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Abstract: We define a four-dimensional Lie algebra g in this paper and then prove that this Lie
algebra is solvable but not nilpotent. Due to the fact that g is a Lie algebra, ∀x, y ∈ g,[x, y] = −[y, x],
that is, the operation [, ] has anti symmetry. Symmetry is a very important law, and antisymmetry is
also a very important law. We studied the structure of Poisson algebras on g using the matrix method.
We studied the necessary and sufficient conditions for the automorphism of this class of Lie algebras,
and give the decomposition of its automorphism group by Aut(g) = G3G1G2G3G4G7G8G5, or
Aut(g) = G3G1G2G3G4G7G8G5G6, or Aut(g) = G3G1G2G3G4G7G8G5G3, where Gi is a commutative
subgroup of Aut(g). We give some subgroups of g’s automorphism group and systematically studied
the properties of these subgroups.
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1. Introduction

In the past 20 years, Poisson algebra , which has a wide and profound application, has
attracted the interests of many researchers, see [1–6] for details.

In [1–3], the authors studied DG Poisson algebras, Poisson Hopf algebras, Poisson
ore extensions and their universal envelope algebras. Jie Tong and Quanqin Jin studied

non-commutative Poisson algebra structures on the Lie algebra son (̃CQ) and sln (̃CQ) in [4].
Poisson algebra structures on toroidal Lie algebras, Witt algebra, and Virasoro algebra were
studied by researchers in [5,6]. In this paper, we studied the structure of Poisson algebras
over four-dimensional Lie algebra g using the matrix method.

Scholars have obtained many profound results on the automorphism of Lie algebras.
In [7–9], scholars studied the automorphisms of many kinds of Lie algebras, such as the
Bianchi model Lie groups and matrix algebras over communicative rings. Automorphisms
of some matrix algebras were discussed by scholars in [10–12]. Automorphisms of some
triangular matrices over commutative rings were explored by researchers in [13–15]. In [16],
Qiu Yu and Dengyin Wang and Shikun Ou studied the automorphism of standard Borel
subalgebras of CM type Lie algebras over a co ring. In a word, many scholars have studied
the automorphism of Lie algebras [17–21]. Determining the automorphism group Aut(g)
of a Lie algebra g is a basic problem in the study of the structure theory of Lie algebras. The
structure problem of Lie algebras also occupies an irreplaceable position in the study of the
structure theory of Lie algebras. The author of this paper has also studied the structure and
representation of Lie algebras [22–26].

The set of all second-order square matrices on the complex field C is denoted as gl(2, C).
The definition of gl(2, C) in the four-dimensional Lie algebra satisfies a very special lie oper-
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ation different from the general one. This operation also satisfies the bilinear, antisymmetric
condition and the square bracket product of Jacobi constant equation as follows:

A =

(
a11 a12

a21 a22

)
, B =

(
b11 b12

b21 b22

)
,

[A, B] =

(
0 a11b12 + a12b22 − b11a12 − b12a22

0 0

)
.

A group of bases of gl(2, C) is e11, e12, e21, e22 and satisfies the following formula:

e11 =

(
1 0

0 0

)
, e12 =

(
0 1

0 0

)
, e21 =

(
0 0

1 0

)
, e22 =

(
0 0

0 1

)
,

and
[e11, e12] = e12, [e11, e21] = 0, [e11, e22] = 0,

[e12, e21] = 0, [e12, e22] = e12, [e21, e22] = 0.

For convenience, Lie algebra gl(2, C) is written as Lie algebra g, and represents its
square bracket product [A,B] as function F(A, B).

Let R be an elementary divisor ring or a local ring; [27] determined the automorphisms
of the general Lie operation

[A, B] = AB− BA,

linear Lie algebra sl(2, R)and the general linear Lie algebra gl(2, R). However, in this paper,
we discussed the automorphisms of the Lie operation of gl(2, C)as:

A =

(
a11 a12

a21 a22

)
, B =

(
b11 b12

b21 b22

)
,

F(A, B) =

(
0 a11b12 + a12b22 − b11a12 − b12a22

0 0

)
.

2. Main Results

After calculation, it can be verified that g(1) = [g, g] is a one-dimensional ideal gen-
erated by e12. So, g is a four-dimensional solvable Lie algebra. The center Z(g) of g is
a two-dimensional subspace generated by e21, e11 + e22. In order to save space, it is no
longer verified.

Theorem 1. g is not a nilpotent Lie algebra.

Proof. According to the operation law between the basis vectors of g, the following formula
can be obtained.

F(e11, e12) = e12,

F(e11, F(e11, e12)) = e12,

F(e11, F(e11, F(e11, e12))) = e12,

F(e11, · · · F(e11, F(e11, e12))) = e12.

Thus, g is not a nilpotent Lie algebra.

Poisson algebra is defined below.
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Definition 1. Define the Poisson algebra (g, ∗, [−,−]) on the base field C, which is a vector space
g on C, and has bilinear product ∗ and Lie algebra structure [−,−], and the following Leibniz
rule holds:

F(z ∗ x, y) = F(z, y) ∗ x + z ∗ F(x, y).∀z, x, y ∈ g.

For any z, x, y in g, ∗ does not necessarily satisfy the associative law and commutative law.

Since ∗ is a bilinear binary operation,

x ∗ (k1y + k2z) = k1(x ∗ y) + k2(x ∗ z), ∀x, y, z ∈ g, ∀k1, k2 ∈ C,

Thus, ∗ induces a left multiply linear transformation Lx. Since ∀x ∈ g, x can be
linearly represented by base e11, e12, e21, e22. We only need to calculate the matrices of the
linear transformation

Le11 , Le12 , Le21 , Le22

under the basis of
e11, e12, e21, e22.

When studying the Poisson algebra structure of Lie algebra g, we marke e11 as e1, e12
as e2, e21 as e3, and e22 as e4. Note that we only simplify the sign in this way when we study
the Poisson algebra structure of the Lie algebra g. When we study the automorphism of the
Lie algebra g, we still use the original sign, because

F(e11, e12) = e12, F(e11, e21) = 0, F(e11, e22) = 0,

F(e12, e21) = 0, F(e12, e22) = e12, F(e21, e22) = 0.

thus,
F(e1, e2) = e2, F(e1, e3) = 0, F(e1, e4) = 0,

F(e2, e3) = 0, F(e2, e4) = e2, F(e3, e4) = 0.

Theorem 2. (g, ∗, [−,−]) is a Poisson algebra on (g, [−,−]), then:

Le1(e1, e2, e3, e4) = (e1 ∗ e1, e1 ∗ e2, e1 ∗ e3, e1 ∗ e4) = (e1, e2, e3, e4)A,

A =


a11 a21 a31 a41
a12 a22 a32 a42
a13 a23 a33 a43
a14 a24 a34 a44

 =


a11 0 a31 a41
0 a22 0 0

a13 0 a33 a43
a14 0 a34 a44


Le2(e1, e2, e3, e4) = (e2 ∗ e1, e2 ∗ e2, e2 ∗ e3, e2 ∗ e4) = (e1, e2, e3, e4)B,

B =


b11 b21 b31 b41
b12 b22 b32 b42
b13 b23 b33 b43
b14 b24 b34 b44

 =


0 0 0 0

b12 0 b32 b42
0 0 0 0
0 0 0 0


Le3(e1, e2, e3, e4) = (e3 ∗ e1, e3 ∗ e2, e3 ∗ e3, e3 ∗ e4) = (e1, e2, e3, e4)C,

C =


c11 c21 c31 c41
c12 c22 c32 c42
c13 c23 c33 c43
c14 c24 c34 c44

 =


0 0 c31 c41
0 0 0 0
0 0 c33 c43
0 0 c34 c44


Le4(e1, e2, e3, e4) = (e4 ∗ e1, e4 ∗ e2, e4 ∗ e3, e4 ∗ e4) = (e1, e2, e3, e4)D,
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D =


d11 d21 d31 d41
d12 d22 d32 d42
d13 d23 d33 d43
d14 d24 d34 d44

 =


d11 0 d31 d41
0 d22 0 0

d13 0 d33 d43
d14 0 d34 d44

.

Proof. Since the Leibniz law is established, there are

F(z ∗ x, y) = F(z, y) ∗ x + z ∗ F(x, y), ∀z, x, y ∈ g. (1)

Since ∗ and [, ] are bilinear operations. If Z, x, y can only select e1, e2, e3, e4, so that there
are (1) cases of 43 = 64, one by one can be verified. When

z = e1, x = e1, y = e1,

the following equation can be obtained from (1):

F(e1 ∗ e1, e1) = F(e1, e1) ∗ e1 + e1 ∗ F(e1, e1), (2a)

left side of (2a)

= F(a11e1 + a12e2 + a13e3 + a14e4, e1) = F(a12e2, e1) = −a12e2,

right side of (2a)
= F(e1, e1) ∗ e1 + e1 ∗ F(e1, e1) = 0,

thus
a12 = 0.

Because
F(e1 ∗ e1, e2) = F(e1, e2) ∗ e1 + e1 ∗ F(e1, e2), (2b)

left side of (2b)

= F(a11e1 + a12e2 + a13e3 + a14e4, e2) = (a11 − a14)e2,

right side of (2b)

= F(e1, e2) ∗ e1 + e1 ∗ F(e1, e2) = e2 ∗ e1 + e1 ∗ e2 = b11e1 + b12e2 + b13e3 + b14e4 + a21e1 + a22e2 + a23e3 + a24e4,

thus

b11 + a21 = 0, b13 + a23 = 0, b14 + a24 = 0, b12 + a22 = (a11 − a14).

Because
F(e1 ∗ e1, e3) = F(e1, e3) ∗ e1 + e1 ∗ F(e1, e3), (2c)

left side of (2c) = right side of (2c), so Equation (2c) holds.
Because

F(e1 ∗ e1, e4) = F(e1, e4) ∗ e1 + e1 ∗ F(e1, e4), (2d)

left side of (2d)
= F(a11e1 + a12e2 + a13e3 + a14e4, e4) = a12e2,

right side of (2d)

= F(e1, e4) ∗ e1 + e1 ∗ F(e1, e4) = 0 ∗ e1 + e1 ∗ 0 = 0,

thus,
a12 = 0.
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Because
F(e1 ∗ e2, e1) = F(e1, e1) ∗ e2 + e1 ∗ F(e2, e1), (2e)

left side of (2e)

= F(a21e1 + a22e2 + a23e3 + a24e4, e1) = F(a22e2, e1) = −a22e2,

right side of (2e)

= F(e1, e1] ∗ e2 + e1 ∗ F(e2, e1) = 0− e1 ∗ e2 = −(a21e1 + a22e2 + a23e3 + a24e4),

thus,
a21 = 0, a23 = 0, a24 = 0.

Because
F(e1 ∗ e2, e2) = F(e1, e2) ∗ e2 + e1 ∗ F(e2, e2), (2f)

left side of (2f)

= F(a21e1 + a22e2 + a23e3 + a24e4, e2) = a21e2 − a24e2,

right side of (2f)
= e2 ∗ e2 = b21e1 + b22e2 + b23e3 + b24e4,

thus,
b21 = 0, b23 = 0, b24 = 0, (a21 − a24) = b22.

Because
F(e1 ∗ e2, e3) = F(e1, e2) ∗ e3 + e1 ∗ F(e2, e3), (2g)

left side of (2g) = right side of (2g) so Equation (2g) holds.
Because

F(e1 ∗ e2, e4) = F(e1, e4) ∗ e2 + e1 ∗ F(e2, e4), (2h)

and it can be known from (2e):

a21 = 0, a23 = 0, a24 = 0.

left side of (2h)
F(a22e2, e4) = a22e2,

right side of (2h)

F(e1, e4) ∗ e2 + e1 ∗ F(e2, e4) = 0 + e1 ∗ e2 = a22e2,

So the equation holds.
By analogy from the remaining 56 cases:

a32 = 0, b31 = 0, b33 = 0, b34 = 0, (a31 − a34) = b32, a42 = 0,

b21 = b23 = b22 = b24 = 0, b41 = a21, b42 − a22 = a41 − a44, b43 = a23, b44 = a24.

b11 = b13 = b14 = 0, b31 = b33 = b34 = 0, b22 = b11 − b14, b41 = 0, b43 = 0, b44 = 0,

c12 = 0, c21 = c23 = c24 = 0, c22 = c11 − c14 = 0, c22 = 0, c11 = 0, c13 = 0, c14 = 0, c24 = 0.

c32 = 0, c31 = c34, c42 = 0, c41 − c44 = 0,

d12 = 0, d32 = 0, d21 = d23 = d24 = 0, d31 − d34 = −b32, d42 = 0, d41 − d44 = −b42 − d22.

Since ∗ is a bilinear binary operation,

(k1y + k2z) ∗ x = k1(y ∗ x) + k2(z ∗ x), ∀x, y, z ∈ g, ∀k1, k2 ∈ C.
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Thus, ∗ induces a right multiply linear transformation Rx. Since any x in g can be
linearly represented by base e11, e12, e21, e22, we only need to calculate the matrices of linear
transformation

Re11 , Re12 , Re21 , Re22

under base
e11, e12, e21, e22.

Since it is similar to Theorem 2, in order to save space, it will not be described again.
In addition, if any z, x, y in g, ∗ satisfies the associative law or the commutative law,

there will be more strict requirements for the matrix A, B, C, D. In order to save space, we
will not repeat it.

Definition 2. Let g1, g2 be a Lie algebra over field F. If the linear mapping ϕ of g1 to g2 satisfies

F(ϕ(x), ϕ(y)) = ϕ(F(x, y)), ∀x, yεg1,

then 6ϕ is said to be a homomorphic mapping or homomorphism of g1 to g2.

Definition 3. The homomorphism of a Lie algebra g to itself is called the endomorphism of g,
and all endomorphisms of g are denoted as End(g). The isomorphism from g to itself is called
automorphism and all automorphisms of g form a group, which is called the automorphism group of
g and is called Aut(g).

Theorem 3. The linear mapping in the four-dimensional Lie algebra g is established as follows:

ϕ(e11, e12, e21, e22) = (e11, e12, e21, e22)


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44.

.

If ϕ is an automorphism of Lie algebra g, then there must be

a12 = a32 = a42 = 0,

a23 = 0,

a44 − a14 = 1,

a11 − a41 = 1,

a43 − a13 = 0,

a24 + a21 = 0.

Proof. Let

A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

.

Let ϕ be an automorphism on g, then ϕ must be a linear transformation on g.

ϕ(e11, e12, e21, e22) = (e11, e12, e21, e22)


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 = (e11, e12, e21, e22)A,

thus,
ϕ(e11) = a11e11 + a21e12 + a31e21 + a41e22,
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ϕ(e12) = a12e11 + a22e12 + a32e21 + a42e22,

ϕ(e21) = a13e11 + a23e12 + a33e21 + a43e22,

ϕ(e22) = a14e11 + a24e12 + a34e21 + a44e22.

According to the definition of isomorphism, F(ϕ(eij), ϕ(emn)) = ϕ(F(eij, emn)),
(i, j, m, n = 1, 2),

(1) Because
F(e11, e12) = e12,

so

F(ϕ(e11), ϕ(e12)) = ϕ(F(e11, e12)) = ϕ(e12),

F(a11e11 + a21e12 + a31e21 + a41e22, a12e11 + a22e12 + a32e21 + a42e22) = a12e11 + a22e12 + a32e21 + a42e22,

(a11a22 − a12a21 + a21a42 − a41a22)e12 = a12e11 + a22e12 + a32e21 + a42e22;

thus,
a12 = a32 = a42 = 0, a11a22 − a12a21 + a21a42 − a41a22 = a22.

Therefore, there are
a11a22 − a41a22 = a22.

(2) Because
F(e11, e21) = 0,

so
F(ϕ(e11), ϕ(e21)) = ϕ(F(e11, e21)) = 0,

F(a11e11 + a21e12 + a31e21 + a41e22, a13e11 + a23e12 + a33e21 + a43e22) = 0,

(a11a23 − a21a13 + a21a43 − a41a23)e12 = 0,

thus
a11a23 − a21a13 + a21a43 − a41a23 = 0.

(3) Because
F(e11, e22) = 0,

so
F(ϕ(e11), ϕ(e22)) = ϕ(F(e11, e22)) = 0,

F(a11e11 + a21e12 + a31e21 + a41e22, a14e11 + a24e12 + a34e21 + a44e22) = 0,

(a11a24 − a21a14 + a21a44 − a41a24)e12 = 0,

thus
a11a24 − a21a14 + a21a44 − a41a24 = 0.

(4) Because
F(e12, e21) = 0,

so
F(ϕ(e12), ϕ(e21)) = ϕ(F(e12, e21)) = 0,

F(a12e11 + a22e12 + a32e21 + a42e22, a13e11 + a23e12 + a33e21 + a43e22) = 0,

(a12a23 − a22a13 + a22a43 − a42a23)e12 = 0,

thus
a12a23 − a22a13 + a22a43 − a42a23 = 0.

(5) Because
F(e12, e22) = e12,
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so

F(ϕ(e12), ϕ(e22))] = ϕ(F(e12, e22)) = ϕ(e12),

F(a12e11 + a22e12 + a32e21 + a42e22, a14e11 + a24e12 + a34e21 + a44e22) = a12e11 + a22e12 + a32e21 + a42e22,

(a12a24 − a22a14 + a22a44 − a42a24)e12 = a12e11 + a22e12 + a32e21 + a42e22;

thus,
a12 = a32 = a42 = 0, a12a24 − a22a14 + a22a44 − a42a24 = a22.

Therefore, there are
−a22a14 + a22a44 = a22.

(6) Because
F(e21, e22) = 0,

so
F(ϕ(e21), ϕ(e22)) = ϕ([e21, e22)) = 0,

F(a13e11 + a23e12 + a33e21 + a43e22, a14e11 + a24e12 + a34e21 + a44e22) = 0,

(a13a24 − a23a14 + a23a44 − a43a24)e12 = 0;

thus,
a13a24 − a23a14 + a23a44 − a43a24 = 0.

Based on the above six cases, the following equation holds:

a12 = a32 = a42 = 0,

(a43 − a13)a22 = 0,

a22(1 + a14 − a44) = 0,

a22(1 + a41 − a11) = 0,

(a11 − a41)a23 + (a43 − a13)a21 = 0,

(a11 − a41)a24 + (a44 − a14)a21 = 0,

(a13 − a43)a24 + (a44 − a14)a23 = 0.

Since ϕ is isomorphic, a12 = a32 = a42 = 0 is known from the previous reasoning, so
there must be a22 6= 0, otherwise:

∣∣∣∣∣
a11 0 a13 a14
a21 0 0 −a21
a31 0 a33 a34

a11 − 1 0 a13 a14 + 1

∣∣∣∣∣ = 0;

it is an isomorphic contradiction with ϕ. Thus, a22 6= 0, and the following equation holds:

a23 = 0,

a44 − a14 = 1,

a11 − a41 = 1,

a43 − a13 = 0,

a24 + a21 = 0;
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so:

A =


a11 0 a13 a14
a21 a22 0 −a21
a31 0 a33 a34

a11 − 1 0 a13 a14 + 1

,

|A| = a22(a13(a34 + a31)− a33(a14 + a11)) 6= 0.

Theorem 4. Let

G1 = {


1 0 0 0

a21 1 0 −a21
0 0 1 0
0 0 0 1,

|∀a21 ∈ C},

then g1 is a commutative subgroup of Aut(g).

Proof. Obviously, G1 ⊆ Aut(g) holds. For any γ1, γ2 in G1, there are

γ1γ2 =


1 0 0 0

m1 1 0 −m1
0 0 1 0
0 0 0 1




1 0 0 0
m2 1 0 −m2
0 0 1 0
0 0 0 1

 =


1 0 0 0

m1 + m2 1 0 −(m1 + m2)
0 0 1 0
0 0 0 1

,

so γ1γ2 belongs to G1, easy-to-know γ1γ2 is equal to γ2γ1. Let

γ1 =


1 0 0 0

m1 1 0 −m1
0 0 1 0
0 0 0 1

 ∈ G1,

γ−1
1 =


1 0 0 0
−m1 1 0 m1

0 0 1 0
0 0 0 1

 ∈ G1.

So, G1 is a commutative subgroup of Aut(g).

Theorem 5. Let

G2 = {


1 0 0 0
0 1 0 0
0 0 1 a34
0 0 0 1

|∀a34 ∈ C};

then, G2 is a commutative subgroup of Aut(g).

Proof. Obviously, G2 ⊆ Aut(g) holds. For any γ1, γ2 in G2, there are

γ1γ2 =


1 0 0 0
0 1 0 0
0 0 1 m1
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 m2
0 0 0 1

 =


1 0 0 0
0 1 0 0
0 0 1 m1 + m2
0 0 0 1

;

so γ1γ2 belongs to G2, easy-to-know γ1γ2 is equal to γ2γ1.

∀γ1 =


1 0 0 0
0 1 0 0
0 0 1 m1
0 0 0 1

 ∈ G2, ∀m1 ∈ C,
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γ−1
1 =


1 0 0 0
0 1 0 0
0 0 1 −m1
0 0 0 1

 ∈ G2;

so, G2 is a commutative subgroup of Aut(g).

Theorem 6. Let

G3 = {


1 0 0 0
0 1 0 0

a31 0 1 0
0 0 0 1,

|∀a31 ∈ C},

then G3 is a commutative subgroup of Aut(g).

Proof. Obviously, G3 ⊆ Aut(g) holds. For any γ1, γ2 in G3, there are

γ1γ2 =


1 0 0 0
0 1 0 0

m1 0 1 0
0 0 0 1




1 0 0 0
0 1 0 0

m2 0 1 0
0 0 0 1

 =


1 0 0 0
0 1 0 0

m1 + m2 0 1 0
0 0 0 1

;

so, γ1γ2 belongs to G3, easy-to-know γ1γ2 is equal to γ2γ1.

∀γ1 =


1 0 0 0
0 1 0 0

m1 0 1 0
0 0 0 1

 ∈ G1, ∀m1 ∈ C,

γ−1
1 =


1 0 0 0
0 1 0 0
−m1 0 1 0

0 0 0 1

 ∈ G3;

so, G3 is a commutative subgroup of Aut(g).

Theorem 7. Let

G4 = {


1 0 a13 0
0 1 0 0
0 0 1 0
0 0 a13 1

|∀a13 ∈ C},

then G4 is a commutative subgroup of Aut(g).

Proof. Obviously, G4 ⊆ Aut(g) holds. For any γ1, γ2 in G4, there are

γ1γ2 =


1 0 m1 0
0 1 0 0
0 0 1 0
0 0 m1 1




1 0 m2 0
0 1 0 0
0 0 1 0
0 0 m2 1

 =


1 0 m1 + m2 0
0 1 0 0
0 0 1 0
0 0 −(m1 + m2) 1

;

so, γ1γ2 belongs to G4, easy-to-know γ1γ2 is equal to γ2γ1.

∀γ1 =


1 0 m1 0
0 1 0 0
0 0 1 0
0 0 m1 1

 ∈ G4, ∀m1 ∈ C,
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γ−1
1 =


1 0 −m1 0
0 1 0 0
0 0 1 0
0 0 −m1 1

 ∈ G4;

so, G4 is a commutative subgroup of Aut(g).

Theorem 8. Let

G5 = {


1 0 0 0
0 a22 0 0
0 0 a33 0
0 0 0 1

|∀a22 6= 0, a33 6= 0 ∈ C},

then G5 is a commutative subgroup of Aut(g).

Proof. Obviously, G5 ⊆ Aut(g) holds. For any γ1, γ2 in G5, ∀a22 6= 0, a33 6= 0 ∈ C,
b22 6= 0, b33 6= 0 ∈ C, there are

γ1γ2 =


1 0 0 0
0 a22 0 0
0 0 a33 0
0 0 0 1




1 0 0 0
0 b22 0 0
0 0 b33 0
0 0 0 1

 =


1 0 0 0
0 a22b22 0 0
0 0 a33b33 0
0 0 0 1

;

so, γ1γ2 belongs to G5, easy-to-know γ1γ2 is equal to γ2γ1.

∀γ1 =


1 0 0 0
0 a22 0 0
0 0 a33 0
0 0 0 1

 ∈ G5, ∀a22 6= 0, a33 6= 0,∈ C,

γ−1
1 =


1 0 0 0
0 a−1

22 0 0
0 0 a−1

33 0
0 0 0 1

 ∈ G5;

so, G5 is a commutative subgroup of Aut(g).

Theorem 9. Let

G6 = {


0 0 0 −1
0 1 0 0
0 0 1 0
−1 0 0 0

,


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

};
then G6 is a second order cyclic subgroup of Aut(g).

Proof. Obviously, G6 ⊆ Aut(g) holds.
0 0 0 −1
0 1 0 0
0 0 1 0
−1 0 0 0




0 0 0 −1
0 1 0 0
0 0 1 0
−1 0 0 0

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

,

∀γ1 =


0 0 0 −1
0 1 0 0
0 0 1 0
−1 0 0 0

 ∈ G6,
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γ−1
1 =


0 0 0 −1
0 1 0 0
0 0 1 0
−1 0 0 0

 ∈ G6;

so, G6 is a second order cyclic subgroup of Aut(g).

Theorem 10. Let

G7 = {


a11 0 0 0
0 1 0 0
0 0 1 0

a11 − 1 0 0 1

|∀a11 ∈ C},

then G7 is a commutative subgroup of Aut(g).

Proof. Obviously, G7 ⊆ Aut(g) holds. For any γ1, γ2 in G7, ∀a11 6= 0, b11 6= 0 ∈ C,
there are

γ1γ2 =


a11 0 0 0
0 1 0 0
0 0 1 0

a11 − 1 0 0 1




b11 0 0 0
0 1 0 0
0 0 1 0

b11 − 1 0 0 1

 =


a11b11 0 0 0

0 1 0 0
0 0 1 0

a11b11 − 1 0 0 1

;

so, γ1γ2 belongs to G7, easy-to-know γ1γ2 is equal to γ2γ1. ∀a11 6= 0 ∈ C,

γ1 =


a11 0 0 0
0 1 0 0
0 0 1 0

a11 − 1 0 0 1

 ∈ G7,

γ−1
1 =


a−1

11 0 0 0
0 1 0 0
0 0 1 0

a−1
11 − 1 0 0 1

 ∈ G7;

so, G7 is a commutative subgroup of Aut(g).

Theorem 11. Let

G8 = {


1 0 0 a14
0 1 0 0
0 0 1 0
0 0 0 1 + a14

|∀a14 ∈ C};

then G8 is a commutative subgroup of Aut(g).

Proof. Obviously, G8 ⊆ Aut(g) holds. For any γ1, γ2 in G8, ∀a14 6= −1, b14 6= −1 ∈ C,

γ1γ2 =


1 0 0 a14
0 1 0 0
0 0 1 0
0 0 0 1 + a14




1 0 0 b14
0 1 0 0
0 0 1 0
0 0 0 1 + b14

 =


1 0 0 a14b14 + a14 + b14
0 1 0 0
0 0 1 0
0 0 0 1 + a14b14 + a14 + b14

;

so, γ1γ2 belongs to G8, easy-to-know γ1γ2 is equal to γ2γ1. ∀a14 6= −1 ∈ C,

γ1 =


1 0 0 a14
0 1 0 0
0 0 1 0
0 0 0 1 + a14

 ∈ G8,
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γ−1
1 =


1 0 0 − a14

1+a14
0 1 0 0
0 0 1 0
0 0 0 1− a14

1+a14

 ∈ G8;

so, G8 is a commutative subgroup of Aut(g).

Theorem 12. G1 and G2 are interchangeable.

Proof. ∀γ1 =


1 0 0 0

a21 1 0 −a21
0 0 1 0
0 0 0 1

εG1, γ2 =


1 0 0 0
0 1 0 0
0 0 1 a34
0 0 0 1

εG2, because

γ1γ2 =


1 0 0 0

a21 1 0 −a21
0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 a34
0 0 0 1

 =


1 0 0 0

a21 1 0 −a21
0 0 1 a34
0 0 0 1

,

γ2γ1 =


1 0 0 0
0 1 0 0
0 0 1 a34
0 0 0 1




1 0 0 0
a21 1 0 −a21
0 0 1 0
0 0 0 1

 =


1 0 0 0

a21 1 0 −a21
0 0 1 a34
0 0 0 1

;

so,
γ1γ2 = γ2γ1.

Thus, G1 and G2 are interchangeable.

Definition 4. Given that G1 and G2 are two subgroups of Aut(g), let G1 ◦ G2 = {xy|∀x ∈
G1, ∀y ∈ G2}.

Theorem 13. G1 ◦ G2 = {xy|∀x ∈ G1, ∀y ∈ G2} is a subgroup of Autg.

Proof. Because e ∈ G1 and e ∈ G2, so ee = e ∈ G1 ◦ G2.
∀x1, x2 ∈ G1; y1, y2 ∈ G2, due to G1 and G2 is exchangeable, so

x1y1x2y2 = x1x2y1y2 ∈ G1 ◦ G2,

and
(x1y1)

−1 = y−1
1 x−1

1 = x−1
1 y−1

1 ∈ G1 ◦ G2.

Theorem 14. G1 and G3 are interchangeable.

Proof. ∀γ1 =


1 0 0 0

a21 1 0 −a21
0 0 1 0
0 0 0 1

εG1, γ3 =


1 0 0 0
0 1 0 0

a31 0 1 0
0 0 0 1

εG3, because

γ1γ3 =


1 0 0 0

a21 1 0 −a21
0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 0

a31 0 1 0
0 0 0 1

 =


1 0 0 0

a21 1 0 −a21
a31 0 1 0
0 0 0 1

,
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γ3γ1 =


1 0 0 0
0 1 0 0

a31 0 1 0
0 0 0 1




1 0 0 0
a21 1 0 −a21
0 0 1 0
0 0 0 1

 =


1 0 0 0

a21 1 0 −a21
a31 0 1 0
0 0 0 1

,

so
γ1γ3 = γ3γ1.

Thus, G1 and G3 are interchangeable.

Theorem 15. G1 and G4 are interchangeable.

Proof. ∀γ1 =


1 0 0 0

a21 1 0 −a21
0 0 1 0
0 0 0 1

εG1, γ4 =


1 0 a13 0
0 1 0 0
0 0 1 0
0 0 a13 1

εG4, because

γ1γ4 =


1 0 0 0

a21 1 0 −a21
0 0 1 0
0 0 0 1




1 0 a13 0
0 1 0 0
0 0 1 0
0 0 a13 1

 =


1 0 a13 0

a21 1 0 −a21
0 0 1 0
0 0 a13 1

,

γ4γ1 =


1 0 a13 0
0 1 0 0
0 0 1 0
0 0 a13 1




1 0 0 0
a21 1 0 −a21
0 0 1 0
0 0 0 1

 =


1 0 a13 0

a21 1 0 −a21
0 0 1 0
0 0 a13 1

;

so,
γ1γ4 = γ4γ1.

Thus, G1 and G4 are interchangeable.

Theorem 16. G1 and G5 are not necessarily interchangeable.

Proof. ∀γ1 =


1 0 0 0

a21 1 0 −a21
0 0 1 0
0 0 0 1

εG1, γ5 =


1 0 0 0
0 a22 0 0
0 0 a33 0
0 0 0 1

εG5, because

γ1γ5 =


1 0 0 0

a21 1 0 −a21
0 0 1 0
0 0 0 1




1 0 0 0
0 a22 0 0
0 0 a33 0
0 0 0 1

 =


1 0 0 0

a21 a22 0 −a21
0 0 a33 0
0 0 0 1

,

γ5γ1 =


1 0 0 0
0 a22 0 0
0 0 a33 0
0 0 0 1




1 0 0 0
a21 1 0 −a21
0 0 1 0
0 0 0 1

 =


1 0 0 0

a21a22 a22 0 −a21a22
0 0 a33 0
0 0 0 1

;

so, γ1γ5 is not necessarily equal to γ5γ1.
Thus, G1 and G5 are not necessarily interchangeable.

Theorem 17. G1 and G6 are interchangeable.
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Proof. ∀γ1 =


1 0 0 0

a21 1 0 −a21
0 0 1 0
0 0 0 1

εG1, γ61 =


0 0 0 −1
0 1 0 0
0 0 1 0
−1 0 0 0

,

γ62 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, because

γ1γ61 =


1 0 0 0

a21 1 0 −a21
0 0 1 0
0 0 0 1




0 0 0 −1
0 1 0 0
0 0 1 0
−1 0 0 0

 =


0 0 0 −1

a21 1 0 −a21
0 0 1 0
−1 0 0 0

,

γ61γ1 =


0 0 0 −1
0 1 0 0
0 0 1 0
−1 0 0 0




1 0 0 0
a21 1 0 −a21
0 0 1 0
0 0 0 1

 =


0 0 0 −1

a21 1 0 −a21
0 0 1 0
−1 0 0 0

;

so,
γ1γ61 = γ61γ1,

obviously,
γ1γ62 = γ62γ1.

Thus, G1 and G4 are interchangeable.

Theorem 18. G1 and G7 are interchangeable.

Proof. ∀γ1 =


1 0 0 0

a21 1 0 −a21
0 0 1 0
0 0 0 1

εG1, γ7 =


a11 0 0 0
0 1 0 0
0 0 1 0

a11 − 1 0 0 1

εG7, bcause

γ1γ7 =


1 0 0 0

a21 1 0 −a21
0 0 1 0
0 0 0 1




a11 0 0 0
0 1 0 0
0 0 1 0

a11 − 1 0 0 1

 =


a11 0 0 0
a21 1 0 −a21
0 0 1 0

a11 − 1 0 0 1

,

γ7γ1 =


a11 0 0 0
0 1 0 0
0 0 1 0

a11 − 1 0 0 1




1 0 0 0
a21 1 0 −a21
0 0 1 0
0 0 0 1

 =


a11 0 0 0
a21 1 0 −a21
0 0 1 0

a11 − 1 0 0 1

;

so,
γ1γ7 = γ7γ1.

Thus, G1 and G7 are interchangeable.

Theorem 19. G1 and G8 are interchangeable.



Symmetry 2023, 15, 1115 16 of 19

Proof. ∀γ1 =


1 0 0 0

a21 1 0 −a21
0 0 1 0
0 0 0 1

εG1, γ8 =


1 0 0 a14
0 1 0 0
0 0 1 0
0 0 0 1 + a14

εG8, because

γ1γ8 =


1 0 0 0

a21 1 0 −a21
0 0 1 0
0 0 0 1




1 0 0 a14
0 1 0 0
0 0 1 0
0 0 0 1 + a14

 =


1 0 0 a14

a21 1 0 −a21
0 0 1 0
0 0 0 1 + a14

,

γ8γ1 =


1 0 0 a14
0 1 0 0
0 0 1 0
0 0 0 1 + a14




1 0 0 0
a21 1 0 −a21
0 0 1 0
0 0 0 1

 =


1 0 0 a14

a21 1 0 −a21
0 0 1 0
0 0 0 1 + a14

;

so,
γ1γ8 = γ8γ1.

Thus, G1 and G8 are interchangeable.

Similarly, we can study the commutativity between G2, G3, G4, G5, G6, G7 and G8. For
example, we can prove that G2 and G3 can be exchanged, G5 and G7 can be exchanged,
and G5 and G8 can be exchanged. Studying this commutativity is certainly helpful for the
subsequent study of whether the decomposition of automorphism groups is unique.

Theorem 20. The automorphism group Aut(g) = g of Lie algebra g can be decomposed into the
following form:

(1) When b11 6= 0, there are

G = G3G1G2G3G4G7G8G5;

(2) When b11 = 0, b14 6= 0, there are

G = G3G1G2G3G4G7G8G5G6;

(3) When b11 = 0, b14 = 0, b13 6= 0, there are

G = G3G1G2G3G4G7G8G5G3.

Proof. Take any B in G at Aut(g); let

B =


b11 0 b13 b14
b21 b22 0 −b21
b31 0 b33 b34

b11 − 1 0 b13 b14 + 1

.

Using the undetermined coefficient method, for
1 0 0 0
0 1 0 0
−a34 0 1 0

0 0 0 1

 ∈ G3,


1 0 0 0

a21 1 0 −a21
0 0 1 0
0 0 0 1

 ∈ G1,


1 0 0 0
0 1 0 0
0 0 1 a34
0 0 0 1

 ∈ G2,


1 0 0 0
0 1 0 0

a31 0 1 0
0 0 0 1

 ∈ G3


1 0 a13 0
0 1 0 0
0 0 1 0
0 0 a13 1

 ∈ G4,



Symmetry 2023, 15, 1115 17 of 19


a11 0 0 0
0 1 0 0
0 0 1 0

a11 − 1 0 0 1

 ∈ G7,


1 0 0 a14
0 1 0 0
0 0 1 0
0 0 0 1 + a14

 ∈ G8,


1 0 0 0
0 a22 0 0
0 0 1 0
0 0 0 1

 ∈ G5,

it is advisable to set

B =


b11 0 b13 b14
b21 b22 0 −b21
b31 0 b33 b34

b11 − 1 0 b13 b14 + 1

 =


1 0 0 0
0 1 0 0
−a34 0 1 0

0 0 0 1




1 0 0 0
a21 1 0 −a21
0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 a34
0 0 0 1




1 0 0 0
0 1 0 0

a31 0 1 0
0 0 0 1




1 0 a13 0
0 1 0 0
0 0 1 0
0 0 a13 1




a11 0 0 0
0 1 0 0
0 0 1 0

a11 − 1 0 0 1




1 0 0 a14
0 1 0 0
0 0 1 0
0 0 0 1 + a14




1 0 0 0
0 a22 0 0
0 0 1 0
0 0 0 1



=


1 0 0 0
0 1 0 0
−a34 0 1 0

0 0 0 1




a11 0 a13 a11a14
a21 a22 0 −a21

a11a31 + a11a34 − a34 0 a13a31 + a13a34 + 1 a11a14a31 + a11a14a34 + a34
a11 − 1 0 a13 a11a14 + 1



=


a11 0 a13 a11a14
a21 a22 0 −a21

a11a31 − a34 0 a13a31 + 1 a11a14a31 + a34
a11 − 1 0 a13 a11a14 + 1

.

Case 1:

b11 6= 0,

because

B =


b11 0 b13 b14
b21 b22 0 −b21
b31 0 b33 b34

b11 − 1 0 b13 b14 + 1

 =


a11 0 a13 a11a14
a21 a22 0 −a21

a11a31 − a34 0 a13a31 + 1 a11a14a31 + a34
a11 − 1 0 a13 a11a14 + 1

,

so
a11 = b11,

a13 = b13,

a11a14 = b14 ⇒ a14 =
b14

b11
,

a21 = b21,

a22 = b22,

a11a31 + 1 = b33 ⇒ a31 =
b33 − 1

b11
,

a11a14a31 + a34 = b34 ⇒ a34 = b34 − b14
b33 − 1

b11
.
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Thus, the original proposition holds.
Case 2:

b11 = 0, b14 6= 0,

Take 
0 0 0 −1
0 1 0 0
0 0 1 0
−1 0 0 0

 ∈ G6,


0 0 b13 b14

b21 b22 0 −b21
b31 0 b33 b34
−1 0 b13 b14 + 1




0 0 0 −1
0 1 0 0
0 0 1 0
−1 0 0 0



=


−b14 0 b13 0
b21 b22 0 −b21
−b34 0 b33 −b31
−b14 − 1 0 b13 1

,

At this time, because b14 6= 0, it is converted to case 1.
Case 3:

b11 = 0, b14 = 0, b13 6= 0,

Take 
1 0 0 0
0 1 0 0
1 0 1 0
0 0 0 1

 ∈ G3,

because 
0 0 b13 0

b21 b22 0 −b21
b31 0 b33 b34
−1 0 b13 1




1 0 0 0
0 1 0 0
1 0 1 0
0 0 0 1



=


b13 0 b13 0
b21 b22 0 −b21

b31 + b33 0 b33 b34
b13 − 1 0 b13 1

,

At this time, when b13 6= 0, it is changed to case 1.

3. Conclusions

This article cleverly utilized the elementary transformation of partitioned matrices to
study the subgroups of a four-dimensional solvable Lie algebra g and obtain the necessary
and sufficient conditions for its automorphism. It also characterized three decomposition
scenarios of the automorphism group of g, presenting the structure of its automorphism
group more clearly. This article added new methods to the study of low-dimensional Lie
algebra automorphism, which can provide assistance for the structure of research of general
Lie algebra automorphism groups.
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