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Abstract: In this paper, we study the existence of the families of odd symmetric periodic solutions
in the generalized elliptic Sitnikov (N + 1)-body problem for all values of the eccentricity e ∈ [0, 1)
using the global continuation method. First, we obtain the properties of the period of the solution of
the corresponding autonomous equation (eccentricity e = 0) using elliptic functions. Then, according
to these properties and the global continuation method of the zeros of a function depending on
one parameter, we derive the existence of odd periodic solutions for all e ∈ [0, 1). It is shown that
the temporal frequencies of period solutions depend on the total mass λ (or the number N) of the
primaries in a delicate way.
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1. Introduction

It is well known that the Sitnikov problem is the simplest model that cannot give an
analytic solution in the restricted N-body problem, where two bodies (called primaries) of
equal mass are moving in a circular or an elliptic orbit of the two-body problem, and the
infinitesimal mass is moving on the straight line orthogonal to the plane of motion of
the primaries which passes through their center of mass. The Sitnikov problem became
important when Sitnikov, for the first time, showed the existence of oscillatory motions [1].
Since then, many other authors have studied this problem. We refer the reader to [2–13]
and the references therein for a more detailed introduction.

In particular, there are many interesting results on periodic solutions of the Sitnikov
problem [13–21]. For example, Abouelmagd et al. found periodic solutions of the circular
Sitnikov problem using the multiple scales method [14]. Belbruno et al., obtained the
analytical expressions for the solutions of the circular Sitnikov problem and the period
function of its family of periodic orbits. In addition, they also numerically studied the
linear stability of the family of periodic orbits of the Sitnikov problem [13]. Corbera
and Llibre have studied the family of symmetric periodic orbits using the continuity of
periodic solutions from the circular Sitnikov problem to the elliptic Sitnikov problem [16,17].
Galán et al. numerically studied the stability and bifurcation of even periodic solutions
of the Sitnikov problem [18]. Based on the global continuation method, Libre and Ortega
constructed the even symmetric periodic solutions of the Sitnikov problem [19]. Using
a shooting method and Sturm oscillation theory, Ortega explored the existence of odd
symmetric periodic solutions of the Sitnikov problem [20]. Owing to the theory for Hill’s
equations, Zhang and his co-authors studied the stability of nonconstant symmetric periodic
solutions of the Sitnikov problem, which emanate from the corresponding solutions of the
circular Sitnikov problem [15,21,22].

In recent years, periodic solutions of the generalized Sitnikov (N + 1)-body problem
(i.e., there are multiple primaries in the Sitnikov problem) have attracted the attention
of some researchers. In 2009, Bountis and Papadakis studied the stability of vertical
motion and bifurcation in a three-dimensional periodic orbit family [23]. In 2013, Rivera
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studied some properties of two groups of families of periodic solutions, where one group
is families that are globally continued from the generalized circular Sitnikov (N + 1)-body
problem to the generalized elliptic Sitnikov (N + 1)-body problem (e 6= 0), and the other is
families that arise as bifurcation from equilibrium solution at certain special values of the
eccentricity [24]. In 2018, Misquero pointed out the existence of both types of symmetric
periodic solutions and proved the existence of even symmetric periodic solutions using a
shooting method and Sturm oscillation theory (see Lemma 6 of [25]).

Periodic solutions of the n-body problem have always been an important research
field, whether in celestial mechanics or mathematics. Motivated by work in the litera-
ture [19,24], we will study the odd families of periodic solutions of the generalized elliptic
Sitnikov (N + 1)-body problem. Firstly, based on elliptic functions, we will deduce the
properties of the period of the solution of the generalized circular Sitnikov (N + 1)-body
problem. Then, based on these properties, and for all values of the eccentricity e ∈ [0, 1),
we will study the existence of odd periodic solutions of the generalized elliptic Sitnikov
(N + 1)-body problem by the global continuation of the zeros of a function depending on
one parameter provided by Leray and Schauder (see [26] or Section 4 of [19]). The challenge
we face is to prove the existence of the solutions of the Dirichlet problem. Although the
global continuation method we use is the same as that in [19], there is a great difference.
Specifically, we note that the study of [19] was conducted in the classical elliptical Sitnikov
problem, but our study is conducted in the generalized elliptical Sitnikov (N + 1)-body
problem, which is the more general case. It shows that temporal frequencies of periodic
solutions depend on the total mass λ (or the number N) of the primaries in a delicate way.
In addition, Refs. [19,24] have proved the existence of even periodic solutions using the
global continuation method. To our knowledge, this is the first time that the existence of
odd periodic solutions has been analytically studied using the global continuation method.

The rest of the paper is organized as follows: in Section 2, we introduce the generalized
elliptic Sitnikov (N + 1)-body problem and deduce the properties of the period of the
solution in the generalized circular Sitnikov (N + 1)-body problem; then, we explore
the existence of odd periodic solutions of the generalized elliptic Sitnikov (N + 1)-body
problem for all e ∈ [0, 1) in Section 3; we finally conclude the paper in Section 4.

2. The Generalized Elliptic Sitnikov (N + 1)-Body Problem

In this section, we first introduce the generalized elliptic Sitnikov (N + 1)-body prob-
lem [24]. Then, we study the properties of the period of the solution in the generalized
circular (e = 0) Sitnikov (N + 1)-body problem using elliptic functions.

Consider N (≥2) point masses P1, P2, · · · , PN , called primaries, which have equal masses

mN =
1

2ΣN−1
k=1 csc( kπ

N )
. (1)

Suppose that P1 moves along an elliptic orbit with eccentricity e ∈ [0, 1), whose semimajor
axis is equal to 1

2 and minimal period is 2π. Then, P1, P2, · · · , PN (N ≥ 2) satisfy the
N-body problem where each body moves around the center of mass over an elliptic orbit
with alike eccentricity, semimajor axis and minimal period. Meanwhile, the N primaries
exactly form a stable positive N-sided structure, and its position just satisfies the Lagrange
solution of the N-body problem. These orbits are located in the OXY plane of the inertial
frame of reference, and the mass center of the primaries is in the origin. The particle
P, of infinitesimal mass, moves along the Z-axis in the gravitational field generated by
the primaries P1, P2, · · · , PN . Notice that the mass of P is so small that its effects on the
primaries can be ignored. Let z = z(t) be the position of P at the time t. Then, the equation
of motion for P is given by
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z̈ +
λz

(z2 + r2(t, e))
3
2
= 0, (2)

where r(t, e) = 1
2 (1− e cos u(t, e)) is the distance from each primary Pj(j = 1, ..., N) to the

mass center, and u = u(t, e) is the solution of the Kepler’s equation u− e sin u = t. We call
Equation (2) the generalized elliptic Sitnikov (N + 1)-body problem (GESP).

In addition, λ is the total mass of the system, i.e.,

λ = λ(N) = mN N (3)

and λ ∈ (0, 1]. Notice that Equation (2) is only the classical Sitnikov problem when λ = 1
(i.e., N = 2). Figure 1 shows the GESP when N = 3.

Figure 1. The generalized elliptic Sitnikov (3 + 1)-body problem.

In particular, when e = 0, the primaries move along a circular orbit of radius r0 and
constant angular velocity. Then, Equation (2) becomes

z̈ +
λz

(z2 + 1
4 )

3
2
= 0. (4)

We call Equation (4) the generalized circular Sitnikov (N + 1)-body problem (GCSP).
Moreover, the energy levels of solutions z(t) are

Γλ
h : Hλ(z, ż) :=

1
2

ż2 − λ√
z2 + 1

4

= hλ, (5)

where hλ ∈ [−2λ,+∞), while hλ = −2λ, Γλ
h is just the equilibrium O(0, 0) of Equation (4),

and for hλ ∈ (−2λ, 0), Γλ
h corresponds to periodic orbits of (4) whose minimal period is

denoted by T(hλ). Motivated by work in the literature [13], we have the following theorem
about the properties of T(hλ).

Theorem 1. The period T(hλ) has the following three properties:

(i) limhλ→−2λ+ T(hλ) = π/
√

2λ;
(ii) limhλ→0− T(hλ) = +∞;

(iii) T′(hλ) = dT(hλ)
dhλ > 0 ∀hλ ∈ (−2λ, 0).
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Theorem 1 is an extension of Theorem C in [13], because [13] dealt with the classical
Sitnikov problem (N = 2). Our proof is entirely analogous to that of [13]. Next, we need to
introduce the following proposition.

Proposition 1. By introducing the following transformation
z = 1

2 (ω
2 − 1)

1
2

ż = 2( λ+ hλ

2 ω
ω )

1
2

t = 1
4

∫
ω2 ds,

(6)

the generalized circular Sitnikov (N + 1) problem defined by (5) on Hλ(z, ż) = hλ is reformulated

dω

ds
= [(ω2 − 1)ω(λ +

hλ

2
ω)]

1
2 , (7)

or equivalently,

s =
∫ 2ι

1
[(ω2 − 1)ω(λ +

hλ

2
ω)]−

1
2 dω. (8)

Proof. Letting ω = cosh v, the former two expressions of (6) are reformulated as follows:{
z = 1

2 sinh v

ż = 2ϑ(cosh v)−1,
(9)

where ϑ = [cosh v(λ + hλ

2 cosh v)]
1
2 . Substituting (9) into (5), the Hamiltonian of the

generalized circular Sitnikov (N + 1)-body problem is reformulated as follows:

Γλ(v, ϑ) = 2(cosh v)−1[ϑ2(cosh v)−1 − λ]. (10)

Here the transformation (9) is canonical because żdz = ϑdv implies dż ∧ dz = dϑ ∧ dv.
Furthermore, defining

ι2 = z2 +
1
4
=

1
4

ω2, (11)

the third transformation of (6) is reformulated as follows:

t =
∫

ι2 ds. (12)

Again, let Γ̄λ = Γλ − hλ. Then, the Hamiltonian (10) is reformulated as follows:

Γ̃λ = ι2Γ̄λ =
1
2

ϑ2 − 1
2

cosh v(λ +
1
2

hλ cosh v). (13)

Because the transformation (12) is also canonical, the equation of motion on Γ̄ = 0 is given
by {

dϑ
ds = −∂Γ̃λ/∂v
dv
ds = ∂Γ̃λ/∂ϑ.

(14)

Owing to the second equation of (14), we have

dv

ds
= ϑ = [cosh v(λ +

1
2

hλ cosh v)]
1
2 . (15)

Moreover, (15) is transformed into

dω

ds
= [(ω2 − 1)ω(λ +

hλ

2
ω)]

1
2 .
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By taking s = 0 when ω = 1, it is just now that the infinitesimal body is at the origin.
Noticing that ω = 2ι, from (11), we have

s =
∫ 2ι

1
[(ω2 − 1)ω(λ +

hλ

2
ω)]−

1
2 dω,

which is an elliptic integral of the first kind. Thus, Proposition 1 is proved. �

Proof of Theorem 1. From Formula (8), we have

s =
∫ 2ι

1
[(ω2 − 1)ω(λ +

hλ

2
ω)]−

1
2 dω

=
∫ 2ι

1
[(ω− 1)(ω + 1)ω(λ +

hλ

2
ω)]−

1
2 dω

=

√
− 2

hλ

∫ 2ι

1
[(−2λ

hλ
−ω)(ω− 1)ω(ω + 1)]−

1
2 dω. (16)

Recall Formula 256.00 in [27] as follows:∫ y

b
[(a− x)(x− b)(x− c)(x− d)]−

1
2 dx = gF(ϕ, k). (17)

Here, a ≥ y > b > c > d and

g = 2[(a− c)(b− d)]−
1
2 ,

k2 =
(a− b)(c− d)
(a− c)(b− d)

,

ϕ = sin−1
[
(a− c)(y− b)
(a− b)(y− c)

] 1
2
, (18)

F(ϕ, k) =
∫ ϕ

0
(1− k2 sin2 θ)−

1
2 dθ. (19)

F(ϕ, k) is called the normal elliptic integral of the first kind. Moreover, by introducing the
change of variable sin θ = µ in (19), F(ϕ, k) is reformulated as follows:

ν := F(ϕ, k) =
∫ γ

0
[(1− µ2)(1− k2µ2)]−

1
2 dµ, (20)

where γ = sin ϕ. The inverse function γ = sn(ν, k) to (20) is called the sinus amplitude
Jacobi elliptic function, and sn(ν, k) is a doubly periodic function in ν of period (4K, 2iK′).
Here K = F(π

2 , k), K′ = K(k′), and k′ =
√

1− k2 (see [27]).
Let a = − 2λ

hλ , b = 1, c = 0, d = −1 and y = 2ι in Formula (17). Then, we have

g = (− λ
hλ )
− 1

2 , ϕ = sin−1
√

λ(2ι−1)
ι(2λ+hλ)

and k =
√

2λ+hλ

4λ (0 < k < 1). From Formula (17), s

can be reformulated as follows:

s =

√
− 2

hλ
gF(ϕ, k). (21)

Clearly, we notice that ν = F(ϕ, k) = s√
2/λ

from (21). Owing to (18), (20), (16) and the
inverse function γ = sin ϕ = sn(ν, k), we have

sin ϕ = sin

[
sin−1

√
λ(2ι− 1)

ι(2λ + hλ)

]
= sn

(
s√
2/λ

,

√
2λ + hλ

4λ

)
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and further obtain that

ι =
1/2

1− ( 2λ+hλ

2λ )sn2
(

s√
2/λ

,
√

2λ+hλ

4λ

) . (22)

Based on (11) and (22), we can obtain the solution of the generalized circular Sitnikov
(N + 1)-body problem for −2λ < hλ < 0, and the period T(hλ) in the variable s is also
given by 4

√
2/λK(k). Hence, based on Formula (12), the period T(hλ) in the variable t is

reformulated as follows:

T(hλ) =
∫ T(hλ)

0
dt =

∫ 4
√

2/λK

0
ι2(s)ds = 4

∫ √2/λK

0
ι2(s)ds

=
∫ √2/λK

0

[
1− (

2λ + hλ

2λ
)sn2(

s√
2/λ

,

√
2λ + hλ

4λ
)

]−2

ds

=

√
2
λ

∫ K

0
[1− ρ2sn2(ν, k)]−2 dν, (23)

where ρ2 = 2k2 = 2λ+hλ

2λ . Because −2λ < hλ < 0, we have 0 < k < 1√
2
< 1. It is clear that

k2 < ρ2 < 1. So, we apply Formula 412.07 in [27] to (23) and obtain that

T(hλ) =

√
2/λ

1− 2k2 [E(k) +
π

2
√

2(1− 2k2)
(1−Λ0(sin−1

√
−2hλ

2λ− hλ
,

√
2λ + hλ

4λ
))]. (24)

Here,

E(k) =
∫ π

2

0
(1− k2 sin2 θ)

1
2 dθ (25)

is the complete elliptic integral of the second kind. Moreover, letting β = sin−1
√
−2hλ

2λ−hλ ,
we have

Λ0(β, k) =
2(1− k2) sin β cos β

π(1− (1− k2) sin2 β)
1
2

∫ K

0
[1− k2

1− (1− k2) sin2 β
sn2ν]−1 dν, (26)

which is the Heuman Lambda Function (see Formula 150.01 in [27]).
From (25) and (26), we see that E(0) = π

2 and Λ0(β, 0) = sin β (Formula 151.01 in [27]),
respectively. Thus, when hλ → −2λ+, we have

lim
hλ→−2λ+

T(hλ) = lim
k→0

T(hλ) =

√
2
λ
[E(0) +

π

2
[1−Λ0(sin−1 1, 0)] =

π√
2λ

. (27)

In addition, from Λ0(0, k) = 0, one has

lim
hλ→0−

T(hλ) = lim
k→ 1√

2

T(hλ) = ∞. (28)

Hence, (i) and (ii) in Theorem 1 hold.
Next, we will prove (iii) in Theorem 1. We notice that dT(hλ)

dhλ = dT(hλ)
dk × dk

dhλ , and
dk

dhλ = 1
8λ (

2λ+hλ

4λ )−
1
2 > 0. Thus, it is sufficient to only consider dT(hλ)

dk > 0. Then, we first

compute dT(hλ)
dk , which needs these derivatives: dE

dk , ∂Λ0
∂β and ∂Λ0

∂k . Based on Formula 710.02
in [27], we know

dE
dk

=
E− K

k
. (29)
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Because β = sin−1
√
−2hλ

2λ−hλ = sin−1( 1−2k2

1−k2 )
1
2 , we have

dβ

dk
= − 1

(1− k2)
√

1− 2k2
.

Owing to Formula 730.04 and 710.11 in [27], we further obtain

∂Λ0(β, k)
∂β

=

√
2(E− (1− 2k2)K)

πk
(30)

and
∂Λ0(β, k)

∂k
=

√
2(E− K)

√
1− 2k2

πk(1− k2)
. (31)

Based on (29) and (31), we have

dT(hλ)

dk
=

3πk
√

1/λ(1−Λ0(β, k))

(1− 2k2)
5
2

+

√
2/λ(1 + 2k2 − 2k4)E
k(1− k2)(1− 2k2)2 −

√
2/λ(1− 3k2 + 2k4)K
k(1− k2)(1− 2k2)2

=
3πk
√

1/λ(1−Λ0(β, k))

(1− 2k2)
5
2

+

√
2/λ[(1 + 2k2 − 2k4)E− (1− 3k2 + 2k4)K]

k(1− k2)(1− 2k2)2

=
3πk
√

1/λ(1−Λ0(β, k))

(1− 2k2)
5
2

+

√
2/λ

k(1− k2)(1− 2k2)2

∫ π
2

0

ς(k)

(1− k2 sin θ)
1
2

dθ,

where ς(k) = 5k2 − 4k4 − k2(1 + 2k2 − 2k4) sin2 θ. By the fact that k ∈ (0, 1/
√

2), we
have 1− Λ0(β, k) > 0 from [27]. Clearly, we only need to prove ς(k) > 0. Let ς1(k) =
5k2 − 4k4 − k2(1 + 2k2 − 2k4) = 2k2(2− 3k2 + k4). Because 2− 3k2 + k4 > 0, we have

ς1(k) > 0 for k ∈ (0, 1/
√

2). It implies that ς(k) > 0, i.e., dT(hλ)
dk > 0. Therefore, for an

arbitrary hλ ∈ (−2λ, 0), we have T′(hλ) = dT(hλ)
dhλ > 0.

Based on all the above analyses, Theorem 1 is proved. �

Remark 1. (i) From Theorem 1, we see that the former three conclusions, (a), (b) and (c) of Theorem
C in the literature [13] can be extended to the GCSP . (ii) Notice that the origin is surrounded by a
family of periodic orbits, whose minimal periods take values from (π/

√
2λ,+∞).

3. The Existence of Odd Periodic Solutions

In this section, we intend to analyze the existence of odd periodic solutions of the
GESP for all e ∈ [0, 1) by using the global continuation method of the zeros of a function
depending on one parameter based in the Brouwer degree. For this, we introduce the
following lemma.

Lemma 1 ([19], Theorems 4.3 and 4.4). Let F: R × [a, b] 7→ R be real and analytic, and
Σ = {(x, µ) : F(x, µ) = 0} be the set of zeros of F. Assume that

(H1) Σ is bounded;
(H2) The set Σa = {(x, a) : F(x, a) = 0} is finite, and there is a isolated point (x0, a) ∈ Σa

such that ind(F(x, a), x0) 6= 0, where ind(F(x, a), x0) is the index of Brouwer at (x0, a).
Then, there is a continuum arc γ : [0, 1] 7→ Σ, γ(s) = (x(s), µ(s)) with γ(0) = (x0, a) such

that one of the following alternatives holds:
(D1) γ(1) = (x(1), b);
(D2) γ(1) = (x(1), a) with x(1) 6= x0.

For λ ∈ (0, 1] and given an integer M ≥ 1, we are going to explore the existence of
odd 2Mπ-periodic solutions of the system (2). Based on the symmetry of Equation (2), it is
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equivalent to study the existence of nontrivial solutions of the following Dirichlet problem:

z̈ +
λz

(z2 + r2(t, e))3/2 = 0, z(0) = z(Mπ) = 0. (32)

Let zλ(t; v, e) be the solution of (2) satisfying

zλ(0) = 0, żλ(0) = v.

This is a real analytic function in the arguments (t; v, e) ∈ R× R× [0, 1). Because the
nonlinearity in (2) is bounded, these solutions are globally defined in (−∞,+∞). Define

Fλ
M : R× [0, 1) 7→ R, Fλ

M(v, e) = zλ(Mπ; v, e).

Then, studying the existence of nontrivial solutions of Equation (32) for all e ∈ (0, 1) is
equivalent to studying the existence of zeros of the equation

Fλ
M(v, e) = 0, ∀e ∈ (0, 1).

3.1. Satisfiability of Hypotheses (H1) and (H2)

In this subsection, we will verify that Fλ
M(v, e) satisfies the assumptions (H1) and (H2)

of Lemma 1. For this, we have the following propositions.

Proposition 2. Let zλ(t) = zλ(t, v, e) satisfy the Dirichlet problem (32) and the set

Σλ,M = {(v, e) : Fλ
M(v, e) = zλ(Mπ, v, e) = 0}.

Then, Σλ,M is bounded.

Proof. Observe that∫ Mπ

0
żλ(t, v, e)dt = zλ(Mπ, v, e)− zλ(0, v, e) = 0. (33)

So, żλ(t, v, e) is a sign reversal function in (0, Mπ). Again assuming that τ ∈ (0, Mπ) is a
zero of żλ(t, v, e), we have

żλ(t) =
∫ t

τ
z̈λ(s)ds, t ∈ [0, Mπ].

Given a constant E and 0 < E < 1, for ∀e ∈ (0, E] we have

r(t, e) =
1
2
(1− e cos u(t, e)) ≥ 1− e

2
≥ 1− E

2
$ R(E).

So, for all ξ ∈ R, we calculate and obtain

λ|ξ|
[ξ2 + r2(t, e)]3/2 ≤

λ|ξ|
[ξ2 + R2(E)]3/2 ≤ C,

where C = C(E) is a constant associated with E.
Moreover, from the mean value theorem of integration, we have∫ t

τ
z̈λ(s)ds = z̈λ(η) · (t− τ), η ∈ (τ, t) and t ∈ [0, Mπ]. (34)
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Consequently, for all t ∈ [0, Mπ], we obtain

|żλ(t)| = |z̈λ(η)||t− τ| ≤ λ|zλ(η)|
[(zλ(η))2 + r2(t, e)]3/2 Mπ ≤ CMπ.

Thus, we have |żλ(0)| = |v| ≤ CMπ for t = 0, which shows that Σλ,M is bounded. �

Proposition 3. Let Σλ,M
0 = {(v, 0) : Fλ

M(v, 0) = 0}. Then, Σλ,M
0 is finite and there is

(v0, 0) ∈ Σλ,M
0 satisfying ind(Fλ

M(·, 0), v0) 6= 0.

Proof. Considering the zeros of Fλ
M(·, 0), we only need to study the solutions of the follow-

ing Dirichlet problem:

z̈ +
λz

(z2 + 1/4)3/2 = 0, z(0) = z(Mπ) = 0. (35)

From Equation (5), we know that 0 < v < 2
√

λ. Let zλ(t, v, 0) be a periodic solution
with the minimal period Tλ(v) of Equation (4). Based on (5) and the third item (iii) of
Theorem 1, we have

dTλ

dv
=

dTλ

dhλ
· dhλ

dv
> 0, (36)

where hλ = 1
2 v2 − 2λ. So, Tλ(v) is an increasing function in v.

By the symmetry, zλ(t; v, 0) is also a solution of the boundary problem (35) if and
only if there is an integer p ≥ 1 such that Tλ(v)/2 = Mπ/p. From (ii) of Theorem 1
and Formula (36), we have inf Tλ(v) = π/

√
2λ. Therefore, 2Mπ/p > π/

√
2λ holds.

Moreover, we obtain p < 2
√

2λM. Let ν = νM,λ = [2
√

2λM] and vλ
1,M > ... > vλ

ν,M > 0
be the solutions of Tλ(v)/2 = Mπ/p with p = 1, ..., νM,λ. It is clear that M must satisfy
M ≥ [ 1

2
√

2λ
].

Based on the symmetry of Equation (2), denote

Σλ,M
0 = {−vλ

1,M, ...,−vλ
νM,λ ,M, 0, vλ

νM,λ ,M, ..., vλ
1,M}.

Because Tλ(v) is an increasing function in v, we have

zλ(Mπ, v, 0) > 0 if v > vλ
1,M close to vλ

1,M,

zλ(Mπ, v, 0) < 0 if v < vλ
1,M close to vλ

1,M.

From here, we obtain ind(Fλ
M(·, 0), vλ

1,M) = 1. Furthermore,

ind(Fλ
M(·, 0), vλ

p,M) = (−1)p+1. (37)

Similarly, we can also compute the indices for −vλ
p,M because of the symmetry.

Next, we compute the index at 0. Let y(t) be a solution of the following varia-
tional equation:

ÿ + 8λy = 0, y(0) = 0 and ẏ(0) = 1.

Noting that ∂Fλ
M

∂v (0; 0) = y(Mπ), we have

ind(Fλ
M(·, 0), 0) = sign(sin(2

√
2λMπ)) = (−1)νM,λ .

To sum up, when e = 0, there exist νM,λ nontrivial, odd, and 2Mπ-periodic solutions
of (35) with żλ(0) > 0, where M ≥ [ 1

2
√

2λ
]. Then, they can be labeled by the number of
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zeros of zλ(t) in (0, Mπ) for p = 1, . . . , νM,λ. Moreover, the index of each of these solutions,
ind(Fλ

M(·, 0), vλ
p,M), is ± 1. �

Remark 2. From Propositions 2 and 3, we can see that Fλ
M satisfies the hypotheses (H1) and (H2)

of Lemma 1.

3.2. Main Results

In this subsection, we will apply Lemma 1 to prove the existence of odd periodic solu-
tions of the GESP for all e ∈ [0, 1). For this, we need to introduce the following definition.

Definition 1 ([28], Definition 2). Let G∗ be a connected component of Σλ,M (which is actually
arcwise connected because Fλ

M is analytic). Then,

G := {zλ(t, v, e) : (v, e) ∈ G∗}

is a global family of solutions of (2), and G∗ is the connected component associated with G.

Proposition 4. For each fixed λ ∈ (0, 1] and M ≥ [ 1
2
√

2λ
], let (zλ

n(t), en) be a sequence of

solutions of (2) satisfying zλ
n(0) = zλ

n(Mπ) = 0, żλ
n(0) → 0, żλ

n(0) 6= 0, en → e0 < 1. Then,
for large n, the number of zeros of zλ

n(t) in (0, Mπ) is equal to the number of zeros of in the same
interval of the nontrivial solutions of

ÿ +
λ

r3(t, e0)
y = 0.

Proof. By the continuous dependence of the solution on the initial value, one has zλ
n(t) →

0 uniformly in [0, Mπ]. Then, let vλ
n(t) = zλ

n(t)/żλ
n(0) and vλ

n(t) satisfy the following
equations:

v̈n +
λ

(z2
n + r2(t, en))3/2 vn = 0, vn(0) = 0 and v̇n(0) = 1.

Moreover, from the continuous dependence of the solution on the parameters, we obtain
that vλ

n(t) converges in C1[0, Mπ] to the solution yλ(t) of the following equation

ÿ +
λ

r3(t, e0)
y = 0, y(0) = 0 and ẏ(0) = 1.

It is clear that vλ
n(0) = vλ

n(Mπ) = 0. So, it holds that yλ(0) = yλ(Mπ) = 0. Because vλ
n(t)

and yλ(t) are analytic, the zeros of vλ
n(t) and yλ(t) are isolated, and their number of zeros

must be finite in any bounded closed interval. Then, there exists a small enough positive
δ such that vλ

n(δ), yλ(δ), vλ
n(Mπ − δ) and yλ(Mπ − δ) are not equal to zero. Furthermore,

the number of zeros of yλ(t) (resp. vλ
n(t)) in [δ, Mπ − δ] is the same as in (0, Mπ). Because

vλ
n → y, v̇λ

n → ẏ uniformly, and all the zeros of yλ(t) are nondegenerate, we deduce that
vλ

n(t) and yλ(t) have the same number of zeros in [δ, Mπ− δ] for large n. That is, zλ
n(t) and

yλ(t) have the same number of zeros in (0, Mπ). �

Proposition 5. For each fixed λ ∈ (0, 1] and M ≥ [ 1
2
√

2λ
], we assume that for both the following

Dirichlet problem:

ÿ +
λ

r3(t, e)
y = 0, y(0) = y(Mπ) = 0 (38)

and (32) nontrivial solutions exist. Then, the number of zeros of any nontrivial solution of (32) in
(0, Mπ) is less than that of (38).
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Proof. Let yλ(t) be a solution of (38) with ẏλ(0) > 0, and assume that yλ(t) has k1 zeros in
(0, Mπ). Then, we introduce polar coordinates yλ(t) + iẏλ(t) = ρλeiθλ in (38) and find that
the argument θλ satisfies

θ̇λ = − λ

r3(t, e)
cos2 θλ − sin2 θλ, θλ(0) =

π

2
. (39)

Because θ̇λ is always negative, one has θλ(Mπ) = −π
2 − k1π.

Again, let zλ(t) be a nontrivial solution of (32) for each fixed e and have k2 zeros in
(0, Mπ). Obviously, zλ(t) is also a solution of the following linear equation:

ÿ + λaλ(t)y = 0, aλ(t) := [(zλ)2(t) + r2(t, eλ)]−3/2. (40)

Moreover, the corresponding argument ψλ(t) with zλ + iżλ = Rλeiψλ satisfies

ψ̇λ = −λaλ(t) cos2 ψλ − sin2 ψλ, ψλ(0) =
π

2
. (41)

From the definition of aλ(t), we can obtain

λaλ(t) ≤
λ

r3(t, eλ)
, t ∈ [0, Mπ],

and this inequality is strict except for the zero of zλ(t). Thus, ψλ(t) is an upper solution
of (39) and

θλ(t) < ψλ(t), ∀t ∈ (0, Mπ].

From ψλ(Mπ) = −π
2 − k2π, we have k2 < k1, which implies that Proposition 5 is proved.

�

From Propositions 2 and 3, we see that Σλ,M is bounded and ind(Fλ
M(·, 0), vλ

p,M) 6= 0.

Moreover, there is a unique vλ
p,M ∈ Σλ,M

0 ∩ (0,+∞) with Tλ(vλ
p,M)/2 = Mπ/p, where

p ≤ νM,λ. Thus, the solution of (4) with the initial value z(0) = 0 and ż(0) = vλ
p,M is odd

2Mπ-periodic and has exactly p− 1 zeros in (0, Mπ).
Afterward, we will further infer that there exists a continuous family {(vλ(s), es)}s∈[0,1]

in R× [0, 1− ε] such that

Fλ
M(vλ(s), es) = 0, vλ(0) = vλ

p,M and e0 = 0,

and either
e1 = 1− ε (42)

or
e1 = 0, vλ(1) 6= vλ

p,M. (43)

For e = es, let zλ
s (t) be the solution of (2) that satisfies zλ

s (0) = 0 and żλ
s (0) = vλ(s).

In addition, for ∀s ∈ [0, 1], we see that zλ
s (t) = −zλ

s (−t) and zλ
s (t + 2Mπ) = zλ

s (t). Then,
we consider the following two cases.

Case 1. ∀s ∈ [0, 1], żλ
s (0) 6= 0.

Assuming żλ
s (0) > 0, we notice that zλ

0 (t) has p− 1 zeros in (0, Mπ). Furthermore,
for any sufficiently small positive ε, zλ

s (t) ∈ C1[ε, Mπ − ε] and satisfies

(i) ∀s ∈ [0, 1], zλ
s (ε) 6= 0, zλ

s (Mπ − ε) 6= 0.
(ii) ∀s ∈ [0, 1], zλ

s (t) is nontrivial, and the zeros of zλ
s (t) are nondegenerate.

(iii) (t, s) ∈ [ε, Mπ − ε]× [0, 1] 7→ (zλ
s (t), żλ

s (t)) is continuous.
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Thus, from Lemma 7.2 in the literature [19], we obtain that the number of zeros of zλ
s (t)

in [ε, Mπ − ε] is independent of s, implying that the number of zeros of zλ
s (t) in (0, Mπ) is

also independent of s. Then, for arbitrary s ∈ [0, 1], zλ
s (t) has p− 1 zeros in (0, Mπ).

If the first alternative (42) holds, then we have es → 1− ε and żλ
s (0)→ v > 0. In this

condition, the second alternative (43) cannot occur. Otherwise, e1 = 0 and vλ(1) 6= vλ
p,M.

Based on vλ(1) ∈ Σλ,M
0 ∩ (0,+∞), we obtain vλ(1) = vλ

q,M for some q 6= p, implying that

zλ
1 (t) has q− 1 zeros in (0, Mπ). So, there is a contradiction.

Let the set A = {(vλ(s), es) : s ∈ [0, 1], es ∈ [0, 1)} be a connected subset of Σλ,M and
A∗p,M,λ be the connected component of Σλ,M containingA. Based on the above analysis, we

obtain that each solution in Ap,M,λ = {zλ(t, v, e) : (v, e) ∈ A∗p,M,λ} is odd 2Mπ-periodic
and has p− 1 zeros in (0, Mπ). Letting Proy2(v, e) = e, we have Proy2(A∗p,M,λ) = [0, 1).

Case 2 . żλ
s (0) vanishes for some s ∈ [0, 1].

Let σ be the first zero of żλ
s (0). Then, we have

żλ
s (0) > 0, if s ∈ [0, σ) and żλ

σ(0) = 0.

Now we consider the family {ẑλ
s , ês}s∈[0,1) with ẑλ

s = zλ
sσ and ês = esσ. For ∀s ∈ [0, 1],

we have ˙̂zλ
s (0) > 0. From Case 1, we further know that ẑλ

s (t) has p− 1 zeros in (0, Mπ).
The definition of σ implies that lim

s→1−
ês = eσ ∈ [0, 1− ε] and lim

s→1−
ẑλ

s (t) = 0. Owing to

Proposition 4, we conclude that the equation

ÿ +
λ

r3(t, eσ)
y = 0

has a nontrivial odd 2Mπ-periodic solution with p− 1 zeros in (0, Mπ).
Similar to Case 1, let the set B = {(vλ

sσ, esσ) : s ∈ [0, 1), esσ ∈ [0, eσ)} be a connected
subset of Σλ,M and B∗p,M,λ be the connected component of Σλ,M containing B. Hence,

all of the solutions in Bp,M,λ = {zλ(t, v, e) : (v, e) ∈ B∗p,M,λ} are odd 2Mπ-periodic and
have p − 1 zeros in (0, Mπ). Because [0, eσ) ⊂ Proy2(B∗p,M,λ) and eσ /∈ Proy2(B∗p,M,λ),
from Proposition 5, we have Proy2(B∗p,M,λ) = [0, eσ) with eσ < 1.

Above all, we have the following main theorem of our paper.

Theorem 2. Let G∗p,M,λ be the connected component of Σλ,M. For each fixed λ ∈ (0, 1], M ≥ [ 1
2
√

2λ
]

and p = 1, ..., ν, there exists a global family Gp,M,λ := {zλ(t, v, e) : (v, e) ∈ G∗p,M,λ} of nontrivial
solutions of (2), and G∗p,M,λ is the connected component associated with Gp,M,λ. Moreover,

(1) all solutions of Gp,M,λ are odd 2Mπ-periodic and have p− 1 zeros in (0, Mπ).
(2) G∗p,M,λ ∩ {e = 0} = {(vλ

p,M, 0)} and one of the following alternatives holds:
(2.a) Proy2(G∗p,M,λ) = [0, 1);
(2.b) Proy2(G∗p,M,λ) = [0, Eλ) with Eλ < 1.

Remark 3. (i) If Gp,M,λ satisfies (2.a), then the family continues for all values of e ∈ [0, 1).
(ii) If Gp,M,λ satisfies (2.b), then it ends in the equilibrium z = 0 at a value of eccentricity Eλ.
Additionally, the linear differential equation

ÿ +
λ

r3(t, Eλ)
y = 0 (44)

has a nontrivial odd 2Mπ-periodic solution with exactly p− 1 zeros in the interval (0, Mπ).

Next, we consider the options of (2.a) and (2.b) of Theorem 2 and have the follow-
ing theorem.
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Theorem 3. For any k ∈ N and λ ∈ (0, 1], we assume that k, M and λ satisfy k < M, and
(M−k)2

M2 ≤ λ < (M−k+1)2

M2 . So, one has

(1) if 1 ≤ p < M− k + 1, then statement (2.a) of Theorem 2 holds;
(2) if p ≥ M− k + 1, then ρM < 1− ε and (2.b) of Theorem 2 holds, Eλ > ρM, where

ρM = min{2(M
ν
)2/3 − 1, 1− 2(

M
ν + 1

)2/3}.

In order to prove Theorem 3, we introduce the following lemma.

Lemma 2 ([19,29]). Assume that a(t) is continuous, 2Mπ-periodic and for some n ≥ 0 satisfies

(
n
M

)2 ≤ a(t) ≤ (
n + 1

M
)2, f or all t ∈ R,

where both inequalities are strict somewhere. Then, ÿ + a(t)y = 0 has no 2Mπ-periodic solution
(excepting y ≡ 0).

Proof of Theorem 3. Notice that ζ(t) = sin
√

λt is a nontrivial odd-periodic solution of
the equation

ζ̈ + λζ = 0. (45)

For k ∈ N, k < M and k, M satisfying (M−k)π√
λ
≤ Mπ < (M−k+1)π√

λ
, i.e., (M−k)2

M2 ≤ λ <

(M−k+1)2

M2 and λ ∈ (0, 1], we obtain that ζ(t) has M − k + 1 zeros in [0, Mπ]. Moreover,
because λ

r3(t,Eλ)
> λ, we apply the Sturm comparison theory and derive that the nontrivial

odd-periodic solutions of (44) have at least M− k zeros in (0, Mπ). However, if p− 1 <
M− k, then there is no 2Mπ-periodic solution of (44). Thus, if 1 ≤ p < M− k + 1, we can
conclude that statement (2.a) of Theorem 2 holds from Remark 3.

In addition, if p− 1 > M− k and (2.b) of Theorem 2 holds, then we have Eλ > ρM,
where ρM = min{2(M

ν )2/3 − 1, 1 − 2( M
ν+1 )

2/3} and ρM < 1 − ε. Otherwise, Eλ ≤ ρM.

Because (1−Eλ)
2 ≤ r(t, Eλ) ≤ (1+Eλ)

2 , we have

(
ν
√

λ

M
)2 ≤ 8λ

(1 + Eλ)3 ≤
λ

r(t, Eλ)3 ≤
8λ

(1− Eλ)3 ≤ (
ν + 1

M
)2λ ≤ (ν

√
λ + 1)2

M2 .

Letting n = ν
√

λ in Lemma 2, we obtain that Equation (44) has no 2Mπ-periodic solution.
However, we note that there is a contradiction from the item (ii) of Remark 3. So, if p ≥
M− k + 1, ρM < 1− ε and (2.b) of Theorem 2 holds, then Eλ > ρM. �

Remark 4. When k = 0, we have the only choice λ = 1, i.e, the generalized elliptic Sitnikov
(N + 1)-body problem is just the Sitnikov problem. At this time, there exist the odd 2Mπ-periodic
solutions with no zeros in (0, Mπ) for all e ∈ [0, 1), which is in accordance with the conclusion in
the literature [20].

4. Conclusions

In this paper, we studied the existence of the families of odd symmetric periodic
solutions in the generalized elliptic Sitnikov (N + 1)-body problem for all values of the
eccentricity e ∈ [0, 1) using the global continuation method. We first studied the properties
of the period of the solution of the generalized circular Sitnikov (N + 1)-body problem
(e = 0) using elliptic functions. Then, based on these properties of the period and applying
the global continuation method of the zeros of a function depending on one parameter,
the existence of odd periodic solutions was obtained for all e ∈ [0, 1). Specifically, according
to the symmetry of the equation, the existence of an odd family of symmetric periodic
solutions was transformed into the existence of solutions of the corresponding Dirichlet
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problem. Moreover, we defined an analytical function Fλ
M such that the existence of the

solutions of the Dirichlet problem is equivalent to the existence of the zero point of Fλ
M. It

was finally verified that Fλ
M satisfied the basic assumptions of the global continuation theo-

rem, implying the existence of the odd family of symmetry periodic solutions. Meanwhile,
the theoretical result showed that the temporal frequencies of periodic solutions depend
on the total mass λ (or the number N) of the primaries in a delicate way. Moreover, it is
believed that these results have important significance and practical value for the design
and control of satellite orbital motion in the field of aviation.

One of our plans for future work is to investigate the stability of these symmetric
periodic solutions in the generalized elliptic Sitnikov (N + 1)-body problem.
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