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Abstract: We define a four-dimensional Lie algebra g in this paper and then prove that this Lie
algebra is solvable but not nilpotent. Due to the fact that g is a Lie algebra, Vx,y € g,[x,y] = —[y, x],
that is, the operation [, | has anti symmetry. Symmetry is a very important law, and antisymmetry is
also a very important law. We studied the structure of Poisson algebras on g using the matrix method.
We studied the necessary and sufficient conditions for the automorphism of this class of Lie algebras,
and give the decomposition of its automorphism group by Aut(g) = G3G1GyG3G4GyGgGs, or
Aut(g) = G3G1GpG3G4GyGgGsGg, or Aut(g) = G3G1G2G3G4G7GsGsG3, where G; is a commutative
subgroup of Aut(g). We give some subgroups of g’s automorphism group and systematically studied
the properties of these subgroups.
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1. Introduction

In the past 20 years, Poisson algebra , which has a wide and profound application, has
attracted the interests of many researchers, see [1-6] for details.

In [1-3], the authors studied DG Poisson algebras, Poisson Hopf algebras, Poisson
ore extensions and their universal envelope algebras. Jie Tong and Quanqm ]m studied

non-commutative Poisson algebra structures on the Lie algebra so;, ((CQ) and sl ((CQ) in [4].
Poisson algebra structures on toroidal Lie algebras, Witt algebra, and Virasoro algebra were
studied by researchers in [5,6]. In this paper, we studied the structure of Poisson algebras
over four-dimensional Lie algebra g using the matrix method.

Scholars have obtained many profound results on the automorphism of Lie algebras.
In [7-9], scholars studied the automorphisms of many kinds of Lie algebras, such as the
Bianchi model Lie groups and matrix algebras over communicative rings. Automorphisms
of some matrix algebras were discussed by scholars in [10-12]. Automorphisms of some
triangular matrices over commutative rings were explored by researchers in [13-15]. In [16],
Qiu Yu and Dengyin Wang and Shikun Ou studied the automorphism of standard Borel
subalgebras of CM type Lie algebras over a co ring. In a word, many scholars have studied
the automorphism of Lie algebras [17-21]. Determining the automorphism group Aut(g)
of a Lie algebra g is a basic problem in the study of the structure theory of Lie algebras. The
structure problem of Lie algebras also occupies an irreplaceable position in the study of the
structure theory of Lie algebras. The author of this paper has also studied the structure and
representation of Lie algebras [22-26].

The set of all second-order square matrices on the complex field C is denoted as ¢1(2,C).
The definition of g/(2, C) in the four-dimensional Lie algebra satisfies a very special lie oper-
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ation different from the general one. This operation also satisfies the bilinear, antisymmetric
condition and the square bracket product of Jacobi constant equation as follows:

a1 ap bi1 bio
A= ,B = ,
ar A byy by
0 ay1bip + a12bn — biyap — bipan
[A,B] = :

00

A group of bases of g1(2,C) is e11, €12, €21, €22 and satisfies the following formula:

1 0 01 0 0 0 0
€11 = ;€12 = ;€21 = ;€22 = ’
0 0 0 0 1 0 01

le11,€12) = e12, [e11,e21] =0, [e11,e22] =0,

and

le12,e21] = 0, [e12, €] = e12, [e21,€22] = 0.

For convenience, Lie algebra gI(2,C) is written as Lie algebra g, and represents its
square bracket product [A,B] as function F(A, B).
Let R be an elementary divisor ring or a local ring; [27] determined the automorphisms
of the general Lie operation
[A,B] = AB—BA,

linear Lie algebra sl (2, R)and the general linear Lie algebra ¢I(2, R). However, in this paper,
we discussed the automorphisms of the Lie operation of gI(2,C)as:

an A bi1 b2
A= = ,
ay  am by by
( 0 agbip + apboy — bryay — bipaxn )

F(A,B) = . o

2. Main Results

After calculation, it can be verified that g!) = [g, ¢] is a one-dimensional ideal gen-
erated by e1,. So, g is a four-dimensional solvable Lie algebra. The center Z(g) of g is
a two-dimensional subspace generated by ey1,e11 4 e22. In order to save space, it is no
longer verified.

Theorem 1. g is not a nilpotent Lie algebra.

Proof. According to the operation law between the basis vectors of g, the following formula
can be obtained.

F(e11,e12) = e1n,
F(e11, F(en, e12)) = e,
F(e11, F(en, F(enn, e12))) = enz,
F(enn, - - F(err, F(err, e12))) = ena.
Thus, g is not a nilpotent Lie algebra. [

Poisson algebra is defined below.
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Definition 1. Define the Poisson algebra (g, *,[—, —|) on the base field C, which is a vector space
g on C, and has bilinear product * and Lie algebra structure [—, —|, and the following Leibniz
rule holds:

F(z*x,y) =F(z,y)*xx+zx F(x,y).Vz,x,y € g.

Forany z, x,y in g, * does not necessarily satisfy the associative law and commutative law.

Since * is a bilinear binary operation,
x#* (kiy +koz) = ky(xxy) + ko(x % 2),Vx,y,z € g, Vki, ko € C,

Thus, * induces a left multiply linear transformation L. Since Vx € g, x can be
linearly represented by base e11, €12, €21, €22. We only need to calculate the matrices of the
linear transformation

L€11' L€12' L821' L322

under the basis of
€11, €12, €21, €22.

When studying the Poisson algebra structure of Lie algebra g, we marke e as e, €12
as ey, €1 as e3, and ey as e4. Note that we only simplify the sign in this way when we study
the Poisson algebra structure of the Lie algebra g. When we study the automorphism of the
Lie algebra g, we still use the original sign, because

F(e11,e12) = e1n, F(e11,e21) = 0,F(e11,e2) =0,

F(e1,e21) = 0, F(e12,€20) = e12, F(ea1,€22) = 0.

thus,
F(eq,ep) = ey, F(e1,e3) =0,F(e1,e4) =0,

F(€2,€3) = 0,F(€2,€4) = 62,F(€3,€4) =0.
Theorem 2. (g, *,[—,—]) is a Poisson algebra on (g, [—, —|), then:

Le,(e1,62,€3,64) = (e1 % e1,e1 % ep,e1 % €3,01 % ex) = (e1,€2,€3,64) A,

a1 dp1 431 a4 ain 0 a3 ay
A | M2 a2 a4 ap | _f 0 an 0 0
a13 a3 433 443 a3 0 a3z ag

a14 a4 034 044 ae 0 a3y ag

Le,(e1,e2,e3,e4) = (ep xe1,ep % ep,p ¥ €3,6p % e4) = (e1,€2,€3,€4)B,

by by bz by 0 0 0 ©
p_ | b2 b2 b b | _ | b 0 bn bp
b1z by bz by 0O 0 O 0
big boy bzy by 0 0 0 O
Le, (31162, €3, 64) = (63 * 61,63 % €,€63 *€3,€63 * 64) = (61,62,63,6’4)@
€11 €21 €31 C4 0 0 1 cq
Cl2 (22 €3 Cq2 00 0 O
C p— pr—
€13 €23 €33 (43 0 0 ¢33 ca3
Cla €4 C34 Cay4 0 0 c34 cy

Le,(e1,e0,e3,e4) = (eaxe1,eq e, 04 % e3,04 xe4) = (€1,€2,€3,€4)D,
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din dy d3y dg din 0 d3y dg
D_ | 412 dn dyn dp | _| 0 d» 0 0
diz dyz dyz dg diz 0 dy dg
dig dyy d3g dy dig 0 d3y dy
Proof. Since the Leibniz law is established, there are
F(zxx,y) = F(z,y) *xx+z* F(x,y),Vz,x,y € Q. 1)

Since * and [, | are bilinear operations. If Z, x, y can only select ey, ey, e3, e4, so that there
are (1) cases of 4> = 64, one by one can be verified. When

Z=e,X :elly = eq,

the following equation can be obtained from (1):

F(e1xey,e1) = F(ey,e1) xeq +ey* Fey, e1), (2a)

left side of (2a)
= F(ajre; + appey + ajzes + aygey, 1) = F(apper, e1) = —apper,
right side of (2a)
= F(el,el) *eq +eq* P(el,el) =0,
thus
ajp = 0
Because

F(ey xeq1,e0) = F(ey,e2) xe1 +e1 * F(eq, e2), (2b)

left side of (2b)
= F(ayieq + appex + ai3e3 + ajgeyq, e2) = (a11 — ag)ez,

right side of (2b)

= F(ey,e2) xep + ey x F(ey,e2) = ep x ey + ey x ep = byjeq + bigey + bizes + biaey + azieq + axner + axzes + axsey,

thus
b1 +ax1 = 0,b13 + a3 = 0,b14 + ax = 0,b1p +ax = (a1 — aa).
Because
F(ey xeq1,e3) = F(ey,e3) xe1 +e1 * F(eq, e3), (20)
left side of (2c) = right side of (2c), so Equation (2c) holds.
Because
F(ey xe1,e4) = F(ey,eq) xe1 +e1 % F(eq,e4), (2d)
left side of (2d)
= F(ayieq + aiper + aize3 + aiges, e4) = apzer,
right side of (2d)
= F(ey,eq) ey +e1 % F(eg,eq4) =0%ey +e1x0=0,
thus,

a1p = 0.
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Because
F(ey xep,e1) = F(ey,e1) xep +e1 % F(ep, e1), (2e)
left side of (2¢)
= F(apie + axey + axes + axsey, e1) = F(aner, e1) = —axes,
right side of (2e)
= F(ey,e1] xex +ep xFep,e1) =0 —eg xex = —(ag1eq + axner + axes + axey),
thus,
a1 = 0,423 = 0,424 = 0.
Because
F(ey xep,ep) = F(ey, ) xep + e1 % Fep, e2), (2f)
left side of (2f)
= F(apie1 + axey + axzes + axgey, e2) = axiep — axger,
right side of (2f)
= ey x ep = bp1e1 + bagey + bpzes + bogey,
thus,
byr = 0,bp3 = 0,bp4 =0, (a2 — az4) = bno.
Because

F(ey xep,e3) = F(ey, ) xe3 + e1 * F(ep, e3), (2g)

left side of (2g) = right side of (2g) so Equation (2g) holds.
Because

F(ey xep,eq4) = F(ey,eq) xep + €1 % Fep, e4), (2h)

and it can be known from (2e):

a1 = 0,a23 = 0,404 = 0.

left side of (2h)
F(axney, e4) = axney,
right side of (2h)
F(e1,eq) *ex +e1 % F(ez,e4) = 0+ e1 xe2 = aney,
So the equation holds.

By analogy from the remaining 56 cases:
a3 = 0,b31 = 0,b33 = 0,b34 =0, (a31 — a34) = b3y, a40 =0,
byt = bz = byp = bpg = 0,bs1 = ap1,bap — a2y = a41 — a4, bsz = a3, bay = ao4.
bi1 = b1z = b1y = 0,b31 = b3z = b3y =0, = b1; — by, by = 0,by3 = 0,byy =0,
c12=0,c01 =c3 =04 =0,c0 =c11 — 14 = 0,00 =0,¢91 = 0,13 =0,c14 = 0,c4 = 0.
32 = 0,031 = 34,040 = 0,041 — 44 =0,
dip =0,d3p = 0,dy = dpz = dpy = 0,d31 —dzg = —bzp,dyp = 0,dy1 —dgy = —byp —dn.

Since * is a bilinear binary operation,

(k1y +koz) * x = k1 (y * x) + ka(z * x),Vx,y,z € g, Vky,ky € C.
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Thus, * induces a right multiply linear transformation Ry. Since any x in g can be
linearly represented by base e11, €12, €21, €22, we only need to calculate the matrices of linear

transformation
Rell’ REIZ’ REZl’ REZZ

under base
€11, €12, €21, €22.

O

Since it is similar to Theorem 2, in order to save space, it will not be described again.

In addition, if any z, x,y in g, * satisfies the associative law or the commutative law,
there will be more strict requirements for the matrix A, B, C, D. In order to save space, we
will not repeat it.

Definition 2. Let g1, 2 be a Lie algebra over field F. If the linear mapping ¢ of g1 to g» satisfies

F(o(x), 9(y)) = ¢(F(x,y)),Vx,yeg1,

then 6¢ is said to be a homomorphic mapping or homomorphism of g1 to 2.

Definition 3. The homomorphism of a Lie algebra g to itself is called the endomorphism of g,
and all endomorphisms of g are denoted as End(g). The isomorphism from g to itself is called
automorphism and all automorphisms of g form a group, which is called the automorphism group of
g and is called Aut(g).

Theorem 3. The linear mapping in the four-dimensional Lie algebra g is established as follows:

a1 di2 413 414
az1 dxp Aaz3 a4
as1 dz2 as3  asz4
aq1 d42  A43 O44.

§9(€11,€12,€21,€22) = (611/612, 621,622)

If ¢ is an automorphism of Lie algebra g, then there must be
a1p =az =agp =0,
a3 =0,
Ay — a4 =1,
a1 —ag =1,
ay3 — a3 =0,
oy +ap; = 0.
Proof. Let
a1 412 413 414
— a a a a
1 — 21 A2 a3 A4

a31 A4z a3z d34
A41 A4 (43 044
Let ¢ be an automorphism on g, then ¢ must be a linear transformation on g.

a1 d12 413 414

ap1 dpp A3 dp4 *
= (eq1,€e12,€21,€20) A
A3 a3y A3 A3 (e11,€12,€01,€22) A,

ag1 d4p 443 44

q)(ell/ €12, €21, 622) = (311/ €12, €21, 322)

thus,
¢(e11) = anenn + axiein + aziex + agienn,
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¢(e12) = apenn + axpein + azey + aspen,
¢(e21) = aize1 + axzern + aszenr + agzenr,
¢(ex) = araer1 + axerr + azsex + agsem.

According to the definition of isomorphism, F(¢(e;;), ¢(emn)) = @(F(eij emn)),
(i,j,mn=1,2),
(1) Because
F(e11, e12) = en2,

SO

F(g(e11), ¢(e12)) = @(F(err,e12)) = @(e12),
F(ajqe11 + aziern + aziep + agiexn, anner1 + axein + aznen + aspexn) = ajpern + axnern + azpern + agpen,
(a11a20 — a12a21 + ap1a40 — A4102)e12 = A1pe11 + A2e17 + 32821 + A42€2);
thus,
a1y = azy = agy = 0,a11a2 — a12ay1 + a21a4p — A41a22 = 2.
Therefore, there are
1142 — 41422 = a2.

(2) Because
F(ey1,e21) =0,

SO
F(p(en), plea1)) = (F(err,ea)) =0,
F(ajre11 + axie1 + asiexn + agiexn, ayzern + axein + azzen) + agzexn) =0,
(ﬂnﬂzs — a21413 + a21443 — ﬂ416123)€12 =0,
thus
411823 — A21013 + A21443 — A41423 = 0.
(3) Because
F(eq1,e2) =0,
SO
F(p(en), plen)) = ¢(F(e11,e2)) =0,
F(arie11 + aziern + azienr + agiexn, ajgern + axgern + azaen; + agen) =0,
(ﬂ11ﬂ24 — a21414 + a21044 — ﬂ410124)€12 =0,
thus
a1184 — A21014 + A21d44 — A41024 = 0.
(4) Because
F(eip,e21) =0,
SO
F(p(e12), ¢lea1)) = @(F(erz, e21)) =0,
F(aiper1 + anein + azenr + agpen, a13e1n + axeqn + azzexy + agexn) = 0,
(0112@3 — a2a13 + 22043 — ﬂ42423)€12 =0,
thus

12073 — A22013 + Axa43 — A4par3 = 0.

(5) Because
F(e1n,e2) = e,
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SO

F(p(e12), p(exn))] = @(F(e12,e2)) = ¢(e12),
F(aipe11 + axern + axnenr + agexn, ajgein + axein + azaen) + agen) = aperr + anern + axnenr + agpen,
(@12a04 — A2014 + A20044 — 40094 )€12 = A12€11 + A20€12 + A32€21 + A42€0);
thus,
a1p = azp = agy = 0,a12004 — A2014 + A22044 — Ag0d04 = 42).
Therefore, there are
—a20014 + 22044 = 022.

(6) Because
F(e1,e22) =0,

SO
F(g(exn), p(e2)) = ¢([ea1,22)) =0,
F(aizer + azsers + assenr + agzen, a4e11 + axein + azqen1 + agexn) =0,
(a1324 — A23814 + A23044 — A43a24)€12 = 0;
thus,

a13024 — A23014 + 23044 — A43a24 = 0.
Based on the above six cases, the following equation holds:
a1p = az =agp =0,
(a43 — a13)az =0,
ap(1+ayy —agy) =0,
ap(1+agy —a1) =0,
(a11 — ag1)ax3 + (ag3 — a3)ay =0,
(a11 — a41)az4 + (a4 — a14)a21 = 0,
(@13 — a43)az4 + (44 — a14)a23 = 0.

Since ¢ is isomorphic, a1, = a3 = a4p = 0 is known from the previous reasoning, so
there must be ay; # 0, otherwise:

an 0 a3 ap
a1 0 0 —an1 0:
a1 0 azx  ax ’

au—l 0 a3 ﬂ14+1
it is an isomorphic contradiction with ¢. Thus, a2, # 0, and the following equation holds:
a3 =0,

ag —a =1,
ann —ag =1,
a3 — a3 =0,

dy4 +dp1 = 0;



Symmetry 2023, 15, 1115 9 of 19

so:
a11 0 mz ap

q— ap  ap 0 —ay
a31 0 a3 axn

an—1 0 a3 ag+1
|A| = ax(a13(asy +az1) — azs(ayg +a1)) #0. O

Theorem 4. Let

1 0 0 0
_ an 1 0 —an1
G = { 0 0 1 0 |V{121 S C},
0 0 0 1,

then g is a commutative subgroup of Aut(g).

Proof. Obviously, G; C Aut(g) holds. For any 71, v, in Gy, there are

100 0 100 0 1 0 0 0
B m 1 0 —m my 1 0 —mp B m+my 1 0 —(m1+m2)
mre2={ o9 01 o o001 o0 |~ 0 0 1 0 '
0 00 1 0 00 1 0 0 0 1

s0 7172 belongs to Gy, easy-to-know ;177 is equal to y271. Let

1 00 0
. mq 1 0 —nn
0O 0 O 1
1 0 0 O
1 —nn 1 0 mq
m=l o0 01 0 |€O
0 0 0 1
So, Gy is a commutative subgroup of Aut(g). O
Theorem 5. Let
1 00 O
01 0 O
G2 - { 00 1 34 |V{Il34 € C}/
0 0 0 1

then, Gy is a commutative subgroup of Aut(g).

Proof. Obviously, Go C Aut(g) holds. For any 1, 72 in G, there are

100 0 100 0 100 0
o190 o0 o100 | [o10 o .
m2=\ o9 01 m 001 m | |00 1 mam |
000 1 000 1 000 1

50 Y172 belongs to Gy, easy-to-know 177 is equal to y271.

1 0 0 O
010 O

V7 = 00 1 m € Gy, Vmy, €C,
0 00 1
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1 00 O
. 010 0 _
M=l o01 —m |
000 1
so0, Gy is a commutative subgroup of Aut(g). [
Theorem 6. Let
1 0 0 0
0 10 O
G3 = { 4y 0 1 0 |Vﬂ31 S C},
0 0 0 1,

then Gs is a commutative subgroup of Aut(g).

Proof. Obviously, Gz C Aut(g) holds. For any 1, 72 in Gj, there are

1 0 0 O 1 0 0 O 1 0 0O
| o100 0100 0 100 |
M= 00100 my 001 0| | m+m 01 0|
0 0 0 1 0 0 0 1 0 0 01
50, 7172 belongs to G3, easy-to-know 717, is equal to y271.
1 0 0 O
1 00
V’h = my 0 1 0 € G,Vmy € C,
0 0 0 1
1 0 0 0
_ 0 1 0 0
1_ )
ME| Sy 001 0 | €9
0 0 0 1
so, G3 is a commutative subgroup of Aut(g). O
Theorem 7. Let
1 0 a3 0
01 0 O
G4 = { 0 0 1 0 |‘v’a13 S C},
00 ag 1
then Gy is a commutative subgroup of Aut(g).
Proof. Obviously, Gy C Aut(g) holds. For any 71, 72 in Gy, there are
1 0 m O 1 0 m O 1 0 mi + myp 0
|01 0 o0 01 0 0] |01 0 0 |.
mm=19 0 1 0 00 1 0| |00 1 0|’
00 m 1 00 m 1 00 —(m1+I712) 1

50, 7172 belongs to G4, easy-to-know 7172 is equal to y271.

V’)/l = € Gy, Vmy €C,

o O O
o
—_
o
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1 0 —mq 0
2 o1 0o o .
M =|loo 1 o€
0 0 —mq 1

s0, G4 is a commutative subgroup of Aut(g). [

Theorem 8. Let

0 0
Gs = { 2 0 \Vay, #0,a33 # 0 € C},
0 a3
0

0

S O O
-0 O O

then Gs is a commutative subgroup of Aut(g).

Proof. Obviously, G5 C Aut(g) holds. For any 71,7, in Gs, Vap # 0,a33 # 0 € C,
by # 0,b33 # 0 € C, there are

10 0 0 10 0 0 1 0 0 0
o 0 azy 0 0 0 bzz 0 0 . 0 azzbzz 0 0 i
M2=1 0 0 a3 0 0 0 by 0] {0 0 apbym 0
00 0 1 00 0 1 0 0 0 1

50, 7172 belongs to Gs, easy-to-know 717, is equal to y271.

1 0 0 O
o 0 as» 0 0
M= 0 0 as 0 € Gs,Vay # 0,a33 #0,€ C,
0 0 0 1
1 0 0 O
O 0 ay 0 0
"= 1 € Gs;
1 0 0 a3 O
0 0 0 1
so, G5 is a commutative subgroup of Aut(g). O
Theorem 9. Let
0 00 -1 1000
0 1 0 O 0100
= 0 01 0 ||loo1o]|V
-1 00 0 0 0 01
then G is a second order cyclic subgroup of Aut(g).
Proof. Obviously, G¢ C Aut(g) holds.
0 0 0 -1 0 0 0 -1 1 0 00
0 1.0 0 0 1.0 0 10100
0 01 0 0 01 0 1o o010
-1 0 0 O -1 0 0 O 0 0 01
0 0 0 -1
0 1 0 O
-1 0 0 O
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T172 =

S O O

oo = O

0 0 0 -1
. 010 0 .
M=o 01 0 |€0
-1 0 0 O
s0, Gg is a second order cyclic subgroup of Aut(g). [
Theorem 10. Let
al 0 0 0
0 1 00
Gy = { 0 01 0 |V€lll S C},
ai — 1 0 0 1

then Gy is a commutative subgroup of Aut(g).

Proof. Obviously, G; C Aut(g) holds. For any 71,72 in Gy, Va;; # 0,b;1 # 0 € C,
there are

al 0 0 O bll 0 0 O 1111b11 0 0 O
B 0 100 0 100 | _ 0 100 |
n2 = 0 010 0 010" 0 010 |
a11—1 0 0 1 b11—1 0 0 1 {111b11—1 0 0 1

50, Y172 belongs to Gy, easy-to-know 177 is equal to y2y1. Vagp # 0 € C,

a 0 0 O
0 1 00
M=l o0 o010 |9
ay — 1 0 0 1
al'! 000
_ 0 1 00
1 .
mEl 0 010 |9
a'—1 0 0 1
so, Gy is a commutative subgroup of Aut(g). [
Theorem 11. Let
1 00 a4
010 0
Gs = { 00 1 0 |V{114 € C}/
00 0 1+ a4

then Gg is a commutative subgroup of Aut(g).

Proof. Obviously, Gg C Aut(g) holds. For any 71,72 in Gg, Vays # —1,b1a # -1 € C,

0 a14 1 00 b1y 1 0 0 a14b14 + a14 + b1y

0 0 010 0 . 010 0 .
1 0 0 01 0 1 00 1 0 ’
0 14ayy 0 0 0 1+0by4 0 0 0 1+ a14b1g+ais+byy

50, Y172 belongs to Gg, easy-to-know 7177 is equal to yp7y1. Vaja # -1 € C,

1 00 a4

010 0
M={o0o01 o € Gs,

0 0 0 14ayy
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a
1 00 —1+1;14
010
Tl oo0o1 0 € G
a
0 00 1—1+1;14
so, Gg is a commutative subgroup of Aut(g). O
Theorem 12. Gy and G are interchangeable.
1 00 O 1 00 O
. an 1 0 —Aan1 . 01 0 0
Proof. Vy, = 0 0 1 0 €G1, 12 = 00 1 ay €Gy, because
0 00 1 0 00 1
1 00 O 1 00 O 1 00 O
. ar 1 0 —Aan1 01 0 0 . a1 1 0 —an1
mre= o9 01 o 001 ay | | 0 01 ag |
0 00 1 0 00 1 0 00 1
1 00 O 1 00 O 1 00 O
o 010 0 an1 10 —dan o a1 10 —dan]
MN=1 0 0 1 ay 0 01 0 0 0 1 ay
0 00 1 0 00 1 0 00 1
SO,
T1v2 = 7271

Thus, G; and G; are interchangeable.

Definition 4. Given that Gy and G, are two subgroups of Aut(g), let G; o Gy = {xy|Vx €
Gl,Vy S Gz}.

Theorem 13. Gj 0 Gy = {xy|Vx € G1,Vy € Go} is a subgroup of Autg.

Proof. Becausee € Gy ande € Gy, soee =e € Gy 0 Go.
Vx1,x2 € G1;¥1,¥2 € Gy, due to G and G is exchangeable, so

x1y1%2y2 = x1%211Y2 € G1 0 Gy,

and
(1) ' =yl =x7ly € Gro G

O

Theorem 14. G and G are interchangeable.

1 0 0 0 1 0 00
Proof. Vv, = aél (1) (1) _821 €Gy,v3 = agl (1) (1) 8 €G3, because
0 0 0 1 0 0 0 1
1 0 0 0 1 0 00 1 0 0 0
o a1 1 0 —an1 0 1 0 0 o a1 1 0 —an]
nr=1 0 01 o a3 01 0| |ay 01 0 |
0 00 1 0 0 0 1 0 00 1
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1 000 1 00 O 1 00 O
. 0 1 0 0 ar1 1 0 —an1 . a1 1 0 —ajn1
BN=1 6 01 0 001 0 |“fag 01 0o |
0 0 01 0 00 1 0 00 1
o)
Y1v3 = Y371
Thus, G; and Gs3 are interchangeable. [J
Theorem 15. G and G4 are interchangeable.
1 0 0 0 1 0 a3 O
Proof. Vv, = aél (1) (1) _821 €Gy, 74 = 8 (1) (1) 8 €Gy, because
0 0 0 1 0 0 a3 1
1 00 0 1 0 a3 0 1 0 a3 O
. an 1 0 —an 0 1 0 0 _ a1 1 0 —an
=L 0 001 0 oo 1 0] | oo 1 o |
0 0 0 1 0 0 a3 1 0 0 ai3 1
1 0 ai3 0 1 00 0 1 0 a3 0
. 0 1 0 0 an 1 0 —an1 an 1 0 —an1
TN=100 1 0 0 01 0 o0 1 o0 |
0 0 m3 1 0 00 1 0 0 ap 1
S0,
Y174 = Y471
Thus, G; and G4 are interchangeable. [J
Theorem 16. Gy and Gs are not necessarily interchangeable.
1 0 0 0 1 0 0 O
Proof. Vv, = aél (1) (1) _821 €Gy,v5 = 8 uéz aO 8 €Gs, because
33
0 0 0 1 0 O 0 1
1 0 0 0 1 0 0 0 1 0 0 0
_ an 1 0 —Aan1 0 any 0 0 _ ar1 axp 0 —Aan1
ns 0 01 0 0 0 asp 0 0 0 ap 0 |
0 00 1 0 0 0 1 0 0 0 1
1 0 0 0 1 00 O 1 0 0 0
N 0 ap 0 0 apg 1 0 —ay apaxp ax 0 —axnaxp |
>n 0 0 ap O 0 01 0 0 0 oas 0 '
0O 0 0 1 0 00 1 0 0 0 1

S0, Y175 is not necessarily equal to y571.
Thus, G; and Gs are not necessarily interchangeable. [J

Theorem 17. Gy and Gg are interchangeable.
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1 00 0 0 0 0 -1
a 1 0 —a 0 1 0 O
Proof. V’y] = (2)1 0 1 021 €G1,’)/61 = 0 0 1 0 ’
0 00 1 -1 0 0 O
1 0 0O
= 0 100 because
0 0 01
1 0 0 0 0 0 0 -1 0O 0 0 -1
. a1 1 0 —an1 0 1 0 0 . ar 1 0 —an1
nre= 0 01 0 o010 | o o1 o [
0 0 0 1 -1 0 0 O -1 0 0 0
0 0 0 -1 1 0 0 0 0O 0 0 -1
. 0 1 0 0 ar 1 0 —an1 . a1 1 0 —Aan1
YN=1 9 01 0 o 01 o [ o o1 o [
-1 0 0 O 0 00 1 -1 0 0 0
SO,
Y1v61 = Y6171,
obviously,
Y1Y62 = Y6271
Thus, G; and G4 are interchangeable. O
Theorem 18. G; and Gy are interchangeable.
1 00 0 a1 000
Proof. Vv, = aél (1) (1) 7821 €Gy,v7 = 8 (1) (1) 8 €Gy, bcause
0 00 1 6111—1 0 0 1
1 00 0 al 0 0 O an 00 0
o an 1 0 —an1 0 1 00 . an1 1 0 —an1
nr7=1 0 01 o0 o o010~ o 01 o0 |
0 00 1 ap—1 0 0 1 aip—1 0 0 1
a1 0 0O 1 00 0 an 00 0
. 0 1 0 0 an1 1 0 —Aan1 o an1 1 0 —Aan1
7= 0 010 o 01 o |~ o 01 o0 |
an—1 0 0 1 0 00 1 ain—1 0 0 1
so,
Y17 = Y7711~

Thus, G; and Gy are interchangeable.

Theorem 19. Gy and Gg are interchangeable.
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1 0 0 0 1 0 0 a14
Proof. V1 = aél (1) (1) _821 €Gy,v8 = 8 (1) (1) 8 €Gg, because
0 0 0 1 0 0 0 14aq
1 0 O 0 1 0 0 a14 1 0 0 a14
_ a1 1 0 —an1 01 0 0 _ an 1 0 —Aan1
s 0 01 0 001 0 0 01 0 '
0 00 1 0 0 0 14aq4 0 0 0 1+ay
100 ay 1 00 O 1 0 0 ay
o 010 0 a1 1 0 —an] o an 1 0 —dan]
BN=1 901 o0 0 01 0 0 01 0 /
00 0 1+ay 0 00 1 0 0 0 1+au
S0,
Y18 = Y871-

Thus, G; and Gg are interchangeable. [J

Similarly, we can study the commutativity between Gy, G3, G4, Gs, Gg, Gy and Gg. For
example, we can prove that G; and Gs can be exchanged, Gs and Gy can be exchanged,
and Gs and Gg can be exchanged. Studying this commutativity is certainly helpful for the
subsequent study of whether the decomposition of automorphism groups is unique.

Theorem 20. The automorphism group Aut(g) = g of Lie algebra g can be decomposed into the
following form:
(1) When by1 # 0, there are

G = G3G1GrG3G4GyGgGs;
(2) When b1 = 0, b4 # 0, there are
G = G3G162G3G4G7GgGsGg;
(3) When by1 = 0,b14 = 0,b13 # 0, there are
G = G3G1GrG3G4GyGg Gy Gs.
Proof. Take any B in G at Aut(g); let
b1y 0 bz by
B b1 bp 0 —by
b3y 0 b3z ba
b;y—1 0 b1z big+1

Using the undetermined coefficient method, for

1 00 0 1 00 0 100 0
0 1 0 0 a2110—a21 01 0 O
ey 001 0 S 0 001 0 €9 001 ay |E%
0 00 1 0 00 1 000 1
1 000 10 aps 0
0 10 0 01 0 0
o 0010 €00 1 0|E%
0 0 0 1 000131



11414031 + 434 = by = az4 = b3y — by

b1
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a1 0 0O 1 0 0 a14 1 0 0 0
0 1 0 0 010 0 0 ap 0 O
0o 010|001 o €Gsl g 0 10 |5
a1—1 0 0 1 0 0 0 14aq 0O 0 01
it is advisable to set
b1 0 bz by
B— by bp 0 —bxn | _
b3 0 bz by
b;y—1 0 b3 b +1
1 0 0 O 1 0 0 0 1 0 0 O 1 0 0 O 1 0 a3 0
0O 1 0 0 a1 1 0 —ap 01 0 O 0 1 0 O 01 0 O
—a3 0 1 0 0O 01 0 0 0 1 ay az; 0 1 0 00 1 0
0 0 01 0 0 0 1 0 0 0 1 0 0 01 0 0 a3 1
a1 0 0O 1 0 0 a14 1 0 0 0
0 100 010 0 0 ap$ 0 0
0 010 0 0 1 0 0O 0 1 0
a1—1 0 0 1 0 0 0 14ay 0O 0 01
1 0 0 O an 0 ai3 a11a14
0 1 0 0 ar an 0 —an
—azg 0 1 0 a11a31 +a11azs —azg 0 azaz) +ai3a3 +1 411414031 + 011014034 + a34
0 0 01 a1 — 1 0 a3 apae +1
an 0 a13 a11a14
_ az a2 0 —ay
apaz —azs 0 agzaz + 1 apa14a3 + azg
ap; —1 0 a13 aya14 +1
Case 1:
b1y #0,
because
b1y 0 bz by a1 0 a13 a11a14
B— by b 0 by _ az1 ax 0 —anq
b3y 0 b3z Dby apaz —az 0 agzaz + 1 ap1a14a31 + azg
biy—1 0 b1z big+1 a1 —1 0 a3 apap +1
S0
ay1 = by,
a3 = b,
- by
a11a14 = by = a4 = b’
11
ax1 = by,
axy = by,
b33 —1
ayaz +1=bsz = a3 = 32 ,
11
byz —1
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Thus, the original proposition holds.
Case 2:

bi1 =0,b14 #0,
Take

o o O

€ Ge,

S O = O
o= OO

-1

0

0
-1 0
0 0 b3 b1y )

0 0 -1
b1 by O —by 0 1 0
bs1i 0 b3 by 0 0 0
-1 0 bz bia+1 -1 0 0

—bay 0 bz —bs

0
0
1
0
—by 0 bz O
_ b1 b 0 —by
—biy—1 0 b3 1

At this time, because b4 # 0, it is converted to case 1.

Case 3:
bi1 =0,b14 = 0,b13 # 0,
Take
1 0 0 O
0100
1010 |5
0 0 0 1
because
0 0 b3 0 1 000
byy b 0 —by 01 00
byy 0 by by 1010
-1 0 b3 1 0 001

by by 0 by
b3t +bzzs 0 b3z Dby

At this time, when by3 # 0, it is changed to case 1. [

3. Conclusions

This article cleverly utilized the elementary transformation of partitioned matrices to
study the subgroups of a four-dimensional solvable Lie algebra g and obtain the necessary
and sufficient conditions for its automorphism. It also characterized three decomposition
scenarios of the automorphism group of g, presenting the structure of its automorphism
group more clearly. This article added new methods to the study of low-dimensional Lie
algebra automorphism, which can provide assistance for the structure of research of general
Lie algebra automorphism groups.
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