7,3,m−1) hold, we can integrate (S5,2) from s2 to s, resulting
in

a(s)
(

H(n−1)(s)
)α
≤ a(s2)

(
H(n−1)(s2)

)α
−
∫ s

s2

q(υ)φα
2 (σ(υ); κ)Hα(σ(υ))dυ. (33)

Using (S7,1,m−1), we obtain that

H(σ(s)) ≥ π
km−1
n−2 (σ(s))

H(s)

π
km−1
n−2 (s)

.

Then, (33) becomes

a(s)
(

H(n−1)(s)
)α

≤ a(s2)
(

H(n−1)(s2)
)α

−
∫ s

s2

q(υ)φα
2 (σ(υ); κ)π

αkm−1
n−2 (σ(υ))

Hα(υ)

π
αkm−1
n−2 (υ)

dυ.

which, with the fact that H(s)/π
km−1
n−2 (s) is a decreasing function, gives

a(s)
(

H(n−1)(s)
)α

≤ a(s2)
(

H(n−1)(s2)
)α

− Hα(s)

π
αkm−1
n−2 (s)

∫ s

s2

q(υ)φα
2 (σ(υ); κ)π

αkm−1
n−2 (υ)

π
αkm−1
n−2 (σ(υ))

π
αkm−1
n−2 (υ)

dυ.

Hence, from (26) and (32), we obtain

a(s)
(

H(n−1)(s)
)α

≤ a(s2)
(

H(n−1)(s2)
)α
− λ

αkm−1
1

Hα(s)

π
αkm−1
n−2 (s)

∫ s

s2

q(υ)φα
2 (σ(υ); κ)π

αkm−1
n−2 (υ)dυ

≤ a(s2)
(

H(n−1)(s2)
)α
− αkα

0λ
αkm−1
1

Hα(s)

π
αkm−1
n−2 (s)

∫ s

s2

πn−3(υ)

π
α(1−km−1)+1
n−2 (υ)

dυ

= a(s2)
(

H(n−1)(s2)
)α
− kα

0
λ

αkm−1
1

1− km−1

Hα(s)

π
αkm−1
n−2 (s)

 1

π
α(1−km−1)
n−2 (s)

− 1

π
α(1−km−1)
n−2 (s2)


= a(s2)

(
H(n−1)(s2)

)α
+ kα

m
Hα(s)

π
αkm−1
n−2 (s)

1

π
α(1−km−1)
n−2 (s2)

− km
Hα(s)

πα
n−2(s)

,

which, with the fact that lims→∞ H(s)/π
km−1
n−2 (s) = 0, gives

a(s)
(

H(n−1)(s)
)α
≤ −kα

m
Hα(s)

πα
n−2(s)

,

or, equivalently,

a1/α(s)H(n−1)(s) ≤ −km
H(s)

πn−2(s)
. (34)

Thus, from (S4,2) at i = n− 3, we have

H′(s)
πn−3(s)

≤ −km
H(s)

πn−2(s)
,

or, equivalently,
πn−2(s)H′(s) + kmπn−3(s)H(s) ≤ 0. (35)
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Consequently,(
H(s)

πkm
n−2(s)

)′
=

1

πkm+1
n−2 (s)

(
πn−2(s)H′(s) + km(s)πn−3(s)H(s)

)
≤ 0.

By following the same method used to prove (S6,2) in Lemma 11, we can demonstrate
that lims→∞ H(s)/πkm

n−2(s) = 0.
Hence, we have successfully completed the proof.

Lemma 13. Suppose that h(s) ∈ Ω3 and (25) and (26) hold for some k0 ∈ (0, 1). If ki−1 ≤ ki < 1
for all i = 1, 2, . . . , m− 1, then

h(s) > φ̂2(s; κ)H(s).

Proof. Using the same method employed in the proof of Lemma 10, we can derive (24).
Furthermore, from (S7,1,m), we can infer that

H
(

$[2r](s)
)
≥

πkm
n−2

(
$[2r](s)

)
πkm

n−2(s)
H(s),

which, with (24), gives

h(s) >
κ

∑
r=0

(
2r

∏
s=0

φ
(

$[s](s)
)) 1

φ
(
$[2r](s)

) − πn−2

(
$[2r+1](s)

)
πn−2

(
$[2r](s)

)
πkm

n−2

(
$[2r](s)

)
πkm

n−2(s)
H(s)

= φ̂2(s; κ)H(s).

Theorem 3. Assume that (25) and (26) hold. If there is a positive integer m such that

lim inf
s→∞

∫ s

σ(s)
πn−2(υ)π

α−1
n−2(σ(υ))q(υ)φ

α
2 (σ(υ); κ)dυ >

αkα−1
m (1− km)

e
, (36)

then Ω3 = ∅, where α ≤ 1 and km is defined as in Lemma 12.

Proof. Suppose that the opposite is true: that h ∈ Ω3. According to Lemma 12, we know
that both (S7,1,m) and (S7,2,m) hold.

We can now introduce the function

w(s) = a1/α(s)H(n−1)(s)πn−2(s) + H(s).

From (S4,2) at i = n− 2, w(s) ≥ 0 for s ≥ s2, and from (34), we obtain

a1/α(s)H(n−1)(s)πn−2(s) ≤ −kmH(s).

Then, from the definition of w(s), we have

w(s) = a1/α(s)H(n−1)(s)πn−2(s) + km H(n−2)(s)− kmH(n−2)(s) + H(n−3)(s)

≤ (1− km)H(n−2)(s).
(37)

Thus,

w′(s) =
(

a1/α(s)H(n−1)(s)
)′

πn−2(s)− a1/α(s)H(n−1)(s)πn−3(s) + H′(s).
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From (S4,2) at i = n− 3, we obtain

w′(s) ≤
(

a1/α(s)H(n−1)(s)
)′

πn−2(s)

=
1
α

(
a(s)

(
H(n−1)(s)

)α)′(
a1/α(s)H(n−1)(s)

)1−α
πn−2(s).

Using (S5,2) and (S4,2) at i = n− 2, we have

w′(s) ≤ −1
α

q(s)φα
2 (σ(s); κ)Hα(σ(s))

(
a1/α(s)H(n−1)(s)

)1−α
πn−2(s)

≤ −1
α

q(s)φα
2 (σ(s); κ)Hα(σ(s))

(
−km

H(s)
πn−2(s)

)1−α

πn−2(s)

=
−k1−α

m
α

q(s)φα
2 (σ(s); κ)Hα(σ(s))

(
H(s)

πn−2(s)

)1−α

πn−2(s).

Using (S4,1) in Lemma 9, we note that H(s)/πn−2(s) is increasing; then,

H(σ(s))
πn−2(σ(s))

≤ H(s)
πn−2(s)

,

and (
H(σ(s))

πn−2(σ(s))

)1−α

≤
(

H(s)
πn−2(s)

)1−α

.

Therefore,

w′(s) ≤ −k1−α
m
α

q(s)φα
2 (σ(s); κ)Hα(σ(s))

(
H(σ(s))

πn−2(σ(s))

)1−α

πn−2(s)

=
−k1−α

m
α

πα−1
n−2(σ(s))πn−2(s)q(s)φα

2 (σ(s); κ)H(σ(s)),

which, from (37), gives

w′(s) +
1
α

k1−α
m

1− km
πα−1

n−2(σ(s))πn−2(s)q(s)φα
2 (σ(s); κ)w(σ(s)) ≤ 0. (38)

Therefore, w(s) satisfies the differential inequality (38) and is positive. However,
according to Theorem 2.1.1 in [5], condition (36) ensures that (38) is oscillatory. Thus, this
contradiction concludes the proof of the theorem.

Theorem 4. Suppose that (25) and (26) hold. If there is a positive integer m such that

lim inf
s→∞

∫ s

σ(s)
πn−2(υ)π

α−1
n−2(σ(υ))q(υ)φ̂

α
2 (σ(υ); κ)dυ >

αkα−1
m (1− km)

e
, (39)

then Ω3 = ∅, where α ≤ 1 and km is defined as in Lemma 12.

Proof. Apply the relation
h(s) > φ̂2(s; κ)H(s),

to (1) and utilize the same proof technique employed in the preceding theorem.
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3.3. Category Ω1

Lemma 14. If

lim inf
s→∞

∫ s

σ(s)
q(υ)(1− φ(σ(υ)))α

(
σn−1(υ)

)α

a(σ(υ))
dυ >

((n− 1)!)α

e
, (40)

then Ω1 = ∅.

Proof. Assume the contrary: that h ∈ Ω1. Then, it is clear from (N1) that

lim
s→∞

H(s) 6= 0.

Thus, it follows from Lemma 3 that, for every ε ∈ (0, 1),

H(σ(s)) ≥ ε

(n− 1)!
σn−1(s)
a(σ(s))

(
a(σ(s))H(n−1)(σ(s))

)
, (41)

eventually. Using (41) in Equation (1), we see that

(
a(s)

(
h(n−1)(s)

)α)′
= −q(s)hα(σ(s))

≤ −q(s)(1− φ(σ(s)))α Hα(σ(s))

≤ −q(s)(1− φ(σ(s)))α
(

ε

(n− 1)!
σn−1(s)
a(σ(s))

)α(
a(σ(s))

(
H(n−1)(σ(s))

)α)
.

Let θ(s) = a(s)
(

H(n−1)(s)
)α

in the last inequality. We see that θ(s) is a positive
solution of the delay differential inequality

θ′(s) +
εα

((n− 1)!)α q(s)(1− φ(σ(s)))α

(
σn−1(s)

)α

a(σ(s))
θ(σ(s)) ≤ 0. (42)

Therefore, w(s) satisfies the differential inequality (42) and is positive. However,
according to Theorem 2.1.1 in [5], condition (40) ensures that (42) is oscillatory. Thus, this
contradiction concludes the proof of the Theorem.

4. Oscillation Criteria

In this section, we use the results of the previous section to obtain new criteria for
checking the oscillation of all solutions of (1).

We now have conditions that exclude positive solutions for all (N1), (N2), and (N3)
cases. By combining these conditions, as outlined in the following theorem, we can derive
criteria for oscillation.

Theorem 5. Assume that (19), (36) and (40) hold. Then, (1) is oscillatory.

Theorem 6. Assume that (20), (36) and (40) hold. Then, (1) is oscillatory.

Theorem 7. Assume that (19), (39) and (40) hold. Then, (1) is oscillatory.

Theorem 8. Assume that (20), (39) and (40) hold. Then, (1) is oscillatory.

Example 1. Consider the NDE(
s4(h(s) + φ0h($0s))′′′

)′
+ q0h(σ0s) = 0, (43)
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where s > 0, φ0 ∈ (0, 1), $0, σ0 ∈ (0, 1), and q0 > 0. By comparing (1) and (43), we can conclude
that n = 4, a(s) = s4, φ(s) = φ0, q(s) = q0, $(s) = $0s, and σ(s) = σ0s. It is easy to verify that

π0(s) =
1

3s3 , π1(s) =
1

6s2 , π2(s) =
1
6s

,

φ1(s; κ) = [1− φ0]
κ

∑
r=0

φ2r
0 $4r/ε, φ2(s; κ) =

[
1
φ0
− 1

$0

] κ

∑
r=0

φ2r+1
0 ,

φ̂2(s; κ) =

[
1
φ0
− 1

$0

] κ

∑
r=0

φ2r+1
0

1

$2rkm
0

,

δ =
1

18
σ2

0 q0(1− φ0)
κ

∑
r=0

φ2r
0 $4r/ε, β0 =

ε

18
σ2

0 q0(1− φ0)
κ

∑
r=0

φ2r
0 $4r/ε,

k0 =
1
6

q0

[
1
φ0
− 1

$0

] κ

∑
r=0

φ2r+1.

Condition (19) results in

q0 >
9

εσ2
0 (1− φ0)∑κ

r=0 φ2r
0 $4r/ε

, (44)

condition (20) yields

q0 >
18(1− βm)

σ2
0 (1− φ0)∑κ

r=0 φ2r
0 $4r/εln 1

σ0

1
e

, (45)

condition (36) leads to

q0 >
6(1− km)[

1
φ0
− 1

$0

]
∑κ

r=0 φ2r+1 ln 1
σ0

1
e

, (46)

condition (39) produces

q0 >
6(1− km)[

1
φ0
− 1

$0

]
∑κ

r=0 φ2r+1
0

1
$2rkm

0
ln 1

σ0

1
e

, (47)

and condition (40) leads to

q0 >
σ0

(1− φ0) ln 1
σ0

(n− 1)!
e

. (48)

The oscillatory of Equation (43) can be determined by applying different theorems. Theorem 5
indicates that if (44), (46) and (48) are satisfied, then Equation (43) is oscillatory. Similarly,
Theorem 6 shows that if (45), (46) and (48) are satisfied, then Equation (43) is oscillatory. Theorem 7
establishes that when (44), (47) and (48) are satisfied, Equation (43) is oscillatory. Finally, Theorem 8
states that if (45), (47) and (48) are satisfied, then Equation (43) is oscillatory.

Example 2. Consider the NDE (43), where φ0 = 1/2, $0 = 0.9 and ρ0 = 1/3; then, (43) becomes(
s4
(

h(s) +
1
2

h(0.9s)
)′′′)′

+ q0h
(

1
3

s
)
= 0, s ≥ 1. (49)

Clearly,

λ =
π0(σ(s))

π0(s)
= 27, λ1 =

π2(σ(s))
π2(s)

= 3,

φ1(s; 10) =
10

∑
r=0

(
1
2

)2r+1

(0.9)4r/ε ∼= 0.579, where ε = 0.7,
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φ2(s; 10) =
[

2− 1
0.9

] 10

∑
r=0

(
1
2

)2r+1
∼= 0.67,

δ = 0.004q0, β0 = 0.003q0, where ε = 0.7,

β j := 0.003q0
27β j−1

1− β j−1
, j = 1, 2, . . . , m,

k0 = 0.112q0, k j = 0.112q0
3kj−1

1− k j−1
for j = 1, 2, . . . , m.

The conditions (19), (20), (36) and (40) are satisfied when

q0 > 166.667,

q0 > 93.573(1− βm),

q0 > 2.995(1− km),

q0 > 1.34,

respectively. Thus, from Theoerms 5 and 6, we conclude that (49) is oscillatory.

5. Conclusions

This research investigated the oscillatory behavior and monotonic properties of a
class of even-order quasi-linear neutral differential equations. We introduced several
enhanced relationships connecting the solution and its corresponding function in two
out of the three cases of positive solutions for the examined equation. Utilizing these
relationships, we established criteria verifying that categories Ω2 and Ω3 have no positive
solutions. Furthermore, we demonstrated through comparisons and examples that the new
relationships improved the criteria, ensuring that Ω2 and Ω3 were empty sets. Finally, we
developed a new criterion to check the oscillation of Equation (1).

The theorems that we obtained not only extend current findings in the literature but
also provide a basis for future research in different directions. For example, it would be
of interest to extend the results of this paper to higher-order equations of type (1), where
n ≥ 3 is an odd natural number.
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