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Abstract: In this paper, we use an algebraic approach to classify cylindrically symmetric static
spacetimes according to their killing vector fields. This approach is based on using a maple algorithm
to re-cast the Killing’s equations into a reduced involutive form and integrating the Killing’s equations
subject to the constraints given by the algorithm. It is shown that this approach provides some
additional spacetime metrics, which were not provided previously by solving the Killing’s equations
using a direct integration technique. To discuss some physical implications of the obtained spacetime
metrics, we use them in the Einstein equations and discuss their significance.
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1. Introduction

Since the pioneering work of Newton in 1687, the study of gravity and its impact has
been the focus of discussions by mathematicians and physicists. According to Newton, his
theory of gravity is based mainly on two important elements involving the discussion of
equations for a gravitational field and a corresponding response of matter to the gravita-
tional field [1]. In 1916, Einstein came up with his theory of general relativity (GR), in which
he revolutionized the Newtonian concept of force into a purely geometric concept. Accord-
ing to GR, the concept of gravitational force is interpreted in terms of curvature, in that
the presence of matter in spacetime geometry produces curvature, and, in turn, curvature
dictates how motions of test particles take place in that geometry. In addition, the GR nicely
explains several phenomena, such as the perihelion advance of the planet Mercury—which
was not explained precisely by Newtonian gravity—the gravitational deflection of light,
and the existence of gravitationally compact objects such as black holes [1,2]. As for GR, it
defines spacetime dynamics and related concepts in terms of a highly non-linear coupled
system of Einstein’s field equations (EFEs) [3],

Gab = Rab −
1
2

gabR = κTab, (1)

where Rab, gab, and Tab respectively denote Ricci, metric, and stress energy tensor compo-
nents, while R represents trace of the Ricci tensor and κ a coupling constant. Physically,
the EFEs describe how the distribution of matter is related to the presence of matter and
energy in the spacetime. From their construction, the EFEs constitute a complex system of
10 highly non-linear coupled systems of partial differential equations. Due to this non-linear
nature, these equations pose a serious challenge in finding their exact solutions [3,4]. It
is because of this non-linear nature that very few physically interesting exact solutions
of these equations are available in the literature [2]. Nevertheless, if we choose EFEs (1)
to define the arbitrary stress energy momentum tensor, then any metric will represent
some solution of these equations. However, not all such solutions are meaningful because
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the corresponding energy–momentum tensor may be highly non-physical. Therefore, in
order to obtain physically interesting solutions, one would expect certain restrictions to
be satisfied by the spacetime metric gab representing those solutions. These restrictions
are defined in terms of Killing’s vector fields (KVFs) [3]. In GR, a variety of symmetries
are discussed which are of great interest in the subject [3]. Of these symmetries, the most
fundamental one is given by a KVF. A KVF plays a pivotal role in spacetime physics by
preserving the spacetime metric and providing certain conservation laws [3]. Apart from
KVFs, some other well-known and physically interesting symmetries in GR are given by
Ricci collineations (RCs), which preserve the Ricci tensor; matter collineations (MCs), which
preserve the energy–momentum tensor; and curvature collineations (CCs), which preserve
the curvature tensor. All these symmetries are defined by requiring that the Lie derivative
of metric, Ricci, energy–momentum, and Riemann tensors is zero along a certain vector
field [3]. Since our interest in this paper is to study symmetries given by Killing’s vector
fields, we focus our attention to KVFs only. As stated above, a KVF is vector along which
the Lie derivative of a metric tensor gab is zero. In other words, a KVF defines a smooth
vector field which preserves a spacetime metric. In mathematical terms, ξ is called a KVF if,

Lξ gab = 0. (2)

In addition, a Lie derivative may also preserve a spacetime metric up to a conformal
factor times the metric itself. Such a symmetry is defined by a conformal Killing vector
field (CKVF). In mathematical terms, a vector ξ defines a CKVF if it satisfies the conformal
Killing’s equation,

Lξ gab = 2α(x)gab, (3)

where α is some real valued function. The vector field ξ becomes a KVF if α = 0 in (3).
Moreover, if α is a constant in (3), then the vector field ξ defines a homothetic vector field.
In (3), if gab is replaced by Rab, it defines a conformal RC, which reduces an RC if α = 0
in (3). In case gab = Rab and α is an arbitrary constant in (3), then ξ becomes a homothetic
RC [3]. Similarly, we can define a conformal MC if gab is replaced by Tab in (3). The main
purpose of this paper is to discuss the KVFs; therefore, we will focus our discussion on
KVFs only. The KVFs are solutions of the Killing’s Equation (2), which comprises a system
of 10 coupled first-order partial differential equations defined in terms of four unknown
functions of four variables. In a coordinate system, the Killing’s equations (in a convenient
form) become [5],

Lξ gab = gacξc
,b + gcbξc

,a + gab,cξc = 0 (4)

In a 4-spacetime geometry, the maximum number of KVFs is 10 when the spacetime
time metric is flat or of constant curvature. However, when the spacetime geometry is
non-flat, one expects less than maximal KVFs. For example, in a cylindrically symmetric
spacetime geometry, there exists a minimal symmetry group of 3 KVFs while the maximal
symmetry group is given by 10 KVFs [6].

To signify the importance of KVFs and their relationships with other well-known
symmetries, we briefly overview some recent literature. Bokhari et al. classified spherically
symmetric static spacetimes according to their KVFs [7,8]. In their work, they showed that
a general static spherically symmetric spacetime metric can provide a Killing symmetry
group of dimensions 10, 7, 6, or 4 only. Given that the method developed gave an inter-
esting classification, the same authors extended their investigations to the study of the
symmetry classification problem for both RC and CC symmetries for a spherically symmet-
ric spacetime and obtained interesting relationships between KVFs, RCs, and CCs [9,10]. In
2008, Moopanar and Maharaj discussed CKVFs and published their investigations in [11].
Continuing their work, the same authors published an interesting result in 2010 [12]. In
this work, they obtained a general conformal Killing symmetry without specifying the
form of the matter distribution, thus showing that their previous result was a special case
of the current one. In addition, they showed that there exists a hypersurface orthogonal
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conformal KVF in an exact solution of Einstein’s equations for a relativistic fluid which is
expanding, accelerating, and shearing.

Although the investigations discussed above are quite significant, they are restricted
to static spacetime geometries. In GR, non-static spacetimes are also of great interest from
the cosmological point of view. In this context, various non-static spacetime geometries are
discussed according to their KVFs. Of significant interest is an extensive work by Hussain
et al. on non-static spherically symmetric spacetimes and their conformal Ricci collineations
in 2019 [13].

The spacetime geometry endowed with a cylindrically symmetric metric has also
been discussed and studied by many researchers. In 1998, Bokhari et. al. extended the
idea of KVFs to present a complete classification of curvature collineations of cylindrically
symmetric spacetimes [14,15]. In 2002, they extended their investigations of KVFs to
discuss matter collineations of a specific metric admitting static cylindrical symmetry by
showing that the considered metric admits proper matter collineations [16]. In 2004, Sharif
provided symmetries of the energy momentum tensor of cylindrically symmetric static
spacetimes [17]. They found that, in the non-degenerate case, the energy–momentum
tensor would admit 3, 4, 5, 6, 7, and 10 matter collineations, in which three will represent
isometries [17]. In 2007, Shabbir et al. presented a classification of cylindrically symmetric
static spacetimes by their homothetic vector fields, concluding that the homothetic vector
fields admitted by the metrics of this spacetime were 4, 5, 7, and 11 only. In the same year,
Ziad et al. published an interesting work on the classification of cylindrically symmetric
static spacetimes by their isometries and provided a complete set of metrics obtained in their
classification and their corresponding Lie algebras [6]. Extending their work on KVFs [18],
Farhad studied the conservation laws of cylindrically symmetric vacuum solutions of
Einstein field equations in the presence of the Noether theorem [19]. Feroze extended
their work to obtain a complete classification of cylindrically symmetric static spacetimes
according to Conservation Laws [20].

Given that the cylindrically symmetric static spacetimes are of interest [21], we re-
address the classification of cylindrically symmetric spacetimes by their KVFs using a new
approach, known as the Rif tree approach. This approach is based on an algorithm (set of
commands), called the Rif algorithm, that is developed using the Exterior package in Maple
plate form. First of all, one needs to load the Exterior package, that is, “With(Exterior)”. The
next step is to insert the system of differential equations which we want to convert to the
simplified form using the command “sys{DEs}”. In our case, these differential equations
are the Killing’s equations. In the third step, the command “symmetry, eq: = findsymmetry”
is used to analyze the system of Killing’s equations and to find all the required conditions
on metric functions under which the spacetime under consideration may admit Killing
symmetries other than the minimum ones. As a result, the algorithm displays all such
conditions on the metric functions. It is very useful to view these conditions graphically,
and the command “caseplot(eq, pivots)” is used for this purpose. This graphical view is
given in terms of a tree (called a Rif tree), whose branches signify the conditions on the
metric functions under which the spacetime may admit KVFs other than the minimum
ones. After that, one needs to solve the set of Killing’s equations under the conditions given
by the branches of the Rif tree, giving the explicit form of KVFs.

While using the Rif algorithm, ordering of the dependent and independent variables
is of great significance, as the complexity of the resulting Rif tree depends on this ordering.
As such, there is no general rule that can be helpful in ordering variables to obtain a
simplified Rif tree. In our problem, after trial and error, it is observed that the ordering
X0 > X1 > X2 > X3 for dependent and t > ρ > θ > z for independent variables
produces the most simplified Rif tree. More recently, the Rif tree approach has also been
used in another study relating to a classification problem of KVFs, showing that additional
spacetime metrics were obtained there, which were not found previously [22]. Based on
this, we re-address the classification of KVFs of cylindrically symmetric static spacetimes
using the Rif tree approach. We show that, although these spacetimes admit 3, 4, 5, 6, 7,
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and 10 KVFs only, some additional spacetime metrics are obtained, which were not given
previously by using a direct integration technique.

2. Killing’s Equations

Spherical and cylindrical symmetries are the simplest symmetries among the well-
known spacetime symmetries studied in the literature. Both these symmetries are used
to make it possible to find many exact solutions of Einstein’s field equations. Between
these two symmetries, cylindrical symmetry is more important in the sense that it gives
rise to the existence of linearly extended structures such as cosmic strings and the observed
cosmic jets. Since the development of general relativity, many cylindrically symmetric
static solutions have been obtained, for example vacuum, electrovacuum, and perfect fluid
solutions. The general cylindrically symmetric static metric is given by the expression [6]:

ds2 = −A(ρ)2dt2 + dρ2 + B(ρ)2dθ2 + C(ρ)2dz2, (5)

where A, B, and C are non-zero functions of the variable ρ. The minimum KVFs admitted
by this metric are ∂t, ∂θ , and ∂z. If A = B = C = 1, the metric admits maximal symmetry
given by ten KVFs. Moreover, for B = C, the above metric becomes a plane symmetric
static metric which has been completely classified according to KVFs using the Rif tree
approach. Using the above metric in the Killing’s equations, (4), we obtain the following
system of ten differential equations:

A′(ρ)ξ1 + A(ρ)ξ0
,0 = 0 (6)

A(ρ)2ξ0
,1 − ξ1

,0 = 0 (7)

A(ρ)2ξ0
,2 − B(ρ)2ξ2

,0 = 0 (8)

A(ρ)2ξ0
,3 − C(ρ)2ξ3

,0 = 0 (9)

ξ1
,1 = 0 (10)

ξ1
,2 + B(ρ)2ξ2

,1 = 0 (11)

ξ1
,3 + C(ρ)2ξ3

,1 = 0 (12)

B′(ρ)ξ1 + B(ρ)ξ2
,2 = 0 (13)

B(ρ)2ξ2
,3 + C(ρ)2ξ3

,2 = 0 (14)

C′(ρ)ξ1 + C(ρ)ξ3
,3 = 0 (15)

The above system of Killing’s equations has been completely classified previously by
using a direct integration technique [6], showing that the spacetime admitted only 3, 4, 5, 7,
and 10 KVF algebra. In the present study, we re-address this problem by using a different
approach, known as the Rif tree approach. As stated in the introduction, this approach
is based on using the ten Killing’s equations in an algorithm developed in Maple, which
produces all possible metrics for which the above Killing’s Equations (6)–(15) are to be
solved. We show that this approach provides additional spacetime metrics, which were not
given previously by using a direct integration technique [6].

3. Classification of KVFs

In this section, we use a computer algorithm to transform the system of
Equations (6)–(15) into the reduced involutive form. As a result, we obtain the Rif tree
given in Figure 1.
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Figure 1. Rif Tree.

The nodes of the Rif tree are called pivots, which are given by:

P1 = B′(ρ) (16)

P2 = A′(ρ)

P3 = C′(ρ)

P4 = A′(ρ)2 − A(ρ)A′′(ρ)

P5 = B′(ρ)2 − B(ρ)B′′(ρ)

P6 = C′(ρ)2 − C(ρ)C′′(ρ)

P7 = A′(ρ)A′′(ρ)− A(ρ)A′′′(ρ)

P8 = A′(ρ)B′(ρ)− A′′(ρ)B(ρ)

P9 = C′(ρ)C′′(ρ)− C(ρ)C′′′(ρ)

P10 = B′(ρ)B′′(ρ)− B(ρ)B′′′(ρ)

P11 = B′(ρ)C′(ρ)− C′′(ρ)B(ρ)

P12 = A′(ρ)C′(ρ)− A′′(ρ)C(ρ)

The branches of the Rif tree along with these pivots provide a complete set of con-
straints satisfied by the metric functions appearing in (5). The symbols = and <> appearing
in the Rif tree denote whether the corresponding pivot is zero or non-zero. For example
in branch 1, p1, p2, p3, and p4 are non-zero, that is, B′(ρ) 6= 0, A′(ρ) 6= 0, C′(ρ) 6= 0
and A′(ρ)2 − A(ρ)A′′(ρ) 6= 0. Similarly, the constraints of branch 2 are p1 6= 0, p2 6=
0, p3 6= 0, p4 = 0, and p5 6= 0. In the light of these conditions, we solve the ten Killing’s
Equations (6)–(15) for each branch of the Rif tree to find the explicit form of KVFs. Since the
procedure is quite lengthy but straightforward, we therefore restrict ourselves to mainly
giving the results only. However, to show some procedural steps, we discuss one case
arising from branch 1 of the Rif tree with brief detail. Integrating (10) with respect to
ρ gives:

ξ1 = g1(t, θ, z). (17)

Integrating Equations (7), (11), and (12) over ρ and using the above value of xi1 gives:

ξ0 =g1
t

∫ 1
A(ρ)2 dρ + g0(t, θ, z) (18)

ξ2 =− g1
θ

∫ 1
B(ρ)2 dρ + g2(t, θ, z)

ξ3 =− g1
z

∫ 1
C(ρ)2 dρ + g3(t, θ, z)

It can be noted from branch 1 that P1 = B′ 6= 0, P2 = A′ 6= 0, P3 = C′ 6= 0, and
P4 = A′2 − AA′′ 6= 0. Substituting (17) and (18) in Equation (6) and differentiating it twice
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with respect to ρ, we have (AA′′′ − A′A′′)g1 = 0. This provides two possibilities, namely,
(i) AA′′′ − A′A′′ = 0; g1 6= 0; and (ii) AA′′′ − A′A′′ 6= 0; g1 = 0. We first consider case
(i). Integrating (i) gives A = m1ek1ρ + m2e−k1ρ. However, this case leads to a contradiction,
namely, g1 = 0. Therefore, we do not discuss this case any further.

Now we consider case (ii), which reduces Equations (17) and (18) to:

ξ0 =G1(θ, z) (19)

ξ1 =0

ξ2 =g2(t, θ, z)

ξ3 =g3(t, θ, z)

Now, using above results in Equations (13) and (15), we obtain:

ξ0 =G1(θ, z) (20)

ξ1 =0

ξ2 =F(t, z)

ξ3 =M(t, θ)

Substituting the above in Equation (8) gives rise to two sub cases (a) A = B and (b)
A 6= B. In case (a), two more sub cases arise: A = B = C and A = B 6= C. In the first case,
we obtain six KVFs, while the second case leads to a contradiction. Lastly, considering case
(b), we again obtain two sub cases, namely, C = A 6= B and C 6= A 6= B. In the former
case, we obtain four KVFs, while the latter one provides the minimal symmetry given by
three KVFs.

In next sections, we mainly provide results without giving detailed calculations. For
case (a), the obtained six KVFs were: X1 = ∂t, X2 = ∂θ and X3 = ∂z, which are the
minimum KVFs with X4 = θ∂t + t∂θ , X5 = z∂t + t∂z, X6 = z∂θ − θ∂z being additional.
However, in Case (b), when C = A 6= B, there are four KVFs: the minimum three KFVs
and X4 = θ∂t + t∂θ . Note that, in the last case, we had only three minimum KVFs.

3.1. Three KVFs

In this section, we provide the list of all metrics admitting three KVFs: X1 = ∂t,
X2 = ∂θ , and X3 = ∂z. The minimum KVFs are obtained in 15 branches of the Rif tree,
namely, 1–7, 10–13, and 15–18. The corresponding branches, along with their metric
functions satisfying certain conditions, are presented in Table 1. For the three KVFs case,
earlier authors [23] missed some of the metrics, given in branches 13, 15, and 16, in their
classification scheme. For completeness, we also provide expressions for the energy density
for all the spacetime metrics in Table 1.

Table 1. Metrics Admitting Three KVFs.

Branch Metric Functions Energy Density

1 A = A(ρ), B = B(ρ), C = C(ρ), AA′′′ − A′A′′ 6=
0.

ρ = −A2(C′B′+BC′′+CB′′)
BC

2 A = m1ek1ρ, C 6= A, C 6= B, BB′′′ − B′B′′ 6= 0 ρ =
−m2

1e2k1ρ(C′B′+CB′′+BC′′)
BC

3 A = m1ek1ρ, B = m2ek2ρ, k1 6= k2, CC′′′ − C′C′′ 6= 0 ρ =
−m2

1e2k1ρC′′
C

4 A = m1ek1ρ, B = m2ek2ρ, C = m3ek3ρ, k1 6= k2 6= k3 ρ = 0
5 A = A(ρ), B = B(ρ), C = const., A′ 6= 0, B′ 6= 0,

AA′′′ − A′A′′ 6= 0, B 6= γA
ρ = −A2B′′

B
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Table 1. Cont.

Branch Metric Functions Energy Density

6 (i) A = m1ek1ρ + m2e−k1ρ, m1 6= 0,m2 6= 0, B′′ 6=, 0
BB′′′ − B′B′′ 6= 0, C = const.

ρ = −(m1ek1ρ+m2e−k1ρ)2B′′
B

(ii) A = m3ρ + m4, m3 6= 0, B′′ 6= 0,
BB′′′ − B′B′′ 6= 0, C = const.

ρ =
−(m3ρ+m4)2B′′

B

7 A = m1ek1ρ, BB′′′ − B′B′′ 6= 0, C = const. ρ = 0
10 A = const., B 6= C, B′′ 6= 0, BB′′′ − B′B′′ 6= 0 ρ = −(C′B′+BC′′+CB′′)

BC
11 (i) A = const., B = B(ρ), C = m1ek1ρ + m2e−k1ρ,

where m1 and m2 are not simultaneously zero.
(ii) A = const., B = B(ρ), C = m3ρ + m4
where m3, m4 are non-zero constants.

ρ = −B′′
B

12 (i) A = const., B = m3ek2ρ + m4e−k2ρ, C = m1ek1ρ +
m2e−k1ρ where m1, m2, m3, m4 are non-zero con-
stants.

ρ = 0

(ii) A = const., B = m3ek2ρ + m4e−k2ρ , C = m5ρ +
m6,
where m1, m2, m3, m4 6= 0
(iii) A = const., B = m7ρ + m8, C = m5ρ + m6,
where m5, m6, m7, m8 are non-zero constants.
(iv) A = const., B = m7ρ + m8, C = m1ek1ρ +
m2e−k1ρ,
where m1, m2, m7, m8 are non-zero constants.

13 (i) A = const., B = m3ek2ρ ,C = m1ek1ρ + m2e−k1ρ

where m1, m2, m3 are non-zero constants.
ρ = 0

(ii) A = const., B = m3ek2ρ , C = m4ρ + m5,
where m3, m4, m5 are non-zero constants.

15 A = const., B = m1ek1ρ −m2e−k1ρ,
C = m1ek1ρ + m2e−k1ρ, where m1 6= 0 and m2 6= 0.

ρ = 0

16 A = A(ρ), B = const., C = C(ρ), C′ 6= 0 ρ = −A2C′′
C

17 (i) A = m1ek1ρ + m2e−k1ρ, B = const., C′ 6= 0,
where m1 6= 0 and m2 6= 0.

If CC′′′ − C′C′′ = 0,
ρ = 0
If CC′′′ − C′C′′ 6= 0,
ρ = −(m1ek1ρ+m2e−k1ρ)2C′′

C .
(ii) A = m3ρ + m4, B = const., C′′ 6= 0
where m3 6= 0.

If CC′′′ − C′C′′ = 0,
ρ = 0
If CC′′′ − C′C′′ 6= 0,
ρ =

−(m3ρ+m4)2C′′
C .

18 A = m1ek1ρ, B = const. ,C′2 − CC′′ 6= 0 ρ = −(m1ek1ρ)2C′′
C

3.2. Four KVFs

The four KVFs are obtained in 13 branches of the Rif tree, namely, 1, 2, 4, 5, 8, 10, 11,
12, 14, 16, 17, and 19–20. The results of these branches are summarized in Table 2. For
each branch, we list all the metric functions admitting four KVFs, their corresponding Lie
algebras, and expressions for the energy density. As before, the earlier authors obtained
only two metrics (branches 1 and 20) admitting four KVFs [23]. The four KVFs include the
three minimum KVFs, given by ∂t, ∂θ , and ∂z, along with an additional one, denoted by X4
in Table 2.
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Table 2. Metrics Admitting Four KVFs.

Branch Metric Functions Additional KVF Lie Algebra Energy Density

1 A = A(ρ) , B = B(ρ) , C = C(ρ)
(i) A = B 6= C

X4 = θ∂t + t∂θ [X1, X4] = X2
[X2, X4] = X1

ρ = −A(A′C′+AC′′+CA′′)
C

(ii) C = A 6= B X4 = −z∂t + t∂z [X1, X4] = X3
[X3, X4] = −X1

ρ = −A(A′B′+AB′′+BA′′)
C

2 A = m1ek1ρ, B = B(ρ), C = C(ρ),
BB′′′ − B′B′′ 6= 0
(i) A = C 6= B

X4 = −z∂t + t∂z [X1, X4] = X3
[X3, X4] = X1

ρ =
−m2

1e2k1ρ B′′
B

(ii) A 6= B = C X4 = z∂θ − θ∂z [X2, X4] = −X3
[X3, X4] = X2

ρ =
−m2

1e2k1ρ(B′2+2BB′′)
B2

3 A = m1ek1ρ , B = m2ek2ρ , C =
C(ρ)
CC′′′ − C′C′′ 6= 0
k1 = k2

X4 = θ∂t + t∂θ [X1, X4] = X2
[X2, X4] = X1

ρ =
−m2

1e2k1ρ(C′′)
C

4 A = m1ek1ρ , B = m2ek2ρ , C =
m3ek3ρ

k1 6= k2 6= k3

X4 = −k1t∂t + ∂ρ −
k2θ∂θ − k3z∂z

[X1, X4] =
−k1X1
[X2, X4] =
−k2X2
[X3, X4] =
−k3X3

ρ = 0

5 A = A(ρ) , B = γA, C = const.,
where γ is a constant

X4 = γθ∂t + t∂θ [X1, X4] = X2
[X2, X4] = γX1

ρ = −AA′′

8 A = m1ek1ρ , B = m2ek2ρ , C =
const.

X4 = −k1t∂t + ∂ρ −
k2θ∂θ

[X1, X4] =
−k1X1
[X2, X4] =
−k2X2

ρ = 0

10 A = const. , B = γC , C = C(ρ)
BB′′′ − B′B′′ 6= 0

X4 = z∂θ − γθ∂z [X2, X4] =
−γX3
[X3, X4] = X2

ρ = −(C′2+2CC′′)
C2

11 A = const. , B = B(ρ) , C = const. X4 = z∂t + t∂z [X1, X4] = X3
[X3, X4] = X1

ρ = −B′′
B

14 A = const. , B = m1ek1ρ , C =
m2ek2ρ

k1 6= k2

X4 = ∂ρ − k2θ∂θ −
k1z∂z

[X2, X4] =
−k1X2
[X3, X4] =
−k2X3

ρ = 0

16 A = A(ρ) , B = const. , C = C(ρ)
(i) C′ 6= 0
A′ = 0
A = γC

X4 = z∂t + γt∂z [X1, X4] =
−γX3
[X3, X4] = X1

ρ = −AA′′

(ii) C = const. X4 = z∂θ − θ∂z [X2, X4] = −X3
[X3, X4] = X2

ρ = 0

17 A = m1ρ + m2 , B = const.
C = m1ρ + m2 ; m1, m2 6= 0

X4 = z∂t + t∂z [X1, X4] = X3
[X3, X4] = X1

ρ = 0

19 A = m1ek1ρ , B = const.,
C = m2ek2ρ; k1 6= k2

X4 = −k1t∂t + ∂1 −
k2z∂z

[X1, X4] =
−k1X1
[X3, X4] =
−k2X3

ρ = 0

20 A = const. , B = const. , C = C(ρ),
C′′ 6= 0,
CC′′′ − C′C′ 6= 0

X4 = θ∂t + t∂θ [X1, X4] = X2
[X2, X4] = X1

ρ = 0

3.3. Five KVFs

Five KVFs are admitted in two sub cases of branch 4 of the Rif tree (refer to Table 3).
The energy density is zero in this case. The five-dimensional KVFs algebra consists of the
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minimum three KVFs, along with two additional KVFs denoted by X4 and X5 in Table 3.
These metrics were also not listed in the previously published work [23].

Table 3. Metrics Admitting Five KVFs.

Branch Metric Functions KVFs Lie Algebra

4 A = m1ek1ρ, B =
m2ek2ρ,
C = m3ek3ρ

(i)k1 = k2 6= k3 X4 = −k1t∂t + ∂ρ − k1θ∂θ −
k3z∂z
X5 = (m2

m1
)2θ∂t + t∂θ

[X1, X4] = −k1X1, [X1, X5] = X2,
[X2, X4] = −k1X2, [X2, X5] = (m2

m1
)2X1

[X3, X4] = −k3X3
(ii) k3 = k1 6= k2 X4 = −k1t∂t + ∂ρ − k2θ∂θ −

k1z∂z
X5 = z∂t + (m2

m1
)2t∂z

[X1, X4] = −k1X1, [X1, X5] = (m2
m1

)2X3
[X2, X4] = −k2X2, [X3, X4] = −k1X3
[X3, X5] = X1

3.4. Six KVFs

Six KVFs are admitted in five branches, namely, branch 1, 15, 17, 19, and 20 (Table 4).
They have three minimal KVFs along with three other KVFs represented by X4, X5, and X6

in Table 4. The energy density for branches 1 and 20 are ρ = −(A′ + 2AA′′) and ρ = −C′′
C ,

respectively, where other branches have zero energy density. Whereas the metrics arising
in branches 1, 19, and 20 were discussed in Ref. [23], the metrics in branches 15 and 17
were not.

Table 4. Metrics Admitting Six KVFs.

Branch Metric Functions KVFs Lie Algebra

1 A = A(ρ),
B = B(ρ),
C = C(ρ),
A = B = C

X4 = θ∂t + t∂θ

X5 = z∂t + t∂z
X6 = z∂θ − θ∂z

[X1, X4] = X2
[X1, X5] = X3 , [X2, X4] = X1
[X2, X6] = −X3 , [X3, X5] = X1
[X3, X6] = X2 , [X4, X5] = X6
[X4, X6] = X5 , [X5, X6] = X4

15 A = const.,
B = m4ekρ + m5e−kρ

C = const.
m4 and m5 are not si-
multaneously zero.

X4 = cosh(βθ)∂ρ −
( k(m4ekρ−m5e−kρ)

β(m4ekρ+m5e−kρ)

)
sinh(βθ)∂θ

X5 = sin(βθ)∂ρ −
( k(m4ekρ−m5e−kρ)

β(m4ekρ+m5e−kρ)

)
cosh(βθ)∂θ

X6 = z∂t + t∂z

[X1, X6] = X3 , [X2, X4] = βX5
[X2, X5] = βX4 , [X3, X6] = X1

[X4, X5] =
k2

β X2 , where β = 2k
√

m4m5

17 A = m1ekρ + m2e−kρ

B = const.
C = const.
m1, m2 6= 0

X4 =
(−km1(m1ekρ−m2e−kρ)

β(m1ekρ+m2e−kρ)

)
sin(βt)∂t + cos(βt)∂ρ

X5 =
( km1(m1ekρ−m2e−kρ)

β(m1ekρ+m2e−kρ)

)
cos(βt)∂t + sin(βt)∂ρ

X6 = z∂θ − 1
m2 θ∂z

[X1, X4] = −βX5 , [X1, X5] = βX4
[X2, X6] = − 1

m2 X1 , [X3, X6] = X2

[X4, X5] = − k2

β X1 , where β = 2k
√

m1m2

19 A = mekρ

B = const.
C = const.

X4 = −( e−2kρ+(mkt)2

2mk )∂t + t∂ρ

X5 = −kt∂t + ∂ρ

X6 = z∂θ − θ∂z

[X1, X4] = X2 , [X1, X5] = −kX1
[X2, X6] = −X3 , [X3, X6] = X2
[X4, X5] = kX1

20 A = const.
B = const.
C = m1ekρ + m2ekρ

m1 and m2 are not si-
multaneously zero.

X4 = cosh(βz)∂ρ +
(−k(m4ekρ−m1e−kρ)

β(m2ekρ+m5e−kρ)

)
sinh(βz)∂z

X5 = sinh(βz)∂ρ +
(−k(m4ekρ−m1e−kρ)

β(m2ekρ+m5e−kρ)

)
cosh(βz)∂z

X6 = θ∂t + t∂θ

[X1, X6] = X2 , [X2, X6] = X1
[X3, X4] = βX5 , [X3, X5] = βX4

[X4, X5] =
k2

β X3 , where β = 2k
√

m4m5

3.5. Seven KVFs

The seven KVFs were obtained in some sub cases of branches 9 and 20 with zero
energy density for both branches. Here, the seven KVFs include three minimal KVFs along
with four additional KVFs given in Table 5. It is worth noting that case 1 of branch 9 was
discussed in [23] while case 2 was not.
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Table 5. Metrics Admitting Seven KVFs.

Branch Metric Functions KVFs Lie Algebra

9 (i) A = m1ekρ +
m2e−kρ

B = m1ekρ −m2e−kρ

C = const.
m1, m2 6= 0

X4 = − kB(ρ)
βA(ρ)

sin(βt)cos(βθ)∂t + cos(βt)cos(βθ)∂ρ −
kA(ρ)
βB(ρ) cos(βt)sin(βθ)∂θ

X5 =
kB(ρ)
βA(ρ)

cos(βt)cos(βθ)∂t + sin(βt)cos(βθ)∂ρ −
kA(ρ)
βB(ρ) sin(βt)sin(βθ)∂θ

X6 = − kB(ρ)
βA(ρ)

sin(βt)sin(βθ)∂t + cos(βt)sin(βθ)∂ρ +

kA(ρ)
βB(ρ) cos(βt)cos(βθ)∂θ

X7 = − kB(ρ)
βA(ρ)

cos(βt)sin(βθ)∂t + sin(βt)sin(βθ)∂ρ +

kA(ρ)
βB(ρ) sin(βt)cos(βθ)∂θ

[X1, X4] = −βX5 , [X1, X5] =
βX4
[X1, X6] = −βX7 , [X1, X7] =
βX6
[X2, X3] = βX6 , [X2, X5] = βX7
[X2, X6] = βX4 , [X2, X7] = βX5

[X4, X5] = k2
β X1 , [X4, X6] =

− k2
β X2

[X5, X7] = k2
β X2 , [X6, X7] =

k2

β X1

where β = 2k
√

m1m2

(ii) A = m1ekρ

B = m1ekρ

C = const.

X4 = −( e−2kρ

2km2
1
+ kt2

2 + kθ2

2 )∂t + t∂ρ − kθt∂θ

X5 = −kθt∂t + θ∂ρ + ( e−2kρ

2km2
1
− kt2

2 −
kθ2

2 )∂θ

X6 = −kt∂t + ∂ρ − kθ∂θ

X7 = θ∂t + t∂θ

[X1, X4] = kX6 , [X1, X5] = kX7
[X1, X6] = −X1 , [X1, X7] = X2
[X2, X4] = kX7 , [X2, X5] = X6
[X2, X6] = X2 , [X2, X7] = X1
[X4, X6] = kX4 , [X4, X7] = X5
[X5, X6] = −kX5 , [X5, X7] =
−kX4

20 A = m1ekρ + m2e−kρ

B = const.
C = m1ekρ −m2e−kρ

m1, m2 6= 0

X4 = − kC(ρ)
βA(ρ)

sin(βt)cos(βz)∂t + cos(βt)cos(βz)∂ρ −
kA(ρ)
βC(ρ) cos(βt)sin(βz)∂z

X5 =
kC(ρ)
βA(ρ)

cos(βt)cos(βz)∂t + sin(βt)cos(βz)∂ρ −
kA(ρ)
βC(ρ) sin(βt)sin(βz)∂z

X6 = − kC(ρ)
βA(ρ)

sin(βt)sin(βz)∂t + cos(βt)sin(βz)∂ρ +

kA(ρ)
βC(ρ) cos(βt)cos(βz)∂z

X7 = − kC(ρ)
βA(ρ)

cos(βt)sin(βz)∂t + sin(βt)sin(βz)∂ρ +

kA(ρ)
βC(ρ) sin(βt)cos(βz)∂z

[X1, X4] = −βX5 , [X1, X5] =
βX4
[X1, X6] = βX7 , [X1, X7] = βX6
[X3, X4] = βX6 , [X3, X5] =
−βX7
[X3, X6] = −βX4 , [X3, X7] =
βX5

[X4, X5] = k2

β X1 , [X4, X6] =

k2

β X3

[X5, X7] = k2

β X3 , [X6, X7] =

k2

β X1

where β = 2k
√

m1m2

Table 6. Metrics Admitting Ten KVFs.

Branch Metric Functions KVFs Lie Algebra

4 A = m1ek1ρ

B = m2ek2ρ

C = m3ek3ρ

where k1 = k2 =
k3 = k

X4 = −( e−2kρ

2km2
1
+ kt2

2 + k(m2
m1

)2 θ2

2 + k(m3
m1

)2 z2

2 )∂t + t∂ρ −
ktθ∂θ − ktz∂z

X5 = −kθt∂t + θ∂ρ + ( e−2kρ

2km2
2
− kθ2

2 − k(m1
m2

)2 t2

2 +

k(m3
m2

)2 z2

2 )∂θ − kθz∂z

X6 = −kzt∂t + z∂ρ − kzθ∂θ + ( e−2kρ

2km2
3
− kz2

2 + k(m1
m3

)2 t2

2 +

k(m2
m3

)2 θ2

2 )∂z
X7 = −kt∂t + ∂ρ − kθ∂θ − kz∂z

X8 = (m2
m1

)2θ∂t + t∂θ

X9 = (m3
m1

)2z∂t + t∂z

X10 = z∂θ − (m2
m3

)2θ∂z

[X1, X4] = X7 , [X1, X5] = −k(m1
m2

)2X8

[X1, X6] = −k(m3
m1

)2X9 , [X1, X7] = −kX1
[X1, X8] = −kX2 , [X1, X9] = X3
[X2, X4] = −kX8 , [X2, X5] = X7
[X2, X6] = −kX10 , [X3, X4] = −kX9
[X3, X5] = k(m2

m3
)2X10 , [X3, X6] = X7

[X3, X7] = −kX3 , [X3, X9] = (m3
m2

)2X1
[X3, X10] = X2 , [X4, X7] = kX4
[X4, X8] = −(m2

m1
)2X5 , [X4, X9] = (m3

m1
)2X6

[X4, X10] = −kX10 , [X5, X7] = −kX5
[X5, X8] = X4 , [X5, X10] = X6
[X6, X7] = kX6 , [X6, X9] = X4
[X6, X10] = (m2

m3
)2X5 , [X7, X10] = kX2

[X8, X9] = −(m3
m1

)2X10 , [X8, X10] =

−(m2
m3

)2X9 , [X9, X10] = X8
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Table 6. Cont.

Branch Metric Functions KVFs Lie Algebra

15 A = const.
B = m6ρ + m7
C = const.
m6, m7 6= 0

X4 = (ρ + m7
m6

)cos(m6θ)∂t + tcos(m6θ)∂ρ −
( t

m6ρ+m7
)sin(m6θ)∂θ

X5 = (ρ + m7
m6

)sin(m6θ)∂t + tsin(m6θ)∂ρ +

( t
m6ρ+m7

)cos(m6θ)∂θ

X6 = zcos(m6θ)∂ρ − ( z
m6ρ+m7

)sin(m6θ)∂θ − (ρ +
m7
m6

)cos(m6θ)∂z

X7 = zsin(m6θ)∂ρ + ( z
m6ρ+m7

)cos(m6θ)∂θ − (ρ +
m7
m6

)sin(m6θ)∂z

X8 = cos(m6θ)∂ρ − ( 1
m6ρ+m7

)sin(m6θ)∂θ

X9 = sin(m6θ)∂ρ + ( 1
m6ρ+m7

)cos(m6θ)∂θ ,
X10 = z∂t + t∂z

[X1, X4] = X8 , [X1, X5] = X9
[X1, X10] = X3 , [X2, X4] = −m6X5
[X2, X5] = m6X4 , [X2, X6] = −m6X7
[X2, X7] = m6X6 , [X2, X8] = m6X9
[X2, X9] = m6X8 , [X3, X6] = X8
[X3, X7] = X9 , [X3, X10] = X1
[X4, X5] =

1
m6

X2 , [X4, X6] = X10
[X4, X8] = −X1 , [X4, X10] = X6
[X5, X7] = −X10 , [X5, X9] = −X1
[X5, X10] = −X7 , [X6, X7] = − 1

m6
X2

[X6, X8] = −X3 , [X6, X10] = −X4
[X7, X9] = X3 , [X7, X10] = −X5

20 A = const.
B = const.
C = m1ρ + m2
m1, m2 6= 0

X4 = (ρ + m4
m3

)cos(m3z)∂t + tcos(m3z)∂ρ −
( t

m3ρ+m4
)sin(m3z)∂z

X5 = (ρ + m4
m3

)sin(m3z)∂t + tsin(m3z)∂ρ +

( t
m3ρ+m4

)cos(m3z)∂z

X6 = θcos(m3z)∂ρ − (ρ + m4
m3

)cos(m3z)∂θ −
( θ

m3ρ+m4
)sin(m3z)∂z

X7 = θsin(m3z)∂ρ − (ρ + m4
m3

)sin(m3z)∂θ −
( θ

m3ρ+m4
)cos(m3z)∂z

X8 = cos(m3z)∂ρ − ( 1
m3ρ+m4

)sin(m3θ)∂θ

X9 = sin(m3z)∂ρ + ( 1
m3ρ+m4

)cos(m3z)∂θ

X10 = θ∂t + t∂θ

[X1, X4] = X8 , [X1, X5] = X9
[X1, X10] = X2 , [X2, X6] = X8
[X2, X7] = X9 , [X2, X10] = X1
[X3, X4] = m1X5 , [X3, X5] = m1X4
[X3, X6] = −m1X7 , [X3, X7] = m1X6
[X3, X8] = −m1X9 , [X3, X9] = X8
[X4, X5] = − 1

m1
X3 , [X4, X6] = X10

[X4, X8] = −X1 , [X4, X10] = X6
[X5, X7] = −X10 , [X5, X9] = X1
[X5, X10] = −X9 , [X6, X8] = −X2
[X6, X10] = X4 , [X7, X9] = X2
[X7, X10] = X5

20 A = m5ρ + m6
B = const.
C = const.
m5, m6 6= 0

X4 = −( θcosh(m5t)
m5ρ+m6

)∂t + θsinh(m5t)∂ρ − (ρ +
m6
m5

)sinh(m5t)∂θ

X5 = −( θsinh(m5t)
m5ρ+m6

)∂t + θcosnh(m5t)∂ρ − (ρ +
m6
m5

)cosh(m5t)∂θ

X6 = −( zcosh(m5t)
m5ρ+m6

)∂t + zsinh(m5t)∂ρ − (ρ +
m6
m5

)sinh(m5t)∂z

X7 = −( zsinh(m5t)
m5ρ+m6

)∂t + zcosh(m5t)∂ρ − (ρ +
m6
m5

)cosh(m5t)∂z

X8 = −( cosh(m5t)
m5ρ+m6

)∂t + sinh(m5t)∂ρ

X9 = −( sinh(m5t)
m5ρ+m6

)∂t + cosh(m5t)∂ρ

X10 = z∂θ − θ∂z

[X1, X4] = m5X5 , [X1, X5] = m5X4
[X1, X6] = m5X7 , [X1, X7] = m5X6
[X1, X8] = m5X9 , [X1, X9] = m5X8
[X2, X4] = X8 , [X2, X5] = −X9
[X2, X10] = −X3 , [X3, X6] = X8
[X3, X7] = X9 , [X3, X10] = X2
[X4, X5] =

1
m5

X1 , [X4, X6] = X10
[X4, X8] = X1 , [X4, X10] = X6
[X5, X7] = X10 , [X5, X9] = −X2
[X5, X10] = X7 , [X6, X7] =

1
m5

X1
[X6, X8] = X3 , [X7, X9] = X3
[X7, X10] = X5

3.6. Ten KVFs

This case provides a maximal symmetry group admitted by ten KVFs. These ten KVFs
appeared in some sub cases of branches 4, 15, and 20. All these branches have zero energy
density. These ten KVFs include three minimal and seven additional KVFs as given in
Table 6. It is worth mentioning that, whereas the metrics arising in branches 15 and 20 were
obtained in Ref. [23], branch 4 was left out.

4. Summary and Discussion

In this paper, we have re-addressed the problem of classification of cylindrically
symmetric static spacetimes according to the KVFs using an algebraic algorithm in Maple.
This algorithm converts the Killing’s equations into a reduced involutive form providing
all possible spacetime metrics in terms of a Rif tree. In our case, the resulting Rif tree
for a cylindrically symmetric static spacetime produced a total of 20 branches. It was
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found that the considered cylindrically symmetric static spacetime metric admits 3, 4, 5, 6, 7,
and 10 KVFs only. Lastly, it was observed that the Rif tree approach provides a complete
classification of the KVFs by providing additional metrics which were not given previously
by using a direct integration technique.

As mentioned in the introduction, each KVF admitted by a spacetime metric corre-
sponds to a conservation law. Out of the obtained KVFs, the symmetry ∂t, wherever it
appears, shows that law of conservation of energy holds. Similarly, the symmetries ∂ρ, ∂θ ,
and ∂z correspond to the laws of conservation of linear momenta in three spatial directions.
In some cases, two of the metric functions are found to be equal. In such cases, the space-
time admits an additional rotational symmetry, which shows that the law of conservation
of angular momentum holds in all these cases. Apart from these cases, each of the obtained
KVFs is associated with a conservation law and this correspondence between KVFs and
conservation laws is given by the well-known Noether’s theorem.

The physical significance of the obtained metrics can be checked by looking into the
structure of the energy–momentum tensor. Particularly, the component T00 = ρ of the
energy–momentum tensor gives the energy density of the metric and tells us whether
the metric is physically realistic or not. For this purpose, we have calculated ρ for all the
obtained metrics. For some metrics, ρ vanishes and, hence, all these metrics are physically
realistic. In the remaining cases, further conditions on metric functions are needed to be
imposed so that ρ is non-negative. For example, for the metrics of branches 5 and 11 given
in Table 1, we must impose the condition B′′

B < 0, so that ρ is non-negative.
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