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Abstract: Tetrahedrane-derived compounds consist of n crossed quadrilaterals and possess complex
three-dimensional structures with high symmetry and dense spatial arrangements. As a result, these
compounds hold great potential for applications in materials science, catalytic chemistry, and other
related fields. The Kirchhoff index of a graph G is defined as the sum of resistive distances between
any two vertices in G. This article focuses on studying a type of tetrafunctional compound with a
linear crossed square chain shape. The Kirchhoff index and degree Kirchhoff index of this compound
are calculated, and a detailed analysis and discussion is conducted. The calculation formula for
the Kirchhoff index is obtained based on the relationship between the Kirchhoff index and Laplace
eigenvalue, and the number of spanning trees is derived for linear crossed quadrangular chains. The
obtained formula is validated using Ohm’s law and Cayley’s theorem. Asymptotically, the ratio of
Kirchhoff index to Wiener index approaches one-fourth. Additionally, the expression for the degree
Kirchhoff index of the linear crossed quadrangular chain is obtained through the relationship between
the degree Kirchhoff index and the regular Laplace eigenvalue and matrix decomposition theorem.

Keywords: resistive distance; normal Laplace matrix; Kirchhoff index; degree Kirchhoff index; matrix
decomposition theorem; Wiener index

1. Introduction

The Kirchhoff index and the degree Kirchhoff index are important graph invariants
that have been studied extensively in the field of graph theory. They have applications in
various fields, including chemistry, physics, and computer science.

In 1993, Klein and Randi put forward the concept of resistive distance on graphs [1].
Various resistance distance calculation formulas such as classical algebraic formulas, prob-
ability formulas, combinatorial formulas and functional formulas are deduced one after
another. The Kirchhoff index and degree Kirchhoff index discussed in this paper are defined
using the resistance distance [2,3]. The Kirchhoff index refers to the sum of the resistance
distances between all disordered point pairs in the graph, and it is also known as the
total effective resistance [4]. Its research is of great significance in various aspects. For
example, in chemistry, it describes the structural characteristics of molecules. In physics,
it reflects the scale and connectivity of the network. Mathematically, the Kirchhoff index
also occupies an important position. However, direct calculation of the resistance distance
and Kirchhoff index is still very difficult, so it is necessary to obtain the Kirchhoff index
formula. In the last two decades, many researchers have developed closed-form formulas
for Kirchhoff indices for certain types of graphs [5–10]. In their study [5], Li et al. aimed
to determine the normalized Laplacian spectrum of Hn using new methods of decompo-
sition theorem and elementary operations that were not previously stated in the existing
literature. They then derived explicit formulas for both the degree Kirchhoff index and the
number of spanning trees with respect to Hn. These findings can offer valuable insights
into the fundamental properties of a particular system and contribute to the development
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of more advanced materials or applications. Wang et al. investigated the Kirchhoff index of
cyclopolyanenes in the literature [6]. They found that the ratio of the Kirchhoff index to
the winner index of cyclopolyanenes was approximately 1/3. In their study [7], Liu et al.
utilized the recursive method to compute the Kirchhoff index and degree-based Kirchhoff
index of random cyclooctane chains. In their study [8], the authors utilized spectral graph
theory to derive an exact formula for the Kirchhoff index of hypercube networks. Yang et al.
studied the Nordhaus–Gaddum-type Kirchhoff index [9]. In another study [10], the authors
proposed exact formulas for calculating the expected values of a random polyomino chain
to construct the multiplicative and additive degree Kirchhoff indices. Additionally, they
thoroughly examined the highest degree of the expected values through these indices.
These formulas can potentially have applications in materials science and other related
fields, providing insights into the fundamental properties of electric and heat conductiv-
ity in such systems. There is an inseparable relationship between the Kirchhoff index of
the graph and the Laplace eigenvalue of the graph, and its value can be obtained by the
Laplacian eigenvalue of the graph. In reference [11], Liu et al. used Laplace’s characteris-
tic polynomial decomposition theorem to deduce the Kirchhoff index of a linear crossed
quadrangular chain. Chen Haiyan and Zhang Fuji gave a new graph parameter based on
resistance distance in 2007: degree Kirchhoff index [12]. It is closely related to the regular
Laplacian spectrum, which can not only handle the spectral problem of the irregular graph
very well, but also has a very close relationship with the random walk on the graph.

Studies on these indices have greatly extended their applications in different fields
such as drug design, materials science, and network analysis. In their study [13], Liu et
al. began by determining the normalized Laplacian spectra of Ln. They then obtained
the multiplicative degree Kirchhoff index and complexity corresponding to Ln. Finally,
by comparing these indices with the Wiener index and Gutman index, the researchers
observed that the multiplicative degree Kirchhoff index of Ln is nearly one-quarter of its
Gutman Wiener index. In their work [14], Feng et al. investigated the Kirchhoff index
of phenylenes. In another work [15], they studied the Kirchhoff index and the number
of spanning trees of linear pentagonal derivation chains. Meanwhile the authors of [16]
compared the winner index and Kirchhoff index of random pentane chains and obtained
some conclusions. Yang studied the upper and lower bounds of the Kirchhoff index of
planar graphs and fullerene graphs in the literature [17]. In another study [18], the authors
derived closed-form formulas for the degree Kirchhoff index of pentagonal cylinders and
Möbius chains. Additionally, they investigated the Gutman index and Schultz index of
these graphs. These findings shed light on the fundamental properties of these structures,
potentially contributing to the development of more advanced materials or applications.
Despite their significance, there has been a limited understanding of the Kirchhoff index
and the degree Kirchhoff index for complex molecular systems, especially for linear crossed
quadrilateral chains. To address this knowledge gap, we aim to investigate the Kirchhoff
index and the degree Kirchhoff index of linear crossed quadrilateral chains, which can
provide insights into the structural and chemical properties of these systems. Our work
builds on previous studies on the Kirchhoff index and the degree Kirchhoff index of other
types of molecular systems. This paper deduced the Kirchhoff index of a linear crossed
quadrangular chain, counted the formula of spanning tree, obtained its Wiener index, and
pointed out that the limit of the ratio of its Kirchhoff index to its Wiener index is one-fourth.

The rest of this paper is organized as follows. Section 2 provides a brief overview
of the methods used to calculate the Kirchhoff index and the degree Kirchhoff index. In
Sections 3 and 4, we present our results on the Kirchhoff index and the degree Kirchhoff
index of linear crossed quadrilateral chains. Finally, we summarize our findings and discuss
their implications in Section 5.

2. Preparations

The linear crossed quadrangular chains studied in this paper are all related to an undi-
rected graph. The vertex set and edge set of graph G are expressed by V and E. A binary set
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consisting of a point set and an edge set is called graph G, namely G = (V(G), E(G)) [8].
The difference between the degree diagonal matrix D and the adjacency matrix A of a graph
G is called the Laplacian matrix L of the graph, namely L = D− A. The degree diagonal
matrix D is a diagonal matrix that represents the degrees of each vertex in the graph G.
Specifically, the diagonal elements of D are equal to the degree of each vertex, where the
degree of a vertex is defined as the number of edges that are incident to the vertex. On the
other hand, the adjacency matrix A is a matrix that represents the connections between
vertices in the graph. The element Ai,j of A is equal to 1 if there exists an edge between
vertices i and j in the graph G, and 0 otherwise.

Definition 1 ([19]). The normal Laplace matrix is defined as follows:

NL(G) =


1, u = v, du(G) 6= 0

−1√
du(G)dv(G)

, u is adjacent to v

0, otherwise
, (1)

where du(G)(dv(G)) denotes the degree of vertex u(v) and NL(G) represents the normal Laplacian
matrix of graph G.

Definition 2 ([19]). Let the unit resistance be each edge of graph G, then the sum of the resistance
distances of all pairs of vertices is called the Kirchhoff index of the graph G.

K f (G) = ∑
i<j

rij, (2)

where rij represents the resistance distance between vertices i and j.

Definition 3 ([20]). The sum of the distances between all point pairs is defined as the Wiener
index, namely

W(G) = ∑
i<j

dij, (3)

where dij = dG(vi, vj) represents the shortest past between vertex vi and vj in graph G.

Lemma 1 ([21]). Let LA, LS, NLA, NLS be the corresponding Laplace and normal Laplace matrix,
then the Laplace and normal Laplace decomposition theorem is

PL(G)
= PLA(λ) + PLS(λ), NPL(G)

= NPLA(λ) + NPLS(λ). (4)

Lemma 2 ([22]). Suppose a graph G is a simple graph, which has m edges and n vertices, then the
intrinsic relationship between the number of spanning trees and the normal Laplace eigenvalues of
graph G is

n

∏
i=1

dG(vi)
n

∏
i=2

λi = 2mτ(G), (5)

where τ(G) denotes a spanning tree of graph G.

Lemma 3 ([22]). Let G be a simple connected graph with m vertices and n edges. The relationship
between the Kirchhoff index of a graph G and its normalized Laplacian eigenvalues is given by:

K f (G) = n
n

∑
i=2

1
µi

,

where 0 = µ1 ≤ µ2 · · · ≤ µm is the eigenvalue of matrix LA .
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Lemma 4 ([5]). Let G be a simple connected graph with m vertices and n edges. The relationship
between the degree Kirchhoff index of a graph G and its normalized Laplacian eigenvalues is given by:

K f ∗(G) = 2m
n

∑
i=2

1
λi

,

where 0 = λ1 ≤ λ2 · · · ≤ λm is the eigenvalue of matrix LA .

For symbols, definitions and lemmas that are not explained in the text, please refer to [20].
Let PM(λ) = det(λI −M) denote the characteristic polynomial of a matrix M of order n.
Linear crossed quadrilateral chains can be obtained by adding edges to linear quadrilateral
chains; that is, adding two pairs of sides to each quadrilateral, as shown in Figure 1.

1

1
′

2

2
′

3

3
′

4

4
′

n − 1

(n − 1)
′

n

n
′

n + 1

(n + 1)
′

Figure 1. Linear crossed quadrilateral chain.

It could be obtained from the graph that π = (1, 1′), (2, 2′) · · · (n + 1, (n + 1)′) is an au-
tomorphic [23], and |V(G)| = 2n + 2, |E(G)| = 5n + 1. So Laplacian and normal Laplacian
matrices could be represented by the following block matrices:

L(On) =

(
Lv1v1 Lv1v2

Lv2v1 Lv2v2

)
, NL(On) =

(
NLv1v1 NLv1v2

NLv2v1 NLv2v2

)
, and we have

Lv1v1 = Lv2v2 , Lv1v2 = Lv2v1 , NLv1v1 = NLv2v2 , NLv1v2 = NLv2v1 , P =

( 1√
2

In
1√
2

In
1√
2

In − 1√
2

In

)
.

From the unitary transformation, we have P[NL(On)]PT =

(
NLA 0

0 NLS

)
,

PL(On)PT =

(
LA 0
0 LS

)
, where PT is the transpose of P.

Thus,
LA = Lv1v1 + Lv1v2 , LS = Lv1v1 − Lv2v2 , (6)

NLA = NLv1v1 + NLv1v2 , NLS = NLv1v1 − NLv2v2 . (7)

3. Kirchhoff Indexes for Linear Crossed Quadrilateral Chains

According to the definition of Laplacian matrix, we could obtain the block matrix Lv1v1

and Lv1v2 as follows.

Lv1v1 =
(
lij
)

n+1 =



3 −1 0 0 · · · 0 0 0 0
−1 5 −1 0 · · · 0 0 0 0
0 −1 5 −1 · · · 0 0 0 0
0 0 −1 5 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 5 −1 0 0
0 0 0 0 · · · −1 5 0 0
0 0 0 0 · · · 0 0 5 −1
0 0 0 0 · · · 0 0 −1 3


n+1

, (8)
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where l1,1 = ln+1,n+1 = 3, li,i = 5, i ∈ {2, 3, . . . , n}. li,i+1 = li+1,i = −1, i ∈ {1, 2, 3, . . . , n}.

Lv1v2 =
(
lij
)

n+1 =



−1 −1 0 0 · · · 0 0 0 0
−1 −1 −1 0 · · · 0 0 0 0
0 −1 −1 −1 · · · 0 0 0 0
0 0 −1 −1 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · −1 −1 0 0
0 0 0 0 · · · −1 −1 −1 0
0 0 0 0 · · · 0 −1 −1 −1
0 0 0 0 · · · 0 0 −1 −1


n+1

, (9)

where li,i = −1, i ∈ {1, 2, 3, . . . , n},li,i+1 = li+1,i = −1, i ∈ {1, 2, 3, . . . , n}. From the formula,
we can obtain

LA =
(
lij
)

n+1 =



2 −2 0 0 · · · 0 0 0 0
−2 4 −2 0 · · · 0 0 0 0
0 −2 4 −2 · · · 0 0 0 0
0 0 −2 4 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 4 −2 0 0
0 0 0 0 · · · −2 4 −2 0
0 0 0 0 · · · 0 −2 4 −2
0 0 0 0 · · · 0 0 −2 2


n+1

, (10)

where l1,1 = ln+1,n+1 = 2, li,i = 4, i ∈ {2, 3, . . . , n}, li,i+1 = li+1,i = −2, i ∈ {1, 2, 3, . . . , n}.
Suppose 0 = α1 ≤ α2 · · · ≤ αn+1 and 0 < β1 ≤ β2 · · · ≤ βn+1 are the roots of PLA(λ) = 0
and PLS(λ) = 0 , respectively. Note that if η = (1, 1, 1, · · · , 1, 1)T , LA · η = 0. In other
words, 0 is the eigenvalue of LA. From Lemma 3, we can obtain the following lemma.

Lemma 5. Assume that Fn is a linear crossed quadrilateral chain, then

K f (Fn) = 2(n + 1)

(
n+1

∑
i=2

1
αi

+
n+1

∑
j=1

1
β j

)
. (11)

According to the matrix LS, it is not difficult to obtain

n+1

∑
j=1

1
β j

=
1
4
× 2 +

1
6
(n− 1) =

2 + n
6

. (12)

Then, according to Lemma 3, we will focus on computing∑n+1
i=2

1
αi

,where 0 = α1 ≤ α2 · · · ≤ αn+1
is the eigenvalue of matrix LA . Then, we obtain

PLA(λ) = det(λI − LA) = λ
(

λn + a1λn−1 + · · ·+ an−1λ + an

)
, an 6= 0. (13)

From the above equation, we can conclude that 1
α2

, 1
α3

, . . . , 1
αn+1

are the roots of the following
equation:

anxn + an−1xn−1 + a1x + 1 = 0. (14)

According to Vieta’s theorem [5], we can get

n+1

∑
i=2

1
αi

=
(−1)n−1an−1

(−1)nan
. (15)
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Two facts are given as follows [24].

Fact 1. (−1)nan = (n + 1) · 2n.

Proof. For the convenience of description, the i-order main sub-matrix of matrix LA is
expressed as Wi. Let wi = det Wi, then w1 = 2, w2 = 4, w3 = 8. To obtain the n-order main
sub-matrix, we eliminate the last row and last column of LA. Afterward, we compute det Wi
and obtain wi = 4wi−1 − 4wi−2 for 3 ≤ i ≤ n. Further calculations reveal that wi = 2i.
Note that (−1)nan is equal to the sum of the determinants of all major submatrices of order
n of matrix LA, namely,

(−1)nan =
n+1

∑
i=1

det LA =
n+1

∑
i=1

det
(

Wi−1 0
0 Un+1−i

)
=

n+1

∑
i=1

det Wi−1 · det Un+1−i, (16)

where

Wi−1 =


l1,1 −2 · · · 0
−2 l2,2 · · · 0

...
...

. . .
...

0 0 · · · li−1,i−1

, Un+1−i =


li+1,i+1 · · · 0 0

...
. . .

...
...

0 · · · ln,n −2
0 · · · −2 ln+1,n+1

. (17)

Let w0 = 1, det U0 = 1. According to the structure of the symmetric matrix LA, we have
det Un+1−i = det Wn+1−i, therefore

(−1)nan =
n+1

∑
i=1

det LA[i] =
n+1

∑
i=1

wi−1wn+1−i =
n

∑
i=2

wi−1wn+1−i + 2wn = (n + 1) · 2n. (18)

Fact 2. (−1)n−1an−1 = 2nn(n+1)(n+2)
12 .

Proof. Note that (−1)n−1an−1 is equal to the sum of the determinants of all major subma-
trices of order n− 1 of matrix LA , namely,

LA[i, j] =

 Wi−1 0 0
0 Xj−1−i 0
0 0 Un+1−j

, 1 ≤ i < j ≤ n + 1, (19)

where Wi−1 =


l1,1 −2 · · · 0
−2 l2,2 · · · 0

...
...

. . .
...

0 0 · · · li−1,i−1

, Xj−1−i =


4 −2 · · · 0
−2 4 · · · 0

...
...

. . .
...

0 0 · · · 4

,

Un+1−j =


lj+1,j+1 · · · 0 0

...
. . .

...
...

0 · · · ln,n −2
0 · · · −2 ln+1,n+1

. If xi = det(Xi), we can get xi = 4xi−1 − 4xi−2,

x1 = 4, x2 = 12, x3 = 32, so, xi = (1 + i)2i. Note that

(−1)n−1an−1 =
n+1

∑
1≤i<j

det LA[i, j] =
n+1

∑
1≤i<j

det Wi−1 det Xj−1−i det Un+1−j

=
n+1

∑
1≤i<j

wi−1wn+1−jxj−1−i =
n

∑
1≤i<j

(j− i) · 2n−1

=
2nn(n + 1)(n + 2)

12
.

(20)
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From Facts 1 and 2, the following equation can be obtained:

n+1

∑
i=2

1
αi

=
(−1)n−1an−1

(−1)nan
=

n(n + 2)
12

. (21)

By substituting Formulas (21) , (12) into (11), we can obtain the following theorem:

Theorem 1. Assuming Fn is a linear crossed quadrilateral chain, its Kirchhoff index is

K f (Fn) =
(n + 1)(n + 2)2

6
. (22)

Through calculation, we can obtain the partial value of the Kirchhoff index of the linear crossed
quadrangular chain, as follows in Table 1.

Table 1. Partial values of Kirchhoff indexes for linear crossed quadrilateral chains.

G K f(G) G K f(G) G K f(G) G K f(G) G K f(G)

F1 3.00 F5 49.00 F9 201.67 F13 525.00 F17 1083.00
F2 8.00 F6 74.64 F10 264.00 F14 640.00 F18 1266.67
F3 16.67 F7 108.00 F11 338.00 F15 770.67 F19 1470.00
F4 30.00 F8 150.00 F12 424.67 F16 918.00 F20 1694.00

In the above table, we list the Kirchhoff indexes of Fn, 1 ≤ n ≤ 20. Next, let us calculate the
number of spanning trees.

Theorem 2. Let Fn be a linear crossed quadrilateral chains of length n. The number of distinct
spanning trees of Fn, denoted by τ(Fn), is given by the formula

τ(Fn) = 22n+2 · 3n−1. (23)

Proof. Based on Lemma 2, we obtain

2n+2

∏
i=1

di

n+1

∏
i=2

αi

n+1

∏
i=2

β j = 2|E(Fn)|τ(Fn). (24)

Then,

2n+2

∏
i=1

di = 34 · 52n−2,
n+1

∏
i=1

αi =
2(5n + 1)

9
·
(

1
10

)n−1
,

n+1

∏
j=1

β j =

(
4
3

)2
·
(

6
5

)n−1
. (25)

Based on the aforementioned analysis, we can obtain the value of τ(Fn) = 22n+2 · 3n−1.

The number of spanning trees is calculated below in Table 2.

Table 2. Partial value of the number of spanning trees for a linearly crossed quadrilateral chain.

G0 τ(G) G τ(G)

F1 16 F5 331,776
F2 192 F6 3,981,312
F3 2304 F7 47,775,744
F4 27,648 F8 573,308,928
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Experimental results have confirmed that when n = 1, the linear crossed quadrilateral chain F1
forms a K4 structure. According to Ohm’s law

r12 = r13 = r14 = r23 = r24 = r34 =
1
2

, (26)

we find the sum of the resistance distances of F1 is 3, which represents the Kirchhoff index. According

to Theorem 1, we can calculate the Kirchhoff index as follows: K f (F1) =
(1+1)(1+2)2

6 = 3. Using
the Cayley formula, we can determine the number of spanning trees for K4: τ(K4) = 44−2 = 16.
By applying Formula (24), the number of spanning trees for K4 can also be derived as follows:
τ(K4) = 2(2+2) · 30 = 16. Next, we can explore the ratio of the Kirchhoff index of Fn to its
Wiener index.

Theorem 3. Assuming Fn is a linear crossed quadrilateral chain, then

lim
n→∞

K f (Fn)

W(Fn)
=

1
4

. (27)

Proof. For distance dij, when we calculate and discuss the Wiener index of Fn, the choice
of point i can be divided into the following two cases:
The first vertex of Fn: g1(n) = 1 + ∑n

k=1 2k = n2 + n + 1.

The s− th vertex of Fn, s = 2, 3, · · · , n. g2(n) = ∑n
s=2

(
1 + ∑n−1

k=1 2k + ∑n−s+1
k=1 2k

)
= 2n3+n−1

3 .
Therefore, we can conclude

W(Fn) =
4g1(n) + 2g2(n)

2
=

2n3 + 6n2 + 7n + 5
3

.

Combining the expressions of W(Fn) and K f (Fn) , we can get

lim
n→∞

K f (Fn)

W(Fn)
=

1
4

.

4. Degree Kirchhoff Index of Linear Crossing Quadrilateral Chains

In this section, we first give the normal Laplace spectrum of Fn and then solve the
degree Kirchhoff index of Fn. According to the definition of the normal Laplace matrix, we
can conclude

NLv1v1 =
(
lij
)

n+1 =



1 − 1√
15

0 0 · · · 0 0 0 0

− 1√
15

1 − 1
5 0 · · · 0 0 0 0

0 − 1
5 1 − 1

5 · · · 0 0 0 0
0 0 − 1

5 1 · · · 0 0 0 0
0 0 0 0 · · · 1 − 1

5 0 0
0 0 0 0 · · · − 1

5 1 − 1
5 0

0 0 0 0 · · · 0 − 1
5 1 − 1√

15
0 0 0 0 · · · 0 0 − 1√

15
1


n+1

,
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NLv1v2 =
(
lij
)

n+1 =



− 1
3 − 1√

15
0 0 · · · 0 0 0 0

− 1√
15

− 1
5 − 1

5 0 · · · 0 0 0 0

0 − 1
5 − 1

5 − 1
5 · · · 0 0 0 0

...
...

...
...

. . .
...

...
...

...
0 0 0 0 · · · − 1

5 − 1
5 0 0

0 0 0 0 · · · − 1
5 − 1

5 − 1
5 0

0 0 0 0 · · · 0 − 1
5 − 1

5 − 1√
15

0 0 0 0 · · · 0 0 − 1√
15

− 1
3


n+1

,

NLA =
(
lij
)

n+1 =



2
3 − 2√

15
0 0 · · · 0 0 0 0

− 2√
15

4
5 − 2

5 0 · · · 0 0 0 0

0 − 2
5

4
5 − 2

5 · · · 0 0 0 0
0 0 − 2

5
4
5 · · · 0 0 0 0

0 0 0 0 · · · 4
5 − 2

5 0 0
0 0 0 0 · · · − 2

5
4
5 − 2

5 0
0 0 0 0 · · · 0 − 2

5
4
5 − 2√

15
0 0 0 0 · · · 0 0 − 2√

15
2
3


n+1

,

NLS = diag( 4
3 , 6

5 , 6
5 , · · · , 6

5 , 4
3 ), a diagonal matrix of order n + 1. Suppose 0 = λ1 ≤ λ2 ≤

· · · λn+1 and 0 < δ1 ≤ δ2 ≤ · · · δn+1 are the roots of PNLA(λ) = 0 and PNLS(λ) = 0,

respectively. Note that if η(
√

15
5 , 1, 1, · · · ,

√
15
5 )T ,NLA · η = 0. In other words, 0 is an

eigenvalue of NLA. From Lemma 4, we can obtain the following lemma.

Lemma 6. Suppose Fn is a linear crossed quadrilateral chain, then

K f ∗(Fn) = 2(5n + 1)

(
n+1

∑
i=2

1
λi

+
n+1

∑
j=1

1
δj

)
. (28)

According to the matrix NLS, it is not difficult to obtain

n+1

∑
j=1

1
δj

=
3
4
× 2 +

5
6
(n− 1) =

2
3
+

5n
6

=
4 + 5n

6
. (29)

Next, we will concentrate on computing ∑n+1
i=2

1
λi

. 0 = λ1 ≤ λ2 · · · ≤ λn+1 are the eigenvalues of
matrix NLS. In that case, we can conclude

PNLA(λ) = det(λI − NLA) = λ
(

λn + b1λn−1 + · · ·+ bn−1λ + bn

)
, bn 6= 0.

From the above equation, we can conclude that 1
λ2

, 1
λ3

, · · · , 1
λn+1

is the root of the following equation

bnxn + bn−1xn−1 + · · ·+ b1x + 1 = 0. (30)

Based on Vieta’s theorem, we can obtain

n+1

∑
i=2

1
λi

=
(−1)n−1bn−1

(−1)nbn
. (31)

Two facts are given as follows.

Fact 3. (−1)nbn = ( 2
5 )

n−2[ 8
15 + 4

9 (n− 1)].

Proof. The i-order principal submatrix of NLA matrix is denoted as Mi. Let mi = det(Mi),
then m1 = 2

3 , m2 = 2
3 × ( 2

5 )
2, m3 = 2

3 × ( 2
5 )

3, m3 = 2
3 × ( 2

5 )
3 and we can obtain
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mk =
2
3 × ( 2

5 )
(k− 1), 1 ≤ k ≤ n.

Note that (−1)nbn is equal to the sum of the determinants of all major submatrices of order
n of matrix LA, namely,

(−1)nbn =
n+1

∑
i=1

det NLA =
n+1

∑
i=1

det
(

Mi−1 0
0 Rn+1−i

)
=

n+1

∑
i=1

det Mi−1 · det Rn+1−i, (32)

where,

Mi−1 =


l1,1 − 2√

15
· · · 0

− 2√
15

l2,2 · · · 0
...

...
. . .

...
0 0 · · · li−1,i−1

, Rn+1−i =


li+1,i+1 · · · 0 0

...
. . .

...
...

0 · · · ln,n − 2√
15

0 · · · − 2√
15

ln+1,n+1

.

Let m0 = 1, det R0 = 1. Since the similarity transformation does not change the determinant
of the square matrix, we can conclude det R + n + 1− i = det Mn+1−i, then

(−1)nbn =
n+1

∑
i=1

det NLA[i] =
n+1

∑
i=1

mi−1mn+1−i =
n

∑
i=2

mi−1mn+1−i + 2mn

=

(
2
5

)n−2
·
[

8
15

+
4
9
(n− 1)

]
.

(33)

Fact 4. (−1)(n−1)bn−1 = ( 2
5 )

(n−2) n2−3n+2
3 .

Proof. Note that (−1)(n−1)bn−1 is equal to the sum of the determinants of all major subma-
trices of order (n− 1) of matrix NLA, namely,

LA[i, j] =

 Mi−1 0 0
0 Yj−1−i 0
0 0 Rn+1−j

, 1 ≤ i < j ≤ n + 1, (34)

where

Mi−1 =


c1,1 − 2√

15
· · · 0

− 2√
15

c2,2 · · · 0
...

...
. . .

...
0 0 · · · ci−1,i−1

, Yj−1−i =


ci+1,i+1 ci+1,i+2 · · · 0
ci+2,i+1 ci+2,i+2 · · · 0

...
...

. . .
...

0 0 · · · cj−1,j−1

,

Rn+1−j =


cj+1,j+1 · · · 0 0

...
. . .

...
...

0 · · · cn,n − 2√
15

0 · · · − 2√
15

cn+1,n+1

.

In summary, we can obtain

(−1)n−1bn−1 =
n+1

∑
1≤i<j

det NLA[i, j] =
n+1

∑
1≤i<j

Mi−1Yj−1−iRn+1−j. (35)

Based on Formula (29), all possible values of i and j are as follows.
By derivation, it is not difficult to obtain the following:

det Ri−1 =
3
5

(
2
5

)i−2
, det Yj−1−i = (j− i)

(
2
5

)j−i−1
, det Mn+1−j =

2
3

(
2
5

)n−j
. (36)
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Case 1: i = 1, j = n + 1,

det NLA = det Yn−1 = n(
2
5
)(n− 1). (37)

Case 2: i = 1, i < j < n + 1,

det NLA = det(Yj−2Mn+1−j) =
2
3
(j− 1)(

2
5
)(n−2), j = 2, 3, · · · , n. (38)

Case 3: 1 < i < j = n + 1,

det NLA = (det Ri−1Yj−1−i) =
2
3
(n + 1− i)(

2
5
)(n−2). (39)

Case 4: 1 < i < j < n + 1,

det NLA = det(Ri−1Yj−1−i Mn+1−j) =
4
9
(j− i)(

2
5
)(n−3). (40)

It is observed that Cases 3 and 4 are equal.
To sum up, the sum of the determinants of all primary and submatrices of order n− 1 is

n−1

∑
i=2

n

∑
j=i+1

4
9
(j− i) ·

(
2
5

)n−3
+ 2

n

∑
j=2

(j− 1)
(

2
5

)n−2
+ n

(
2
5

)n−1

=
2
3

(
2
5

)n−2 n

∑
j=2

(j− 1)

=
n2 − 3n + 2

3

(
2
5

)n−2
.

(41)

From Facts 3 and 4, the following equation can be obtained:

n+1

∑
i=2

1
λi

=
(−1)n−1bn−1

(−1)nbn
=

15
4
· n2 − 3n + 2

5n + 1
. (42)

Substituting Formulas (30) and (43) into Formula (29), the following theorem can
be obtained.

Theorem 4. Assuming Fn is a linear crossed quadrilateral chain. Its degree Kirchhoff index is

K f ∗(Fn) =
95n2 − 85n + 98

6
. (43)

In Table 3 below, we list the degree Kirchhoff index of Fn , 1 ≤ n ≤ 20 .

Table 3. Partial values of Kirchhoff indexes for linear crossed quadrilateral chain degrees.

G K f∗(G) G K f∗(G) G K f∗(G)

F1 18 F5 341.3 F9 1171.3
F2 51.3 F6 501.3 F10 1458
F3 116.3 F7 693 F11 1776.3
F4 213 F8 916.3 F12 2126.3

5. Discussion

This article focuses on studying a type of tetrafunctional compound with a linear
crossed square chain shape and its Kirchhoff index. The Kirchhoff index is an essential
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parameter for measuring electric and heat conductivity in materials science. The newly
derived formula provides a more efficient way to calculate the Kirchhoff index of crossed
quadrangular chains than previous methods. The proposed approach could potentially be
extended to other graph structures, lending it great practical significance.

One limitation of this study is that it only applies to linear crossed quadrangular
chains. More extensive graphs require further investigation. Another potential direction
is to explore the relationship between the Kirchhoff index and other topological indices
of graphs. Additionally, numerical simulations and experimental verification would help
validate the theoretical results obtained in this study.

There are several potential areas for future work on this topic. Firstly, extending the
proposed method to other complex structures would be a fruitful avenue for research.
Secondly, investigating the interdependence between the Kirchhoff index and other pa-
rameters, such as the degree and diameter of the network, remains a crucial question.
Thirdly, applying the Kirchhoff index to analyze the properties of real-world networks,
such as social, transportation, and biological systems, would have significant implications
in various fields. Finally, numerical simulations and empirical experiments are needed to
confirm the theoretical results. Overall, the current research presents valuable insights into
the fundamental characteristics of electric and heat conductivity in synthetic and natural
systems, which could have broad implications for numerous applications.

6. Conclusions

In this research, we studied the Kirchhoff index in the context of a type of tetrafunc-
tional compound with a linear crossed square chain shape. We utilized matrix theory and
Laplace’s characteristic polynomial decomposition theorem to derive a precise formula for
calculating the Kirchhoff index of a linear crossed quadrangular chain. Through compara-
tive analysis with the Kirchhoff index obtained by applying Ohm’s law and the number of
spanning trees calculated using Cayley’s theorem, we verified the accuracy of our formula.

Our findings reveal that the ratio of Kirchhoff index to Wiener index tends towards
one-fourth in the asymptotic limit. This sheds new light on the relationship between the
Kirchhoff index and other topological indices of graphs, such as the Wiener index. Overall,
this study presents a new formula for calculating the Kirchhoff index of a specific type of
tetrafunctional compound with a linear crossed square chain shape. This formula could
potentially have applications in materials science and related fields, providing insights into
the fundamental characteristics of electric and heat conductivity in such systems.
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