
Citation: Munteanu, F. On the Jacobi

Stability of Two SIR Epidemic

Patterns with Demography.

Symmetry 2023, 15, 1110. https://

doi.org/10.3390/sym15051110

Academic Editors: Paul Popescu and

Marcela Popescu

Received: 27 April 2023

Revised: 11 May 2023

Accepted: 17 May 2023

Published: 18 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

On the Jacobi Stability of Two SIR Epidemic Patterns
with Demography
Florian Munteanu

Department of Applied Mathematics, Faculty of Sciences, University of Craiova, Al. I. Cuza, 13,
200585 Craiova, Romania; florian.munteanu@edu.ucv.ro; Tel.: +40-723-529-752

Abstract: In the present work, two SIR patterns with demography will be considered: the classical
pattern and a modified pattern with a linear coefficient of the infection transmission. By reformulating
of each first-order differential systems as a system with two second-order differential equations, we
will examine the nonlinear dynamics of the system from the Jacobi stability perspective through the
Kosambi–Cartan–Chern (KCC) geometric theory. The intrinsic geometric properties of the systems
will be studied by determining the associated geometric objects, i.e., the zero-connection curvature
tensor, the nonlinear connection, the Berwald connection, and the five KCC invariants: the external
force εi—the first invariant; the deviation curvature tensor Pi

j —the second invariant; the torsion

tensor Pi
jk—the third invariant; the Riemann–Christoffel curvature tensor Pi

jkl—the fourth invariant;

the Douglas tensor Di
jkl—the fifth invariant. In order to obtain necessary and sufficient conditions for

the Jacobi stability near each equilibrium point, the deviation curvature tensor will be determined at
each equilibrium point. Furthermore, we will compare the Jacobi stability with the classical linear
stability, inclusive by diagrams related to the values of parameters of the system.

Keywords: SIR pattern; KCC geometric theory; the deviation curvature tensor; Jacobi stability

1. Introduction

Mathematical patterns that do not involve births and deaths in population evolution
are usually called epidemic patterns without demography. These models are suitable for
epidemics with a short time evolution, such as influenza. Omitting population change
implies that the disease develops in a shorter time than the period when important changes
in population size may occur (such as births and deaths). This is true for quick illnesses
such as childhood illnesses and the flu. However, there are slow diseases, such as HIV,
tuberculosis and hepatitis C. These diseases evolve over a long period of time, even at the
individual level. For these illnesses, the total population changes considerably over time,
and the population’s demographic cannot be neglected [1–3].

The main goal of the present paper is to study the Jacobi stability for two SIR models
with demography: the classical SIR model and a modified SIR model with a variable
transmission coefficient of the infection. These two types of SIR (susceptible, infected, and
removed individuals) epidemic models represent two classical patterns for the spread of
an epidemic. The second model is a natural generalization of the first model by changing
the constant coefficient of the transmission of the infection β with a variable coefficient
of transmission of the infection. More precisely, for the second model, this coefficient is
a linear function of the number of infected individuals I, which means β is replaced by
β(1 + νI), where ν is a real positive parameter. Consequently, the transmission coefficient
of infection and the contact rate will increase with the number of infectious individuals,
and new infections occur much faster in comparison with the classical pattern. The lo-
cal and global dynamics of this modified pattern are much more complicated compared
to the simple model. For example, for the second model, it is possible to have two en-
demic equilibrium points and a Hopf bifurcation can occur near one of the equilibrium
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points. In this case, although the two endemic equilibrium points check a property of
symmetry related to their coordinates (they are symmetrical with respect to a straight
line), from the point of view of the local dynamics of the dynamical system, we have no
symmetry property.

The classical stability (linear stability or Lyapunov stability) of different kinds of SIR
epidemic models without or with demography was widely studied in recent decades [1–6].
In this paper, we will approach a new type of stability for these models, namely Jacobi
stability. Classical approaches of these models can be found in [1–4]. Generally, the study
of mathematical deterministic models for the spread of diseases, or for the interaction
between prey–predator-type populations, is performed only for positive values of the
variables, where they have an ecological, biological, or epidemiological meaning [4–9].

The Jacobi stability is a natural generalization of the geometric approaches related to
the stability of the geodesic flow, from a Riemannian manifold of a Finslerian manifold
to a manifold with no metric [10–15]. More exactly, the Jacobi stability is an indicator of
the vigour of a dynamical system given by a system of second-order differential equations
(SODE or semi-spray), where this vigour represents the adaptation and the conservation of
the basis behaviour to both the changes of the internal parameters of the system and the
influences from the external environment. The local behavior of dynamical systems from
the perspective of Jacobi stability, by using the Kosambi–Cartan–Chern (KCC) theory, has
recently been addressed in [11,12,16–26]. So, the local behaviour of the dynamical system
is studied through the use of the geometrical objects associated with the system of the
second-order differential equations (SODE), which is the system obtained from the system
of first-order differential equations [27–29].

The main aim of KCC theory is the investigation of the deviation of neighboring
integral curves, which allows us to estimate the perturbation allowed near the equilibrium
points of the system of second-order differential equations. In the beginning, this study
was related to the study of the variation equations (or Jacobi field equations) corresponding
to the geometry of the smooth manifold. More precisely, P. L. Antonelli, R. Ingarden, and
M. Matsumoto began the study of the Jacobi stability for the geodesics associated with a
Riemann metric or Finsler metric by deviating the geodesics and through the help of the
KCC covariant derivative for the differential system in variations [10–12]. Consequently,
the second KCC invariant was obtained, called the deviation curvature tensor, which is
fundamental for the study of the Jacobi stability for geodesics and for the integral curves
corresponding to a system of second-order differential equations. In the framework of
differential geometry, a system of second-order differential equations (SODE) is called
semi-spray. Starting with a semi-spray, we can define a nonlinear connection on the
manifold, and, conversely, by using a nonlinear connection, we can define a semi-spray.
Therefore, to any semi-spray (or SODE) we can associate a geometry on the manifold by
the corresponding geometric objects [13,30–32]. Conversely, these geometric objects are
invariant relative to local coordinate changes, which means that they are tensors that can
satisfy the conditions of symmetry or skew-symmetry or neither, depending on the form of
the system of second-order differential equations (SODE).

Because the roots of the KCC theory come from the papers of D. D. Kosambi [27],
E. Cartan [28], and S. S. Chern [29], the abbreviation KCC (Kosambi–Cartan–Chern) appears
natural and this geometric theory can be successfully used in many research domains, such
as engineering, physics, chemistry, and biology [16,19,21,23,24,33]. Moreover, recent and
very interesting approaches to the KCC theory in gravitation and cosmology were carried
out in [34,35]. Furthermore, in [18], C.G. Boehmer, T. Harko, and S.V. Sabau made a
methodological analysis of the Jacobi stability and its relations with the Lyapunov stability
for dynamical systems that model the phenomena based on gravitation and astrophysics.
In [36], a comprehensive study of the Jacobi stability for predator–prey models of Holling’s
type II and III can be found.

The present manuscript is a purely mathematical investigation, founded on the the-
oretical tools of dynamical systems theory and the corresponding geometric objects of
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Kosambi–Cartan–Chern (KCC) theory, by studying the behavior around equilibrium points
and obtaining the properties of local dynamics from the Jacobi stability point of view. The
biological motivation for this study is given by the fact that these SIR patterns (classical
or modified) were intensively studied in past decades in order to model the spread of
epidemics in a population or for the study of interactions between species (prey–predator
models). The novelty of this study is the use of the geometric tools of KCC theory for
obtaining new results about the local dynamics of the dynamical systems that models
infectious diseases or the interaction between species.

The obtained results for both patterns are related to the basic reproduction number
R0 [2,3,5]. This number is crucial for the determination of the duration of the epidemic
period or for the peak of the epidemic. Furthermore, the obtained results about the Jacobi
stability near the endemic equilibrium can show us the sufficient and necessary conditions
to avoid critical situations during an epidemic, such as the presence of some attractive sets,
periodic trajectories, or isolated cycles. More exactly, the Jacobi stability in a neighborhood
of an equilibrium point implies that this equilibrium point is a stable focus or an unstable
focus. Then, Hopf-type bifurcations can occur, together with possible limits cycles.

After the introduction section, in Section 2, an overview of the classical SIR epidemic
model with demography will be presented, and the basic results of the local and global
stability of this system will be highlighted. Next, in Section 3, a reformulation of the
classical SIR epidemic model with demography (3) as a system of second-order differential
equations (SODE) will be developed, and the five geometrical invariants for this system
will be obtained. The results relative to the Jacobi stability of this system around the
equilibrium points will be obtained and presented in Section 4. More exactly, we will obtain
the necessary and sufficient conditions for the Jacobi stability of the system around each
equilibrium point. Then, if these conditions are fulfilled, it is not possible to have a chaotic
behavior for the classical SIR epidemic model with demography. Additionally, at the end
of Section 4, we will find the deviation equations around each equilibrium point and the
curvature of the deviation vector; moreover, we will develop an analysis of the Jacobi
stability and the classical (linear or Lyapunov) stability to compare these two approaches.
Using the same approach, in Section 5 we will obtain similar results for a classical SIR
epidemic model with demography and vaccination.

Further, a modified SIR epidemic model with demography with a linear transmission
coefficient of infection is presented in Section 6 (see also [1]). After a second-order refor-
mulation of this modified SIR model in the Section 7, the Jacobi stability analysis of this
system is carried out in Section 8. Conclusions and possible future research are presented
in the last section.

Finally, in Appendix A is presented an overview of the main notions and basic tools
of the KCC geometric theory that are strictly needed for the study of the Jacobi stability
of dynamical systems. More precisely, the five invariants of the theory and the notion of
Jacobi stability are presented. As usual in differential geometry, the sum over the crossed
repeated indices is understood.

2. A Classical SIR Epidemic Pattern with Demography

A classical SIR epidemic model for the spread of diseases supposes that the whole
population N(t) at a time t is split into three categories: S(t) is the number of individuals
who are susceptible at the moment t, I(t) is the number of the infected individuals at t and
R(t) represents the number of removed individuals at the time t (by a removed individual,
we mean individuals who either recovered from the illness or diad after infection) [1–6].
An SIR model without demography means that the total number of individuals N(t) =
S(t) + I(t) + R(t) is constant, i.e., no births, no immigration, no deaths and no emigration.
However, in practice, this reality is not possible and different SIR models were considered
with demography, for which N(t) is not constant. In order to include the demography in
this classical SIR epidemic model, we suppose that each individual is born susceptible [1].
Individuals from every category go out at a death rate µ, per capita, and then the total
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death rate in the susceptible category is µS, while in the infectious category it is µI, and
in the removed category it is µR. If we denote by α the recovery rate, then the rate of the
recoveries in the infected people is αI. Then, like for the SIR model without demography, if
we denote by β the transmission coefficient of the infection, then we can consider the next
classical SIR model with demography:

S′ = Λ− βIS− µS
I′ = βIS− αI − µI

R′ = αI − µR
(1)

where Λ is the total birth rate (measured in number of people born per unit of time) and
S′ = S′(t), I′ = I′(t), and R′ = R′(t) denote the derivatives with respect to time t, or the
rates of changes of these quantities in a short period of time.

Let us remark that the third equation of system (1) was added in order to obtain the
next differential equation for the total population N(t):

N′(t) = Λ− µN(t) ,

with the unique solution N(t) = N(0)e−µt +
Λ
µ

(
1− e−µt). Therefore, the population size

is not constant, but this is asymptotically constant, since N(t)→ Λ
µ

when t→ ∞.

Obviously, we can observe that the first two equations in (1) are independent of the
third, and then we can we can study only the two-dimensional autonomous system of
first-order differential equations:{

S′ = Λ− βIS− µS
I′ = βIS− (α + µ)I

(2)

where R(t) = N(t)− S(t)− I(t).
This is compared to β, the transmission coefficient of the infection, which has the unit

[number of people × time]−1, α, the recovery rate, and µ, the death rate, which have the
units [unit of time]−1. So, it is better to consider τ = (α + µ)t and then τ is a dimensionless
quantity. If we denote I(t) = I

(
τ

α+µ

)
= Î(τ) and S(t) = S

(
τ

α+µ

)
= Ŝ(τ), then we have

dŜ
dτ = 1

α+µ
dS
dt and dÎ

dτ = 1
α+µ

dI
dt , by using the chain rule. After resizing the variables Ŝ and

Î with the total limiting population size Λ
µ , we obtain the new variables x(τ) = µŜ

Λ and

y(τ) = µ Î
Λ , which are also dimensionless quantities.

Consequently, system (2) has the next form [1]:{
x′ = ρ(1− x)−R0xy
y′ = (R0x− 1)y

(3)

where ρ =
µ

α + µ
andR0 =

Λβ

µ(α + µ)
are both dimensionless parameters.

Therefore, we can say that system (2) was transformed into a system with a dimen-
sionless form (3), which is equivalent to the original system, because the solutions of the
two systems have the same long-term behaviour. Moreover, the number of parameters
was reduced from four to two. The notationR0 is not chosen randomly, but because this
dimensionless quantity is exactly the reproduction number or the basic reproduction number
for this mathematical epidemiological pattern [1,5,6].

Because it is impossible to solve the first-order differential system associated with this
SIR pattern with demography by analytical methods, it remains only to find details about
the behaviour of the solutions, especially because we want to know what will happen to
the illness in the long term: will it go extinct, or will it become established in the population
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and become endemic? So, the long-term dynamics of the solutions are crucial from an
epidemiological perspective [1–3].

It is clear that the model has relevance when x ≥ 0, y ≥ 0, and then the solutions of
system (3) are in the first quadrant Σ0

+ =
{
(x, y) ∈ R2 | x ≥ 0, y ≥ 0

}
. Moreover, the lines

{x = 0} and {y = 0} are invariant manifolds with respect to the flow of the system, which
means any integral curve starting from a point from Σ+ =

{
(x, y) ∈ R2 | x > 0, y > 0

}
remains in Σ+. So, the integral curves cannot cross any of these two invariant lines and
then the study of the system is well-defined from the epidemiological point of view, i.e., an
integral curve starting from a zone with epidemiological relevance does not enter a zone
without epidemiological relevance.

However, it is very important to study the local dynamics of the system with the
classical tools of dynamical systems as well as with the geometrical tools of the Kosambi–
Cartan–Chern (KCC) theory. First of all, we must determine the equilibrium points of the
epidemic given by dynamical system (3), by solving the system:{

ρ(1− x)−R0xy = 0
(R0x− 1)y = 0

giving us two equilibrium points E0(1, 0), the so-called disease-free equilibrium, and
E1

(
1
R0

, ρ
(

1− 1
R0

))
, the so-called endemic equilibrium.

Let us remark that the endemic equilibrium exists if and only if the basic reproduction
number R0 > 1. Else, if R0 = 1, then E1 coincides with E0, or, if R0 < 1, then E1 is a
virtual equilibrium point, i.e., E1 does not belongs to Σ0

+ and E1 is irrelevant.
According to the Hartman–Grobman theorem, it is known that the local stability of a

hyperbolic equilibrium’s points is given by the signs of the real part of eigenvalues of the
Jacobi matrix at each equilibrium point. Since the Jacobi matrix of (3) at a point (x, y) is

A =

(
−ρ−R0y −R0x
R0y R0x− 1

)
,

the results show that:

• For the disease-free equilibrium E0(1, 0), the Jacobi matrix is A =

(
−ρ −R0
0 R0 − 1

)
with eigenvalues λ1 = −ρ, λ2 = R0− 1. Then E0 is unstable (saddle point) if and only
ifR0 > 1, and E0 is locally asymptotically stable (stable node) if and only ifR0 < 1.
If R0 = 1, then E0 is a non hyperbolic equilibrium point and we cannot apply the
Hartman–Grobman theorem for the local behavior study.

• For the endemic equilibrium E1

(
1
R0

, ρ
(

1− 1
R0

))
, the Jacobian A =

(
−ρR0 −1

ρ(R0 − 1) 0

)
with characteristic polynomial λ2 + ρR0λ + ρ(R0 − 1) = 0 and eigenvalues λ1,2 =
1
2

(
−ρR0 ±

√
ρ(ρR2

0 − 4R0 + 4)
)

. SinceR0 > 1, we have that λ1 + λ2 = −ρR0 < 0

and λ1λ2 = ρ(R0 − 1) > 0, which means that, if it exists, the endemic equilibrium E1
is always locally asymptotically stable (stable node or stable focus). More precisely, E1
is a stable node if and only if ρR2

0 − 4R0 + 4 ≥ 0, and E1 is a stable focus if and only
if ρR2

0 − 4R0 + 4 < 0.

In conclusion, the basic reproduction numberR0 of the disease modelled by (3) plays
a threshold role [1,5,6]:

• IfR0 < 1, then there is only the disease-free equilibrium point, which is an attractive
equilibrium (stable node), i.e., any trajectory of the dynamical system (3) starting
near to E0 converges at this equilibrium when time tends to infinity, and the illness
disappears from the population.

• IfR0 > 1, then two equilibrium points appear: the disease-free equilibrium point and
the endemic equilibrium point. The disease-free equilibrium is not attractive (unstable,



Symmetry 2023, 15, 1110 6 of 30

a saddle point), in the sense that there exist trajectories of system (3) that start very close
to E0, but tend to go away. Instead, the endemic equilibrium is attractive (stable node
or stable focus), which means any orbit of system (3) starting near to E1 converges
to E1 when time goes to infinity. In this situation, the illness remains endemic in
the population.

Related to the global stability, an equilibrium point is said to be globally stable if it
is stable for almost all initial conditions, not only for initial conditions that are near to
this point. For this classical SIR system, the following results are known [1,5] (see also the
Dulac–Bendixson theorem).

Theorem 1.

(a) ForR0 < 1, the disease-free equilibrium point E0 is globally stable.
(b) ForR0 > 1, system (3) has no periodic orbits.
(c) ForR0 > 1, the endemic equilibrium point E1 is globally stable whenever y(0) > 0.

In conclusion, we collect the obtained results for the local stability in Table 1.

Table 1. The equilibrium points in the closed first quadrant Σ0
+ for the classical SIR model.

Case Conditions Equilibrium Points Type

1 R0 > 1, ρR2
0 − 4R0 + 4 ≥ 0 E0 saddle point, E1 stable node

2 R0 > 1, ρR2
0 − 4R0 + 4 < 0 E0 saddle point, E1 stable focus

3 R0 = 1 E0 = E1 non hyperbolic
4 R0 < 1 E0 stable node, E1 /∈ Σ0

+

In the following sections, our approach will be focused on the study of the Jacobi
stability for clarifying the behavior of the SIR system and to highlight the properties of the
geometric objects corresponding to this system of ordinary differential equations.

3. SODE Formulation of the Classical SIR Pattern with Demography

We consider the classical SIR model with demography (3). For the sake of simplicity,
the derivative with respect to time will be denoted with a dot over the variable and we
prefer to denote t instead of τ. Then, system (3) can be written in the form{

ẋ = ρ(1− x)−R0xy
ẏ = (R0x− 1)y

(4)

where ρ =
µ

α + µ
∈ (0, 1) andR0 =

Λβ

µ(α + µ)
> 0.

By using the derivative relative to the time t for the equations of system (4), we obtain
the next system of second-order differential equations:{

ẍ + (ρ +R0y)ẋ +R0xẏ = 0
ÿ−R0yẋ + (1−R0x)ẏ = 0

In order to use the rule of the crossed repeated indices from differential geometry
formalism, we will use the following notations for the variables:

x = x1, ẋ = y1, y = x2, ẏ = y2

Then, the above system of second-order differential equations (SODE) can be written:{
ẍ1 + (ρ +R0x2)y1 +R0x1y2 = 0
ẍ2 −R0x2y1 + (1−R0x1)y2 = 0

(5)
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or, equivalently, 
d2x1

dt2 + (ρ +R0x2)y1 +R0x1y2 = 0

d2x2

dt2 −R0x2y1 + (1−R0x1)y2 = 0
(6)

where
dxi

dt
= yi, i = 1, 2.

Therefore, system (6) represents a SODE (or semi-spray) from the KCC theory:
d2x1

dt2 + 2G1(x1, x2, y1, y2) = 0

d2x2

dt2 + 2G2(x1, x2, y1, y2) = 0
(7)

where
G1(xi, yi) =

1
2
[
(ρ +R0x2)y1 +R0x1y2] ,

G2(xi, yi) =
1
2
[
−R0x2y1 + (1−R0x1)y2] .

(8)

The zero-connection curvature Zi
j = 2

∂Gi

∂xj is given by the next coefficients:


Z1

1 = R0y2

Z1
2 = R0y1

Z2
1 = −R0y2

Z2
2 = −R0y1

(9)

The associated nonlinear connection N has the following components:

N1
1 =

∂G1

∂y1 =
1
2
(
ρ +R0x2)

N1
2 =

∂G1

∂y2 =
1
2
R0x1

N2
1 =

∂G2

∂y1 = −1
2
R0x2

N2
2 =

∂G2

∂y2 =
1
2
(
1−R0x1)

(10)

Consequently, all components of the associated Berwald connection Gi
jk =

∂Ni
j

∂yk are null

and the components of the first invariant of the KCC theory εi = −
(

Ni
j y

j − 2Gi
)

are:
ε1 =

1
2
(ρ +R0x2)y1 +

1
2
R0x1y2

ε2 = −1
2
R0x2y1 +

1
2
(1−R0x1)y2

(11)

Let us observe that εi = Gi for i = 1, 2, i.e., ∂Gi

∂yj yj = 1 · Gi for i = 1, 2. That means that

the functions Gi are homogeneous of degree 1 relative to yi.
Next, according to (A10), we have the coefficients of the second invariant of the

Kosambi–Cartan–Chern theory:

Pi
j = −2

∂Gi

∂xj − 2GlGi
jl + yl

∂Ni
j

∂xl + Ni
l Nl

j .
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Then, the components of deviation curvature tensor for the classical SIR model with
demography (4) are given by:

P1
1 = −1

2
R0y2 +

1
4
(
ρ +R0x2)2 − 1

4
R2

0x1x2

P1
2 = −1

2
R0y1 +

1
4
R0x1(ρ + 1 +R0x2 −R0x1)

P2
1 =

1
2
R0y2 − 1

4
R0x2(ρ + 1 +R0x2 −R0x1)

P2
2 =

1
2
R0y1 +

1
4
(
1−R0x1)2 − 1

4
R2

0x1x2

(12)

If we remember that the trace and the determinant of the deviation curvature tensor

P =

(
P1

1 P1
2

P2
1 P2

2

)

are tr P = P1
1 + P2

2 and det P = P1
1 P2

2 − P2
1 P1

2 , then, by following Theorem A2, we can
write the following result:

Theorem 2. All the roots of the characteristic polynomial of P are negative or have negative real
parts (that means Jacobi stability) if and only if

tr P = P1
1 + P2

2 < 0 and det P = P1
1 P2

2 − P2
1 P1

2 > 0 .

Taking into account that Pi
jk =

1
3

(
∂Pi

j

∂yk −
∂Pi

k
∂yj

)
, Pi

jkl =
∂Pi

jk

∂yl , Di
jkl =

∂Gi
jk

∂yl , we obtain

the third, fourth, and fifth invariants of the classical SIR model with demography (4):

Theorem 3. All eight components of the torsion tensor Pi
jk, the third invariant of KCC theory, are

equal to zero, i.e.,
Pi

jk = 0 , ∀ i, j, k. (13)

All sixteen components of the Riemann–Christoffel curvature tensor Pi
jkl , the fourth invariant

of KCC theory, are equal to zero, i.e.,

Pi
jkl = 0 , ∀ i, j, k, l. (14)

All sixteen components of the Douglas tensor Di
jkl , the fifth invariant of KCC theory, are equal

to zero, i.e.,
Di

jkl = 0 , ∀ i, j, k, l. (15)

4. Jacobi Stability Analysis of the Classical SIR Pattern with Demography

In the present section, the first two geometric invariants at each equilibrium point
of the SIR model with demography (4) will be computed and, consequently, the Jacobi
stability conditions of the system around each equilibrium point will be determined.

Further, for equilibrium points E0(1, 0) and E1

(
1
R0

, ρ
(

1− 1
R0

))
of the initial SIR

model with demography (4), we have the corresponding equilibrium points E0(1, 0, 0, 0)
and E1

(
1
R0

, ρ
(

1− 1
R0

)
, 0, 0

)
for the semi-spray (6).
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For E0(1, 0, 0, 0), the first invariant of the theory has all coefficients equal to zero, i.e.,
ε1 = ε2 = 0, and the next matrix contains the coefficients of the second invariant:

P =

 1
4

ρ2 1
4
R0(ρ + 1−R0)

0
1
4
(1−R0)

2

 .

Since tr P =
1
4

ρ2 + 1
4 (1−R0)

2 > 0 and det P =
1

16
ρ2(1−R0)

2 > 0, by using
Theorem 2, we obtain the next result:

Theorem 4. The disease-free equilibrium point E0 is always Jacobi unstable.

For E1

(
1
R0

, ρ
(

1− 1
R0

)
, 0, 0

)
the first invariant of the KCC theory has all coefficients

equal to zero, i.e., ε1 = ε2 = 0, and the next matrix contains the coefficients of the
second invariant:

P =

 1
4

ρ
(
ρR2

0 −R0 + 1
) 1

4
ρR0

−1
4

ρ2R0(R0 − 1) −1
4

ρ(R0 − 1)

 .

Since tr P = 1
4 ρ
(
ρR2

0 − 2R0 + 2
)

and det P = 1
16 ρ2(R0 − 1)2 > 0, by using Theorem 2,

we obtain the following result:

Theorem 5. The endemic equilibrium point E1 is Jacobi-stable if and only if ρR2
0 − 2R0 + 2 < 0.

Remark 1. Whenever E1 exists and is Jacobi-stable, a chaotic behavior of the SIR system in a small
enough neighborhood of this point is not possible.

In order to clarify the relation between the classical (Lyapunov or linear) stability and
the Jacobi stability for this SIR system, we will present the next diagram relative to the
system’s parameters ρ andR0 (see Figure 1):

                          D: rR - 4R + 4 = 0 

      J: rR - 2R + 2 = 0 
    2

1

2

3 Stable focus, stable Jacobi

Stable focus, unstable Jacobi

Stable node, unstable Jacobi

              Jacobi stability implies focus 

     2 

1

23

x=1

y=1

1

2

3

   rR - 4R + 4 > 0, 0 < r < 1, R > 1
2

rR - 4R + 4 < 0, 0 < r < 1, R > 1

rR - 2R + 2 < 0, 0 < r < 1, R > 1

2

2

J

D

x

y

D

J

R  = 1

r=1

1

1

2

3

 

0

0

00 0

0

00

0 00

00 0

Figure 1. Relation between the Jacobi stability and the linear stability for classical SIR system.

Taking into account that ρ =
µ

α + µ
,R0 =

Λβ

µ(α + µ)
and according to Theorem 5, we

obtain the following result:
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Theorem 6. If the endemic equilibrium point E1 exists, then E1 is Jacobi-stable if and only if the
reproduction numberR0 satisfies the conditions:

1 +
α

µ
−

√
α2

µ2 − 1 < R0 < 1 +
α

µ
+

√
α2

µ2 − 1 .

Proof. By using the Jacobi stability condition ρR2
0 − 2R0 + 2 < 0 from Theorem 5, and the

study of the sign of the second order function inR0, µR2
0 − 2(α + µ)R0 + 2(α + µ), with

the discriminant equal to 4(α2 − µ2), the theorem is proved.

According to the expression of the characteristic polynomial at the endemic equilib-
rium point E1, we obtain the next result regarding the local linear stability of the endemic
equilibrium point.

Theorem 7. If it exists, the endemic equilibrium E1 is a stable focus if and only if the reproduction
numberR0 satisfies the conditions:

2

(
1 +

α

µ
−

√
α2

µ2 +
α

µ

)
< R0 < 2

(
1 +

α

µ
+

√
α2

µ2 +
α

µ

)
.

Otherwise, the endemic equilibrium E1 is a stable node.

Proof. Because the discriminant associated with the characteristic polynomial at E1 is equal
to ρ(ρR2

0 − 4R0 + 4), it is necessary to study the sign of the second order function inR0,
µR2

0 − 4(α + µ)R0 + 4(α + µ).

Let us remark that apart from the reproduction number R0, the parameter α is the
most important parameter of this epidemic model. Only if α > µ (i.e., ρ < 1

2 ), the endemic
equilibrium (if it exists) can be stable from the Jacobi perspective. Therefore, the recovery
rate from illness α plays an unexpectedly crucial role both for classical stability and for
Jacobi stability of this classical SIR system.

In order to obtain characterizations of the local behaviour of the endemic equilibrium
point E1 related to the parameter β, the transmission coefficient of the infection, the next
results are obtained:

Theorem 8. If the endemic equilibrium point E1 exists, then E1 is Jacobi-stable if and only if the
transmission coefficient β satisfies the conditions:

α + µ

Λ∞

(
1 +

α

µ
−

√
α2

µ2 − 1

)
< β <

α + µ

Λ∞

(
1 +

α

µ
+

√
α2

µ2 − 1

)
,

where Λ∞ =
Λ
µ

is the limit size of the entire population.

Proof. By replacing both dimensionless parameters ρ andR0 with the four parameters of
the initial system (1), and using the Jacobi stability condition from Theorem 5, the theorem
is proved by following the sign of the second order function in β, Λ2β2 − 2Λ(α + µ)2β +
2µ(α + µ)3, with the discriminant equal to 4Λ2(α + µ)2(α2 − µ2).

Theorem 9. If it exists, the endemic equilibrium E1 is a stable focus if and only if the transmission
coefficient β satisfies the conditions:

2(α + µ)

Λ∞

(
1 +

α

µ
−

√
α2

µ2 +
α

µ

)
< β <

2(α + µ)

Λ∞

(
1 +

α

µ
+ 2

√
α2

µ2 +
α

µ

)
,
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where Λ∞ =
Λ
µ

is the limit size of the entire population.

Otherwise, the endemic equilibrium E1 is a stable node.

Proof. Because the discriminant associated with the characteristic polynomial at E1 is equal
to ρ(ρR2

0 − 4R0 + 4), it is necessary to study the sign of the second order function in β,
Λ2β2 − 4Λ(α + µ)2β + 4µ(α + µ)3.

If the mortality rate is known at a value µ0, in order to obtain threshold values for

the parameter α, the recovery rate, it is enough to replace ρ with
µ0

α + µ0
in Theorem 5 and

it results:

Theorem 10.

(a) If the endemic equilibrium point E1 exists, then it is Jacobi-stable if and only if the recovery
rate α fulfills the condition:

α > αJ = µ0
(R0 − 1)2 + 1

2(R0 − 1)
.

(b) If it exists, the endemic equilibrium E1 is a stable focus if and only if the recovery rate α fulfills
the condition:

α > αF = µ0
(R0 − 2)2

4(R0 − 1)
.

Otherwise, the endemic equilibrium E1 is a stable node.

Let us remark that αJ = 2αF + µ0, i.e., αJ > αF because the Jacobi stability of an
equilibrium point implies that this equilibrium is a focus.

Conversely, if we fixed the value of the recovery rate α at the value α0, then we obtain
the following threshold values for the mortality rate µ:

Theorem 11.

(a) If the endemic equilibrium point E1 exists, then E1 is Jacobi-stable if and only if the mortality
rate µ fulfills the condition:

µ < µJ = α0
2(R0 − 1)

(R0 − 1)2 + 1
.

(b) If it exists, the endemic equilibrium E1 is a stable focus if and only if the mortality rate µ
fulfills the condition:

α < µF = α0
4(R0 − 1)
(R0 − 2)2 .

Otherwise, the endemic equilibrium E1 is a stable node.

Of course, µJ < µF because µF − µJ = 2α0
R2

0(R0 − 1)
(R0 − 2)2((R0 − 1)2 + 1)

> 0.

4.1. Dynamics of the Deviation Vector for the Classical SIR Pattern with Demography

Because the deviation vector ξ i, i = 1, 2 gives us the behaviour of the integral curves
of the dynamical system around any equilibrium point, it is important to study the time
evolution of this deviation vector, described by the system of deviation Equation (A8), also
called Jacobi equations, or by the system of equations in covariant form (A9).
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For this classical SIR system with demography, the deviation equations become:{
d2ξ1

dt2 +
(
ρ +R0x2) dξ1

dt +R0x1 dξ2

dt +R0y2ξ1 +R0y1ξ2 = 0
d2ξ2

dt2 −R0x2 dξ1

dt +
(
1−R0x1) dξ2

dt −R0y2ξ1 −R0y1ξ2 = 0
(16)

The length of the deviation vector ξ(t) =
(
ξ1(t), ξ2(t)

)
is defined by

‖ξ(t)‖ =
√
(ξ1(t))2

+ (ξ2(t))2 .

In the following, we will present the deviation equations around the equilibrium
points for the classical SIR system with demography. Therefore, the time evolution of the
deviation vector close to the disease-free equilibrium point E0(1, 0, 0, 0) is carried out by
the next SODE: {

d2ξ1

dt2 + ρ dξ1

dt +R0
dξ2

dt = 0
d2ξ2

dt2 + (1−R0)
dξ2

dt = 0
(17)

The time evolution of the deviation vector close to the endemic equilibrium point
E1

(
1
R0

, ρ
(

1− 1
R0

)
, 0, 0

)
is carried out by the next SODE:

{
d2ξ1

dt2 + ρR0
dξ1

dt + dξ2

dt = 0
d2ξ2

dt2 + ρ(1−R0)
dξ1

dt = 0
(18)

Taking into account the differential geometry’s approach for the plane curves [19],
the curvature κ(t) of the trajectory ξ(t) =

(
ξ1(t), ξ2(t)

)
associated with the deviation

Equation (16) is a quantitative description of the dynamics of the deviation vector ξ i,
given by:

κ(t) =
ξ̇1(t)ξ̈2(t)− ξ̈1(t)ξ̇2(t)[(

ξ̇1(t)
)2

+
(
ξ̇2(t)

)2
]3/2 (19)

where ξ̇ i(t) =
dξ i

dt
, ξ̈ i(t) =

d2ξ i

dt2 , i = 1, 2.

5. A Simple SIR Epidemic Pattern with Demography and Vaccination

In this section, we propose a classical and simple SIR model with vaccination as in [37].
Furthermore, a very interesting four-dimensional model with vaccination was studied
recently in [38]. Next, we will reconsider the classical SIR model with demography (1) and
we will assume that a part of the susceptible individuals are vaccinated with the rate of
vaccination p. According to the classical SIR model, this vaccination rate is measured in
[unit of time]−1. If we will suppose that all vaccinated individuals will not be infected and
that they can be considered to belong to the category of removed individuals, then the
model (1) will be written in the form:

S′ = Λ− βIS− µS− pS
I′ = βIS− αI − µI

R′ = αI − µR + pS
(20)

Let us observe that the first two equations of system (20) are independent of the
third equation, because we can obtain the removed population by using R(t) = N(t)−
S(t)− I(t) and due to the fact that the total population N(t) can be obtained from the next
differential equation:

N′(t) = Λ− µN(t) ,

with the unique solution N(t) = N(0)e−µt +
Λ
µ

(
1− e−µt).
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Obviously, as for the classical model (1), the population number is not constant, but it

is asymptotically constant, because N(t)→ Λ
µ

when t→ ∞.

Taking into account all these proposals, we can consider the two-dimensional au-
tonomous system of first-order differential equations:{

S′ = Λ− βIS− (µ + p)S
I′ = βIS− (α + µ)I

(21)

By applying similar techniques as in Section 2 and by changing the time and variables,
τ = (α + µ)t, x(τ) = p+µ

Λ Ŝ(τ), y(τ) = p+µ
Λ Î(τ), where Ŝ(τ) = S

(
τ

α+µ

)
, Î(τ) = I

(
τ

α+µ

)
,

we obtain the equivalent dimensionless form of (21):{
x′ = ρ(1− x)−R0xy
y′ = R0xy− y

(22)

where ρ =
p + µ

α + µ
andR0 =

Λβ

(p + µ)(α + µ)
are both dimensionless parameters.

Let us remark that system (22) is exactly the dimensionless system (3) obtained for the
classical SIR model in Section 2. Therefore, all obtained results remain available also for
this SIR epidemic model with demography and vaccination. Only interpretations can be
different because the dimensionless parameters ρ and R0 are different. Of course, R0 is
the basic reproduction number for this pattern. Moreover, the number of parameters was
reduced from five to two.

According to the expressions of ρ > 0 andR0 > 0, it is clear that ρ < 1 if and only if
α > p and ρ < 1

2 if and only if α > 2p + µ. So, if we take account of the results presented
in Figure 1, for this model, the endemic equilibrium E1 can be a stable focus only if the
recovery rate α is greater than the vaccination rate p and E1 can be Jacobi-stable only if the
recovery rate α is greater than 2p + µ.

6. A Modified SIR Epidemic Pattern with Demography

Taking into account that for the classical SIR model (1), we have no periodic orbits,
and then Hopf bifurcations do not occur; next, we will consider a modified SIR system.
More exactly, we will suppose that the coefficient of transmission of the infection β is not
constant, but it is a linear function of the number of infected individuals, which means β
is replaced by β(1 + νI), where ν is a real positive parameter [1,39]. This implies that the
transmission coefficient of infection and also the contact rate increase with the number of
infected individuals and new infections occur much faster in comparison with the classical
model [1]. Of course, the local and global dynamics of this modified pattern is much more
complicated compared to the classical pattern. This model is a natural generalization and if
ν = 0, we come back to the first classical model.

Therefore, the model becomes:
S′ = Λ− β(1 + νI)IS− µS
I′ = β(1 + νI)IS− (α + µ)I

R′ = αI − µR
(23)

Let us remark that the total population size N = S + I + R satisfies N′(t) = Λ− µN(t)
and then we can omit the third equation for recovered individuals R. It follows that it is
necessary and sufficient to study the two-dimensional autonomous system of first-order
differential equations: {

S′ = Λ− β(1 + νI)IS− µS
I′ = β(1 + νI)IS− (α + µ)I

(24)

where R(t) = N(t)− S(t)− I(t).
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In order to obtain the dimensionless version of the system, using similar techniques as
for the classical system (2), after changing the time variable t by τ = (α + µ)t and rescaling
the variables Ŝ = S

(
τ

α+µ

)
, Î = I

(
τ

α+µ

)
with the total limiting population number Λ∞ = Λ

µ ,

we obtain the new variables x(τ) = Ŝ
Λ∞

, y(τ) = Î
Λ∞

, which are dimensionless quantities.
Consequently, if we denote ω = νΛ∞, then system (24) becomes:{

x′ = ρ(1− x)−R0(1 + ωy)xy
y′ = R0(1 + ωy)xy− y

(25)

where ρ =
µ

α + µ
andR0 =

Λβ

µ(α + µ)
are both dimensionless parameters.

Therefore, we can say that system (24) is transformed into a dimensionless-form
system (25), which is equivalent to the original system, because the long-term dynamics of
the solutions are the same. Moreover, the number of parameters was reduced from five (Λ,
β, ν, µ, and α) to three (ρ, R0, and ω), all being strictly positive real numbers. Of course,
R0 represent the reproduction number for this modified SIR model and 0 < ρ < 1.

Further, our study for this modified SIR model has relevance when x ≥ 0, y ≥ 0, i.e.,
on the first quadrant Σ0

+ =
{
(x, y) ∈ R2 | x ≥ 0, y ≥ 0

}
or even on the open first quadrant

Σ+ =
{
(x, y) ∈ R2 | x > 0, y > 0

}
.

The Jacobian matrix of system (25) at a point (x, y) is

A =

(
−ρ−R0(1 + ωy)y −R0x− 2R0ωxy
R0(1 + ωy)y R0x + 2R0ωxy− 1

)
In order to determine the equilibrium points of (25), by investigating the system{

ρ(1− x)−R0(1 + ωy)xy = 0
R0(1 + ωy)xy− y = 0

we obtain at most three equilibrium, as follows:
For y = 0, E0(1, 0), the disease-free equilibrium point, with Jacobian A =(
−ρ −R0
0 R0 − 1

)
and eigenvalues λ1 = −ρ, λ2 = R0 − 1. Then, E0 is locally asymp-

totically stable (stable node) if and only if R0 < 1, or E0 is unstable (saddle point) if and
only ifR0 > 1. ForR0 = 1, E0 is a non-hyperbolic equilibrium point because λ2 = 0.

For y 6= 0, we have R0(1 + ωy)x = 1, and then ρ
(

1− 1
R0(1+ωy)

)
− y = 0. Because

ρ
(

1− 1
R0(1+ωy)

)
− y = ρR0+ρR0ωy−ρ−R0y−R0y2ω

R(1+ωy) , the roots of second order algebraic equa-
tion in y are

−ωR0y2 +R0(ωρ− 1)y + ρ(R0 − 1) = 0 , (26)

y1 =
1

2R0ω

(
R0(ωρ− 1)−

√
∆
)

, y2 =
1

2R0ω

(
R0(ωρ− 1) +

√
∆
)

,

where ∆ = R2
0(ωρ + 1)2 − 4R0ωρ is the discriminant of the second order Equation (26).

If we denote by f (y) = −ωR0y2 +R0(ωρ− 1)y + ρ(R0 − 1), the second order func-
tion associated with the Equation (26), then we have the following three cases:

Case 1. If f (0) = ρ(R0 − 1) > 0, i.e., R0 > 1, then only the second root y2 is strictly
positive and we have only one endemic equilibrium point E(x, y), with coordinates

x =
2

R0(1 + ωρ) +
√

∆
, y =

1
2R0ω

(
R0(ωρ− 1) +

√
∆
)

. (27)

Let us remark that ∆ > 0, because ∆ = R2
0(ωρ+ 1)2− 4R0ωρ > R2

0
(
(ωρ + 1)2 − 4ωρ

)
> (ωρ + 1)2 − 4ωρ = (ωρ− 1)2, for any positive parameters ω and ρ.
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Then, taking into account that R0(1 + ωy)x = 1, the Jacobi matrix at the only one
endemic equilibrium point E(x, y) is

A =

(
−ρ−R0(1 + ωy)y −R0ωxy− 1
R0(1 + ωy)y R0ωxy

)
, (28)

where the trace is trA = λ1 + λ2 = −ρ−R0(1 + ωy)y +R0ωxy and the determinant is
det A = λ1λ2 = −ρR0ωxy +R0(1 + ωy)y, where λ1, λ2 are eigenvalues of A.

By replacing x and y from (27),

trA = −1
4

((
ρR0ω +

√
∆
)2

+R0(4ρω−R0)

)(
R0 + ρRω +

√
∆
)
− 4Rω

(
ρR0ω−R0 +

√
∆
)

R0ω
(
R0 + ρR0ω +

√
∆
)

and

det A =
1
4

(
R0(ωρ− 1) +

√
∆
)(R0(ωρ− 1) +

√
∆
)2

+ 4R0

(
ρω(R0 − 1) +

√
∆
)

R0ω
(
R0 + ρR0ω +

√
∆
) .

Due to y > 0 andR0 > 1, det A > 0 for any positive values of parameters. Therefore,
the endemic equilibrium E(x, y) is local asymptotically stable (stable node or stable focus)
if and only if trA < 0, i.e.,((

ρR0ω +
√

∆
)2

+R0(4ρω−R0)

)(
R0 + ρRω +

√
∆
)
− 4Rω

(
ρR0ω−R0 +

√
∆
)
> 0.

Otherwise, the endemic equilibrium E is unstable (unstable node or unstable focus) if
and only if trA > 0, i.e.,((

ρR0ω +
√

∆
)2

+R0(4ρω−R0)

)(
R0 + ρRω +

√
∆
)
− 4Rω

(
ρR0ω−R0 +

√
∆
)
< 0.

Let us point out that if trA = 0 (i.e., λ1 = −λ2), then λ1,2 are pure imaginary roots of
the characteristic polynomial at E, with Re λ1,2 = 0. In this case, it is possible to have Hopf
bifurcations along the curve tr A = 0, i.e((

ρR0ω +
√

∆
)2

+R0(4ρω−R0)

)(
R0 + ρRω +

√
∆
)
− 4Rω

(
ρR0ω−R0 +

√
∆
)
= 0.

Case 2. If f (0) = ρ(R0 − 1) = 0, i.e.,R0 = 1, then ∆ = (ωρ− 1)2 ≥ 0 and the roots of
Equation (26) are y1 = 0 and y2 = ωρ−1

ω . Then we have that the first endemic equilibrium
E1(x1, y1) coincides with E0(1, 0), and so this equilibrium point is non hyperbolic, but the
second endemic equilibrium becomes E2(x2, y2), with coordinates x2 = 1

ωρ , y2 = ωρ−1
ω .

Obviously, E2 ∈ Σ+ if and only if ωρ − 1 > 0. The Jacobian at E2 is A =(
−ρ2ω − 2ρω−1

ρω

(ρω− 1)ρ ρω−1
ρω

)
, with eigenvalues λ1,2 = 1

2ρω

(
ρω− 1− ρ3ω2 ±

√
∆1
)
, where

∆1 =
(
ρ3ω2 − ρω + 1

)2 − 4ρ2ω(ρω− 1)2.

Taking into account that trA = λ1 + λ2 = − ρ3ω2−ρω+1
ρω and det A = λ1λ2

= (ρω−1)2

ω > 0, the results show that E2 is local asymptotically stable (stable node or
stable focus) if and only if trA < 0, i.e., ρ3ω2 − ρω + 1 > 0. Else, E2 is unstable (unstable
node or unstable focus) if and only if trA > 0, i.e., ρ3ω2 − ρω + 1 < 0.

Let us point out that if trA = 0 (i.e., λ1 = −λ2), then ∆1 = −4ρ2ω(ρω− 1)2 < 0, i.e.,
λ1,2 are pure imaginary roots with Re λ1,2 = 0. In this case, it is possible to have Hopf
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bifurcations along the curve ρ3ω2 − ρω + 1 = 0. More exactly, for ω =
1±
√

1−4ρ

2ρ2 and

0 < ρ < 1
4 .

If 1
4 < ρ < 1, then ρ3ω2 − ρω + 1 > 0. For ρ = 1

4 , ρ3ω2 − ρω + 1 > 0 for any ω 6= 1
8

and ρ3ω2 − ρω + 1 = 0 only for ω = 1
8 .

Case 3. If f (0) = ρ(R0 − 1) < 0, i.e.,R0 < 1, then we have two endemic equilibrium
points E1(x1, y1) and E2(x2, y2), with positive coordinates given by

x =
1

R0(1 + ωy)
and −ωR0y2 +R0(ωρ− 1)y + ρ(R0 − 1) = 0

if and only if ∆ = R2
0(ωρ + 1)2 − 4R0ωρ > 0, which means 4ωρ

(ωρ+1)2 < R0 < 1.
More exactly, this two equilibrium points has the following coordinates:

x1 =
2

R0(1 + ωρ)−
√

∆
, y1 =

1
2R0ω

(
R0(ωρ− 1)−

√
∆
)

(29)

and, respectively,

x2 =
2

R0(1 + ωρ) +
√

∆
, y2 =

1
2R0ω

(
R0(ωρ− 1) +

√
∆
)

. (30)

Let us remark that ωρ− 1 > 0, because y1+y2
2 = ωρ−1

2ω > 0.
For the first endemic equilibrium E1(x1, y1), taking into account thatR0(1 + ωy1)x1

= 1, the results show that the Jacobian matrix is

A =

(
−ρ−R0(1 + ωy1)y1 −R0ωx1y1 − 1
R0(1 + ωy1)y1 R0ωx1y1

)
with tr A = λ1 +λ2 = −ρ−R0(1 + ωy1)y1 +R0ωx1y1 and det A = λ1λ2 = −R0ωx1y1ρ+
R0(1 + ωy1)y1, where λ1, λ2 are the eigenvalues of A.

By replacing x1 and y1 from (29), the results show that

tr A = −1
4

((
ρR0ω−

√
∆
)2

+R0(4ρω−R0)

)(
R0 + ρR0ω−

√
∆
)
− 4R0ω

(
ρωR0 −R0 −

√
∆
)

R0ω
(
R0 + ρR0ω−

√
∆
)

and

det A =
1
4

(
R0(ωρ− 1)−

√
∆
)(R0(ωρ− 1)−

√
∆
)2

+ 4R0

(
ρω(R0 − 1)−

√
∆
)

R0ω
(
R0 + ρR0ω−

√
∆
) .

Because y1 = 1
2R0ω

(
R0(ωρ− 1)−

√
∆
)
> 0 and R0 + ρR0ω −

√
∆ > 0, the results

show that the sign of det A is given by
(
R0(ωρ− 1)−

√
∆
)2

+ 4R0

(
ρω(R0 − 1)−

√
∆
)

.

Since 4ωρ

(ωρ+1)2 < R0 < 1, we have ρω(R0 − 1) −
√

∆ < 0 and then the expression(
R0(ωρ− 1)−

√
∆
)2

+ 4R0

(
ρω(R0 − 1)−

√
∆
)

can be negative. Indeed, if we use
the identity(

R0(ωρ− 1)−
√

∆
)2

+ 4R0

(
ρω(R0 − 1)−

√
∆
)

= (1 + ρω)2
(
R0 − 4ωρ

(ωρ+1)2

)(
R0 − 2

√
∆

ωρ+1

)
+ ∆− 8ρω

√
∆

1+ωρ
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and we observe that R0 − 2
√

∆
ωρ+1 < 0

(
due toR0 > 4ωρ

(ωρ+1)2

)
, ∆− 8ρω

√
∆

1+ωρ < 0 for R0 < 1

and ωρ > 1 (because (ωρ + 1)2 < 64ω2ρ2 + 4ωρ for ωρ > 1), it result that(
R0(ωρ− 1)−

√
∆
)2

+ 4R0

(
ρω(R0 − 1)−

√
∆
)
< 0 for anyR0 ∈

(
4ωρ

(ωρ + 1)2 , 1
)

.

Therefore, the first endemic equilibrium E1 is unstable (a saddle point) because
det A < 0.

For the second endemic equilibrium E2(x2, y2), taking into account that R0(1 +
ωy2)x2 = 1, the Jacobian matrix is

A =

(
−ρ−R0(1 + ωy2)y2 −R0ωx2y2 − 1
R0(1 + ωy2)y2 R0ωx2y2

)
with tr A = λ1 + λ2 = −ρ−R0(1 + ωy2)y2 +R0ωx2y2 and det A = λ1λ2 = −R0ωx2y2ρ
+R0(1 + ωy2)y2, where λ1, λ2 are the eigenvalues of A.

By replacing x2 and y2 from (30), the results show that

tr A = −1
4

((
ρR0ω +

√
∆
)2

+R0(4ρω−R0)

)(
R0 + ρR0ω +

√
∆
)
− 4R0ω

(
ρR0ω−R0 +

√
∆
)

R0ω
(
R0 + ρR0ω +

√
∆
)

and

det A =
1
4

(
R0(ωρ− 1) +

√
∆
)(R0(ωρ− 1) +

√
∆
)2

+ 4R0

(
ρω(R0 − 1) +

√
∆
)

R0ω
(
R0 + ρR0ω +

√
∆
) .

Since y2 = 1
2R0ω

(
R0(ωρ− 1) +

√
∆
)

> 0 and R0 + ρR0ω +
√

∆ > 0, we have

that the sign of det A is given by
(
R0(ωρ− 1) +

√
∆
)2

+ 4R0

(
ρω(R0 − 1) +

√
∆
)

. From
4ωρ

(ωρ+1)2 < R0 < 1, we have ρω(R0 − 1) +
√

∆ can be negative and also the expression(
R0(ωρ− 1) +

√
∆
)2

+ 4R0

(
ρω(R0 − 1) +

√
∆
)

can be negative. However, if we use
the identity(

R0(ωρ− 1) +
√

∆
)2

+ 4R0

(
ρω(R0 − 1) +

√
∆
)

= (1 + ρω)2
(
R0 − 4ωρ

(ωρ+1)2

)(
R0 +

2
√

∆
ωρ+1

)
+ ∆ + 8ρω

√
∆

1+ωρ

we obtain that
(
R0(ωρ− 1) +

√
∆
)2

+ 4R0

(
ρω(R0 − 1) +

√
∆
)

> 0 for any

R0 ∈
(

4ωρ

(ωρ+1)2 , 1
)

.
Then det A > 0 and the second endemic equilibrium E2 is locally asymptotically stable

(stable node or stable focus) if and only of tr A < 0, i.e.,((
ρR0ω +

√
∆
)2

+R0(4ρω−R0)

)(
R0 + ρRω +

√
∆
)
− 4Rω

(
ρR0ω−R0 +

√
∆
)
> 0.

Otherwise, the endemic equilibrium E2 is unstable (unstable node or unstable focus) if
and only if trA < 0, i.e.,((

ρR0ω +
√

∆
)2

+R0(4ρω−R0)

)(
R0 + ρRω +

√
∆
)
− 4Rω

(
ρR0ω−R0 +

√
∆
)
< 0.
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Let us point out that if trA = 0 (i.e., λ1 = −λ2), then λ1,2 are pure imaginary roots
of the characteristic polynomial at E2, with Re λ1,2 = 0. In this case, it is possible to have
Hopf bifurcations along the curve tr A = 0, i.e.,((

ρR0ω +
√

∆
)2

+R0(4ρω−R0)

)(
R0 + ρRω +

√
∆
)
− 4Rω

(
ρR0ω−R0 +

√
∆
)
= 0.

If ∆ = 0, i.e.,R0 = 4ωρ

(ωρ+1)2 , then there is an unique endemic equilibrium point E(x, y),

with x = ρω+1
2ωρ and y = ωρ−1

2ω . The Jacobian at this E(x, y) is

A =

(
−2ρ2 ω

ρω+1 −2ρ ω
ρω+1

ρ
ρω+1 (ρω− 1) 1

ρω+1 (ρω− 1)

)
,

with eigenvalues λ1 = 0, λ2 = −2ρ2ω+ρω−1
ρω+1 , which means that this endemic equilibrium

point E is a non hyperbolic equilibrium.
If ∆ < 0, i.e.,R0 < 4ωρ

(ωρ+1)2 , then there is no endemic equilibrium.
In conclusion, we collect the obtained results in Table 2.

Table 2. The equilibrium points in the closed first quadrant Σ0
+ for the modified SIR model.

Case Conditions Equilibrium Points Type

1 R0 > 1 E0 saddle point, E1 /∈ Σ0
+, E2 attractor or repeller

2 R0 = 1, ωρ > 1 E0 = E1 non hyperbolic, E2 attractor or repeller
3 R0 = 1, ωρ = 1 E0 = E1 = E2 non hyperbolic
4 R0 = 1, ωρ < 1 E0 = E1 non hyperbolic, E2 /∈ Σ0

+

5 4ωρ
(ωρ+1)2)

< R0 < 1 E0 stable node, E1 saddle point, E2 attractor or repeller

6 R0 =
4ωρ

(ωρ+1)2)
E0 stable node, E1 = E2 non hyperbolic,

7 0 < R0 <
4ωρ

(ωρ+1)2)
E0 stable node, E1, E2 do not exists

Remark 2. Following the ideas and the same techniques as in Section 5, if we will consider the
modified SIR model with demography and vaccination,

S′ = Λ− β(1 + νI)IS− µS− pS
I′ = β(1 + νI)IS− (α + µ)I

R′ = αI − µR + pS
(31)

then, after changing of time and variables, we will obtain the same dimensionless system (25), where

ρ =
p + µ

α + µ
, R0 =

Λβ

(p + µ)(α + µ)
and ω = ν Λ

p+µ . All results obtained remains available also

for this SIR epidemic model with demography and vaccination. Only the interpretations can be
different because the dimensionless parameters ρ andR0 are different.

7. SODE Formulation of the Modified SIR Pattern with Demography

We consider the modified SIR model with demography (25). For the sake of simplicity,
the derivative with respect to time will be denote with a dot over the variable and we prefer
to denote t instead of τ. Then, system (25) can be written in the form{

ẋ = ρ(1− x)−R0(1 + ωy)xy
ẏ = R0(1 + ωy)xy− y

(32)

where ρ =
µ

α + µ
∈ (0, 1), ω = ν Λ

µ > 0,R0 =
Λβ

µ(α + µ)
> 0.
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By using of the derivative relative to the time t for the equations of system (32), we
obtain the next system of second-order differential equations:{

ẍ + [ρ +R0(1 + ωy)y]ẋ + [R0ωxy +R0(1 + ωy)x]ẏ = 0
ÿ−R0(1 + ωy)yẋ + [1−R0ωxy−R0(1 + ωy)x]ẏ = 0

In order to use the rule of the crossed repeated indices from differential geometry
formalism, we will use the following notations for the variables:

x = x1, ẋ = y1, y = x2, ẏ = y2

Then, the above system of second-order differential equations (SODE) can be written:{
ẍ1 +

[
ρ +R0(1 + ωx2)x2]y1 +

[
R0ωx1x2 +R0(1 + ωx2)x1]y2 = 0

ẍ2 −R0(1 + ωx2)x2y1 +
[
1−R0ωx1x2 −R0(1 + ωx2)x1]y2 = 0

(33)

or, equivalently,{
d2x1

dt2 +
[
ρ +R0(1 + ωx2)x2]y1 +

[
R0ωx1x2 +R0(1 + ωx2)x1]y2 = 0

d2x2

dt2 −R0(1 + ωx2)x2y1 +
[
1−R0ωx1x2 −R0(1 + ωx2)x1]y2 = 0

(34)

where dxi

dt = yi, i = 1, 2.
Therefore, system (34) represents a SODE (or semi-spray) from the KCC theory:{

d2x1

dt2 + 2G1(x1, x2, y1, y2) = 0
d2x2

dt2 + 2G2(x1, x2, y1, y2) = 0
(35)

where
G1(xi, yi) = 1

2
[
ρy1 +R0

(
1 + ωx2)x2y1 +R0

(
1 + 2ωx2)x1y2] ,

G2(xi, yi) = 1
2
[
−R0(1 + ωx2)x2y1 + y2 −R0

(
1 + 2ωx2)x1y2] .

(36)

The zero-connection curvature Zi
j = 2 ∂Gi

∂xj is given by the next coefficients:

Z1
1 = R0y2 + 2R0ωx2y2

Z1
2 = R0y1 + 2R0ω(x2y1 + x1y2)

Z2
1 = −R0y2 − 2R0ωx2y2

Z2
2 = −R0y1 − 2R0ω(x2y1 + x1y2)

The nonlinear connection N has the coefficients Ni
j =

∂Gi

∂yj :


N1

1 = 1
2
[
ρ +R0

(
1 + ωx2)x2]

N1
2 = 1

2R0
(
1 + 2ωx2)x1

N2
1 = − 1

2R0
(
1 + ωx2)x2

N2
2 = 1

2
[
1−R0

(
1 + ωx2)x1]

(37)

Consequently, all components of the Berwald connection Gi
jk =

∂Ni
j

∂yk are null and the

coefficients of the first invariant, εi = −
(

Ni
j y

j − 2Gi
)

, are the following:{
ε1 = 1

2 ρy1 + 1
2R0

(
1 + ωx2)x2y1 + 1

2R0
(
1 + 2ωx2)x1y2 ,

ε2 = 1
2 y2 − 1

2R0(1 + ωx2)x2y1 − 1
2R0

(
1 + 2ωx2)x1y2 .

(38)
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Let us observe that εi = Gi for i = 1, 2, i.e., ∂Gi

∂yj yj = 1 · Gi for i = 1, 2. That means that

the functions Gi are homogeneous to degree 1 relative to yi.
Then, by using (A10), the components of deviation curvature tensor for the classical

SIR model with demography (32) are given by:

P1
1 = − 1

2R0
(
1 + 2ωx2)y2 + 1

4
[
ρ +R0

(
1 + ωx2)x2]2 − 1

4R2
0
(
1 + ωx2)(1 + 2ωx2)x1x2

P1
2 = − 1

2R0y1 −R0ω(x2y1 + x1y2) + 1
4R0

(
1 + 2ωx2)x1[ρ + 1 +R0

(
x2 − x1 + ω(x2)2 − 2ωx1x2)]

P2
1 = 1

2R0
(
1 + 2ωx2)y2 − 1

4R0
(
1 + ωx2)x2[ρ + 1 +R0

(
x2 − x1 + ω(x2)2 − 2ωx1x2)]

P2
2 = 1

2R0y1 +R0ω(x2y1 + x1y2)− 1
4R2

0
(
1 + ωx2)(1 + 2ωx2)x1x2 + 1

4
[
1−R0

(
1 + 2ωx2)x1]2

(39)

If we recall that the trace and the determinant of the deviation curvature tensor

P =

(
P1

1 P1
2

P2
1 P2

2

)
are tr P = P1

1 + P2
2 and det P = P1

1 P2
2 − P2

1 P1
2 , then, by following Theorem A2, we can

write the following result:

Theorem 12. All the roots of the characteristic polynomial of P are negative or have negative real
parts (that means Jacobi stability) if and only if

tr P = P1
1 + P2

2 < 0 and det P = P1
1 P2

2 − P2
1 P1

2 > 0 .

Taking into account that Pi
jk =

1
3

(
∂Pi

j

∂yk −
∂Pi

k
∂yj

)
, Pi

jkl =
∂Pi

jk

∂yl , Di
jkl =

∂Gi
jk

∂yl , we obtain

the third, fourth, and fifth invariants of the modified SIR model with demography (32):

Theorem 13. All eight components of the torsion tensor Pi
jk, the third invariant of KCC theory, are

equal to zero, i.e.,
Pi

jk = 0 , ∀ i, j, k. (40)

All sixteen components of the Riemann–Christoffel curvature tensor Pi
jkl , the fourth invariant

of KCC theory, are equal to zero, i.e

Pi
jkl = 0 , ∀ i, j, k, l. (41)

All sixteen components of the Douglas tensor Di
jkl , the fifth invariant of KCC theory, are equal

to zero, i.e.,
Di

jkl = 0 , ∀ i, j, k, l. (42)

8. Jacobi Stability Analysis of the Modified SIR Pattern with Demography

In the present section, the first two geometric invariants at each equilibrium point of
the modified SIR model with demography (32) will be computed and, consequently, the
Jacobi stability conditions of the system around each equilibrium point will be determined.

For the disease-free equilibrium point E0(1, 0), we have the corresponding equilibrium
point E0(1, 0, 0, 0) of SODE (34) and the results are the same as for the classical model. So,
the first invariant has all components null, ε1 = ε2 = 0, and the matrix with the coefficients
of the second invariant is:

P =

(
1
4 ρ2 1

4R0(ρ + 1−R0)

0 1
4 (1−R0)

2

)
.

Since tr P = 1
4 ρ2 + 1

4 (1−R0)
2 > 0, det P = 1

16 ρ2(1−R0)
2 > 0, we obtain the next

result:
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Theorem 14. The disease-free equilibrium point E0 of (32) is always Jacobi unstable.

Using (38) and taking into account that an endemic equilibrium point E(x, y) of (25)
have the corresponding equilibrium point E0(x, y, 0, 0) of SODE (34), the results show that
the first invariant of the geometric theory has all null coefficients, i.e., ε1 = ε2 = 0, for any
endemic equilibrium.

Further, we will made a study of the Jacobi stability for endemic equilibrium points
following three cases: R0 > 1,R0 = 1 and 0 < R0 < 1.

8.1. Jacobi Stability near to Endemic Equilibrium forR0 > 1

IfR0 > 1 then there is only one endemic equilibrium E(x, y) in Σ+, where

x =
2

R0(1 + ωρ) +
√

∆
and y =

1
2R0ω

(
R0(ωρ− 1) +

√
∆
)

,

where ∆ = R2
0(ωρ + 1)2 − 4R0ωρ.

Using (39), with x1 = x, x2 = y, y1 = 0, y2 = 0, and taking into account that
R0(1 + ωy)x = 1, the results show that the coefficients of second invariant of KCC theory
(the curvature deviation tensor) at E are the following:

P1
1 = 1

4
(
ρ + y

x
)2 − 1

4R0(1 + 2ωy)y
P1

2 = 1
4R0(ρ + 1)(1 + 2ωy)x + 1

4R0(1 + 2ωy)y− 1
4R2

0(1 + 2ωy)2x2

P2
1 = − 1

4 (ρ + 1) y
x −

1
4

y2

x2 +
1
4R0(1 + 2ωy)y

P2
2 = − 1

4R0(1 + 2ωy)y + 1
4 (1−R0(1 + 2ωy)x)2

Then

tr P = P1
1 + P2

2 =
1
4

(
ρ +

y
x

)2
− 1

2
R0(1 + 2ωy)y +

1
4
(1−R0(1 + 2ωy)x)2

or

4x2 tr P = x4(1 + 2ωy)2R2
0 − 2x2(y + x)(1 + 2ωy)R0 + ρ2x2 + 2ρxy + y2 + x2 ,

and

det P = P1
1 P2

2 − P1
2 P2

1 =

(
−ρx + ρx2R0 + 2ρx2R0ωy− y

)2

16x2 > 0 .

Therefore, following Theorem 12, we obtain:

Theorem 15. The endemic equilibrium point E of (32) is Jacobi-stable if and only if tr P < 0.

Using the identity

tr P =

(
1 + 2ωy

2

)2
(
R0 −

y + x−
√

2xy− ρ2x2 − 2ρxy
x2(1 + 2ωy)

)(
R0 −

y + x +
√

2xy− ρ2x2 − 2ρxy
x2(1 + 2ωy)

)
,

which results in

Corollary 1. If 2xy− ρ2x2 − 2ρxy > 0, then the endemic equilibrium point E of (32) is Jacobi-
stable if and only if

y + x−
√

2xy− ρ2x2 − 2ρxy
x2(1 + 2ωy)

< R0 <
y + x +

√
2xy− ρ2x2 − 2ρxy

x2(1 + 2ωy)
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or, equivalently,

y + x−
√

2xy− ρ2x2 − 2ρxy < R0x2(1 + 2ωy) < y + x +
√

2xy− ρ2x2 − 2ρxy .

Otherwise, if 2xy− ρ2x2 − 2ρxy ≤ 0, then the endemic equilibrium E is Jacobi unstable.

In order to deepen the study of the sign of tr P, we replace x, y from (27), the result of
which is

P1
1 = 1

4

(
ρ + 1

4R0ω

(
R0(ωρ− 1) +

√
∆
)(
R0(1 + ωρ) +

√
∆
))2

− 1
8ω

(
R0(ωρ− 1) +

√
∆
)(

1 + 1
R0

(
R0(ωρ− 1) +

√
∆
))

P1
2 = 1

2R0(ρ + 1)
1+ 1
R0
(R0(ωρ−1)+

√
∆)

R0(1+ωρ)+
√

∆

+ 1
8ω

(
R0(ωρ− 1) +

√
∆
)(

1 + 1
R0

(
R0(ωρ− 1) +

√
∆
))
−R2

0

(
1+ 1
R0
(R0(ωρ−1)+

√
∆)
)2

(R0(1+ωρ)+
√

∆)
2

P2
1 = − 1

16
ρ+1
R0ω

(
R0(ωρ− 1) +

√
∆
)(
R0(1 + ωρ) +

√
∆
)

− 1
64R2

0ω2

(
R0(ωρ− 1) +

√
∆
)2(
R0(1 + ωρ) +

√
∆
)2

+ 1
8ω

(
R0(ωρ− 1) +

√
∆
)(

1 + 1
R0

(
R0(ωρ− 1) +

√
∆
))

P2
2 = − 1

8ω

(
R0(ωρ− 1) +

√
∆
)(

1 + 1
R0

(
R0(ωρ− 1) +

√
∆
))

+ 1
4

(
1− 2R0

1+ 1
R0
(R0(ωρ−1)+

√
∆)

R0(1+ωρ)+
√

∆

)2

(43)

Then

16R0ω
(
R0(1 + ρω) +

√
∆
)2

tr P = R0ωρ2
(
R0(1 + ρω) +

√
∆
)4

−4
(
R0(1 + ρω) +

√
∆
)2(
R0(ρω− 1) +

√
∆
)(
R0ρω +

√
∆
)
+ 4R0ω

(
R0(ρω− 1) +

√
∆
)2

and we obtain the next result:

Theorem 16. The endemic equilibrium point E of (32) is Jacobi-stable if and only if

R0ωρ2
(
R0(1 + ρω) +

√
∆
)4

+ 4R0ω
(
R0(ρω− 1) +

√
∆
)2

< 4
(
R0(1 + ρω) +

√
∆
)2(
R0(ρω− 1) +

√
∆
)(
R0ρω +

√
∆
)

.

8.2. Jacobi Stability near to Endemic Equilibrium forR0 = 1

For R0 = 1 and ωρ − 1 > 0, we have two so called endemic equilibrium points:
E1(1, 0) and E2(x, y) in Σ+, with coordinates x = 1

ωρ , y = ωρ−1
ω . However, because E1

coincides with E0, remains to study the Jacobi stability only for E2. Then, we have computed
the coefficients of second invariant of KCC theory (the curvature deviation tensor) at E2:

P1
1 = 1

4
ρ4ω3+3ωρ−2ρ2ω2−1

ω

P1
2 = 1

4 (−1 + 2ωρ)
−ωρ+ρ3ω2+1

ρ2ω2

P2
1 = − 1

4 (ωρ− 1)−ωρ+ρ3ω2+1
ω

P2
2 = − 1

4 (ωρ− 1)−ρ2ω+2ρ3ω2−ωρ+1
ρ2ω2

Then, the results show that

tr P = P1
1 + P2

2 =
1
4

(
ρ3ω2 − ρω + 1

)2 − 2ρ2ω(ρω− 1)2

ρ2ω2
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and

det P = P1
1 P2

2 − P1
2 P2

1 =
1

16
(ωρ− 1)4

ω2 > 0, for any parameter’s value .

Theorem 17. The endemic equilibrium E2 of (32) is Jacobi-stable if and only if the following
condition is satisfied (

ρ3ω2 − ρω + 1
)2

< 2ρ2ω(ρω− 1)2,

or, equivalently,

−ρ
√

2ω(ρω− 1) ≤ ρ3ω2 − ρω + 1 ≤ ρ
√

2ω(ρω− 1).

Let us remark that E2 is focus (stable or unstable) if and only if the following condition
is satisfied (

ρ3ω2 − ρω + 1
)2

< 4ρ2ω(ρω− 1)2,

or, equivalently,

−2ρ
√

ω(ρω− 1) ≤ ρ3ω2 − ρω + 1 ≤ 2ρ
√

ω(ρω− 1).

If we denote by S = trA and P = det A, then

S2 − 4P =

(
ρ3ω2 − ρω + 1

)2 − 4ρ2ω(ρω− 1)2

ρ2ω2

and

S2 − 2P =

(
ρ3ω2 − ρω + 1

)2 − 2ρ2ω(ρω− 1)2

ρ2ω2 .

Consequently, we have S2− 4P < 0 if and only if
(
ρ3ω2 − ρω + 1

)2− 4ρ2ω(ρω− 1)2 <

0 and S2 − 2P < 0 if and only if
(
ρ3ω2 − ρω + 1

)2 − 2ρ2ω(ρω− 1)2 < 0.
Therefore, it is confirmed once again that the Jacobi stability of an equilibrium point

implies that this equilibrium point is a focus (stable or unstable); see Figure A1. More that,
we can claim that the Jacobi stability near to an equilibrium point not allows a chaotic
behavior of the dynamical system around this equilibrium point.

8.3. Jacobi Stability near to Endemic Equilibrium forR0 < 1

In this case, and for ∆ = R2
0(ωρ + 1)2 − 4R0ωρ > 0, which means 4ωρ

(ωρ+1)2 < R0 < 1,
we have two endemic equilibrium points E1(x1, y1) and E2(x2, y2), with positive coordi-
nates given by (29), and, respectively, (30). Because the first endemic equilibrium E1(x1, y1)
is a saddle point, the results show that we have no Jacobi stability at E1. Instead, for
the second endemic equilibrium E2(x2, y2), we will obtain the same results about Jacobi
stability as for the endemic equilibrium from the caseR0 > 1 (see Section 8.1).

Obviously, when ∆ = 0, i.e., R0 = 4ωρ
(ωρ+1)2 , we have no Jacobi stability at this non-

hyperbolic equilibrium point.
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Remark 3. Similarly with Section 4.1, near every equilibrium point, the dynamics of the devi-
ation vector for this modified SIR system with demography can be obtained from the deviation
Equation (A8) as follows:

d2ξ1

dt2 +
[
ρ +R0

(
1 + ωx2)x2]dξ1

dt
+R0

(
1 + 2ωx2)x1 dξ2

dt
+[

R0y2 + 2R0ωx2y2]ξ1 +
[
R0y1 + 2R0ω(x2y1 + x1y2)

]
ξ2 = 0 ,

d2ξ2

dt2 −R0
(
1 + ωx2)x2 dξ1

dt
+
[
1−R0

(
1 + ωx2)x1]dξ2

dt
−[

R0y2 + 2R0ωx2y2]ξ1 −
[
R0y1 + 2R0ω(x2y1 + x1y2)

]
ξ2 = 0 .

(44)

9. Conclusions

The fundamental aim of this work is to study the Jacobi stability of two SIR models
with demography for the spread of diseases by using the geometric tools of the Kosambi–
Cartan–Chern (KCC) theory for the classical SIR model with demography (and vaccination)
and a modified SIR model with demography (and vaccination), and with a linear coefficient
of the transmission of infection. First of all, we presented the classical local dynamics
around equilibrium points for every pattern, and then we rewrote each system of first-
order nonlinear differential equations as an equivalent system of second-order differential
equations (SODE) for determining the five invariants of the geometric theory. We have
determined the first invariant and the second invariant of the Kosambi–Cartan–Chern
(KCC) geometric theory, and we found that the third, fourth, and fifth invariants have all
components equal to zero. Moreover, the Berwald connection has all null components.
Furthermore, we have computed the components of the zero-connection curvature tensor
and the components of the nonlinear connection defined by the semi-spray (SODE), and we
have determined the deviation curvature tensor in order to find the conditions for Jacobi
stability near every equilibrium point.

Furthermore, in order to make a comparison between these two approaches, a com-
prehensive analysis of the Jacobi stability and the classical (Lyapunov or linear) stability
near every equilibrium point was conducted. Moreover, the deviation equations around
each equilibrium point were determined. A future approach of this researches could be to
perform a computational investigation on the time variation of the deviation vector and its
curvature in order to obtain additional information about the behavior of the SIR systems
near each equilibrium point.
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Appendix A. Kosambi–Cartan–Chern Geometric Theory and Jacobi Stability

The objective of this appendix is to present briefly and clearly the basic notions
and main results of the Kosambi–Cartan–Chern geometric theory, all these being strictly
necesary for a good understanding of the results obtained relative to the Jacobi stabil-
ity [11,12,16,17,23–29].

Let us consider M a real, C∞–manifold with dimension n and TM the tangent bundle
of M. By u = (x, y) we denote a point from TM, with x =

(
x1, . . . , xn), y =

(
y1, . . . , yn),
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and yi = dxi

dt , i = 1, . . . , n. Usually, M is Rn or M an open subset of Rn. Let us take the next
system of second-order differential equations (SODE) written in the normalized form [10]:{

d2xi

dt2 + 2Gi(x, y) = 0, i = 1, . . . , n. (A1)

where Gi(x, y) are C∞–functions defined in a domain of a local system of coordinates on
TM, i.e., an open neighborhood for certain initial conditions (x0, y0). The system (A1) can
be viewed like a system of Euler–Lagrange equations from Classical Mechanics [10,30]:{ d

dt
∂L
∂yi − ∂L

∂xi = Fi

yi = dxi

dt

, i = 1, . . . , n. (A2)

with L(x, y) a regular Lagrangian on TM, and Fi are the components of the external force.
The SODE (A1) has a geometrical meaning if and only if “the accelerations” d2xi

dt2 and
“the forces” Gi(xj, yj) are tensors of type (0, 1) under the next change of local coordinates:{

x̃i = x̃i(x1, . . . , xn)

ỹi = ∂x̃i

∂xj yj , i = 1, . . . , n. (A3)

More exactly, the SODE (A1) has a geometrical meaning (and this system is called
semi-spray) if and only if the changing of coefficients Gi(xj, yj) under the change of local
coordinates (A3) is made after the following rules [10,30]:

2G̃i = 2Gj ∂x̃i

∂xj −
∂ỹi

∂xj yj . (A4)

The fundamental idea of the Kosambi–Cartan–Chern (KCC) theory is to transform
the system of second-order differential Equation (A1) into an equivalent system (which
means with the same solutions), and also with a geometrical meaning. Further, for this
second-order differential equations system (SODE), we will construct five tensor fields, also
called the geometric (of differential) invariants of the theory [11,12]. Certainly, they do not
change, that is, they are invariant under the local change of coordinates (A3). Next, we will
define the KCC covariant derivative of a vector field ξ = ξ i ∂

∂xi on an open domain of TM
(sometimes, even on TM = Rn × Rn) [11,27–29]:

Dξ i

dt
=

dξ i

dt
+ Ni

j ξ
j , (A5)

where Ni
j =

∂Gi

∂yj are the components of a nonlinear connection N on the tangent bundle TM
corresponding to the semi-spray (A1).

For ξ i = yi

Dyi

dt
= −2Gi + Ni

j y
j = −εi . (A6)

and the resulted contravariant vector field εi = −
(

Ni
j y

j − 2Gi
)

is called the first invariant of

the theory. This invariant plays the role of an external force, and their components εi have
a geometrical character, because relative to a change of local coordinates (A3), these change
as follow [11]:

ε̃i =
∂x̃i

∂xj εj .

If the coefficients Gi of the semi-spray (A1) are homogeneous functions of degree
2 with respect to yi (i.e., ∂Gi

∂yj yj = 2Gi, for all i), then we say that system (A1) is a spray.

So, the first invariant is null (εi = 0 for all i = 1) if and only if the semispray is a spray.
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Furthermore, this result is available for the geodesic spray coresponding to a Riemannian
or Finslerian metric [10,30].

One of the goals of the Kosambi–Cartan–Chern theory is to study integral curves
that deviate slightly from a given integral curve of (A1). More precisely, the behavior of
the system in variations will be studied and thus the integral curves xi(t) of (A1) will be
modified into close ones, as described by the next equations:

x̃i(t) = xi(t) + ηξ i(t) (A7)

where |η| is a is a sufficiently small parameter and ξ i(t) are the components of a con-
travariant vector field on the integral curves xi(t), and called the deviation vector. Then,
after replacing (A7) into (A1) and by taking the limit η → 0, we obtain the next system of
variational equations [10–12]:

d2ξ i

dt2 + 2Ni
j
dξ j

dt
+ 2

∂Gi

∂xj ξ j = 0 (A8)

Taking into account the formula of the KCC covariant derivative from (A5),
system (A8) can be rewritten in the next covariant form [10–12]:

D2ξ i

dt2 = Pi
j ξ

j , (A9)

where, on the right side, we have the tensor Pi
j of (1, 1)-type, with the next components:

Pi
j = −2

∂Gi

∂xj − 2GlGi
jl + yl

∂Ni
j

∂xl + Ni
l Nl

j . (A10)

According to [10,30], the coefficients

Gi
jl =

∂Ni
j

∂yl (A11)

define the Berwald connection associated with the nonlinear connection N of the SODE (A1).
The coefficients Pi

j define the so-called deviation curvature tensor or the second invariant
of the Kosambi–Cartan–Chern (KCC) theory. If all components of the nonlinear connection
and all components of the Berwald connection are null, then the deviation curvature tensor
from (A10) has the components Pi

j = −2 ∂Gi

∂xj . So, we are motivated to introduce the so-called
zero-connection curvature tensor Z defined by the following components [33]:

Zi
j = 2

∂Gi

∂xj . (A12)

The second-order differential Equation (A8) are called the deviation equations (or Jacobi
equations), and the invariant Equation (A9) are called the Jacobi equations. In Riemannian
or Finslerian geometry, when the second-order equations represent the geodesic motion,
then (A8) (or (A9)) are even the Jacobi field equations for the given geometry.

Furthermore, after all these were introduced, we can define the third, the fourth, and
the fifth invariants of the Kosambi–Cartan–Chern theory for the second-order system of
equations (SODE) (A1). These last three invariants have the components given by:

Pi
jk =

1
3

(
∂Pi

j

∂yk −
∂Pi

k
∂yj

)
, Pi

jkl =
∂Pi

jk

∂yl , Di
jkl =

∂Gi
jk

∂yl . (A13)
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From the differential geometry perspective, the third invariant Pi
jk is called the torsion

tensor. Furthermore, the fourth and the fifth invariants Pi
jkl and Di

jkl are called the Riemann–
Christoffel curvature tensor and the Douglas tensor. It is important to remark that all these
tensors always exist [10–12,17,30].

According to [10,28,30], all these five geometric objects are the basic mathematical
invariants which describe the intrinsec geometrical properties of the system and provide
us the geometrical interpretations for the system of second-order differential equations
(SODE) (A1). Below, we state a fundamental result of the KCC geometric theory, due to P.L.
Antonelli [11]:

Theorem A1. Two systems of second-order differential equations (SODE) of the same kind as (A1),
such as

d2xi

dt2 + 2Gi(xj, yj) = 0, yj =
dxj

dt
and

d2 x̃i

dt2 + 2G̃i(x̃j, ỹj) = 0, ỹj =
dx̃j

dt
can be locally changed, from one into another, by local coordinate changing (A3) if and only if the
five geometrical invariants εi, Pi

j , Pi
jk, Pi

jkl , and Di
jkl are equivalent tensors of ε̃i, P̃i

j , P̃i
jk, P̃i

jkl , and

D̃i
jkl , respectively.

More that, there is a local coordinates chart (U; x1, . . . , xn) on the manifold M, for which
Gi = 0 on U, for all i, if and only if all five invariant tensors have all components null. In this
situation, the integral curves of the dynamical system are straight lines.

The term of “Jacobi stability” from the Kosambi–Cartan–Chern theory issues from the
case when system (A1) is even the system of second-order differential equations for the
geodesics in Riemann geometry or Finsler geometry. In this case, Equation (A9) contains
Jacobi field equations for the geodesic deviation. Generally, the Jacobi Equation (A9) of the
Finsler manifold (M, F) can be written in the scalar form [14]:

d2v
ds2 + K · vs. = 0 (A14)

where ξ i = v(s)ηi is the Jacobi tensor field along the geodesic γ : xi = xi(s), ηi is the
unit normal vector field on γ, and K is the flag curvature corresponding to the Finsler
function F.

More that, about the sign of the flag curvature K of the Finsler manifold, we can say
that [15]:

• If K > 0, then the geodesics “add together” (Jacobi stability of the geodesics);
• If K < 0, then the geodesics “disperse” (no Jacobi stability of the geodesics).

Consequently, if we take into account that Equations (A9) and (A14) are equivalent,
the results show that the flag curvature K is positive if and only if the eigenvalues of the
curvature deviation tensor Pi

j are negative, and the flag curvature K is negative if and only

if the eigenvalues of Pi
j are positive [15,18].

Next, we state a fundamental result of the KCC geometric theory [15,18]:

Theorem A2. The integral curves of the system of second-order differential system (A1) are Jacobi-
stable if and only if the real parts of the eigenvalues of the deviation curvature tensor Pi

j are strictly
negative everywhere; otherwise, they are Jacobi unstable.

Further, we will present a rigorous definition for the Jacobi stability of an integral
curve xi = xi(s) of the dynamical system associated with system (A1) [15–18]:
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Definition A1. An integral curve xi = xi(s) of (A1) is called Jacobi-stable if for any ε > 0, there
exists δ(ε) > 0, such that ‖x̃i(s)− xi(s)‖ < ε for all s ≥ s0 and for any integral curves x̃i = x̃i(s),
with ‖x̃i(s0)− xi(s0)‖ < δ(ε) and ‖ dx̃i

ds (s0)− dxi

ds (s0)‖ < δ(ε).

Because any differentiable manifold can be locally identified with a Euclidean space,
we can say that the integral curves of system (A1) can be considered as curves in a Euclidean
space Rn, where the norm ‖ · ‖ is the induced norm by the canonical scalar product < ·, · >
on Rn [15–18]. Moreover, we will assume that the deviation vector ξ from (A9) checks the
initial conditions ξ(s0) = O, ξ̇(s0) = W 6= O, where O is the null vector of Rn. More, if we
suppose that s0 = 0 and ‖W‖ = 1, then for s ↘ 0, the integral curves of (A1) brunches
together if and only if the real parts of all eigenvalues of Pi

j (0) are strictly negative, or the
integral curves of (A1) disperse if and only if at least one of the real parts of the eigenvalues
of Pi

j (0) is strictly positive.
Therefore, we can conclude that Jacobi stability of the system of second-order differen-

tial equations (SODE) (A1) is equivalent with the classical (linear or Lyapunov) stability
of the system in variations (A9). So, the approach of the Jacobi stability is founded on the
study of the Lyapunov stability of all integral curves in a domain, but without considering
the velocity. Moreover, even the local analysis is focused at an equilibrium point, this
approach gives us information about the behavior of the integral curves of the system in a
neighborhood of this equilibrium point.

At the end, a brief comparison between Lyapunov (linear) stability and Jacobi sta-
bility for two-dimensional systems will be present. Taking into account (A10) and fol-
lowing [11,18,40], the matrix of the deviation curvature tensor Pi

j at the equilibrium point
E(x1, x2, 0, 0) is:(

Pi
j

)∣∣∣
(x1,x2,0,0)

= −2
(

∂Gi

∂xj

)∣∣∣∣
(x1,x2,0,0)

+
(

Ni
l Nl

j

)∣∣∣
(x1,x2,0,0)

=
1
4

A2 (A15)

where A is the Jacobian matrix at (x1, x2), and E(x1, x2) is an equilibrium point of the
dynamical system defined by the system of first-order differential equations from which
the system of the second-order differential Equation (A1) were obtained.

If λ1, λ2 denote the eigenvalues of A, then 1
4 λ2

1, 1
4 λ2

2 are the eigenvalues of(
Pi

j

)∣∣∣
(x1,x2,0,0)

.

Since λ1, λ2 are the roots of the characteristic equation λ2 − trAλ + det A = 0, then
we have λ1,2 = trA±

√
∆

2 , where ∆ = (trA)2 − 4 det A.

In conclusion, because λ2
1,2 = 1

4

(
(trA)2 + ∆± 2i trA

√
−∆
)

, we have that the Jacobi
stability near the equilibrium point E(x1, x2, 0, 0) is equivalent with the fact that the real
parts of all eigenvalues of P are negative, i.e.,

∆ < 0 and Re λ2
1,2 =

(trA)2 + ∆
4

=
(trA)2 − 2 det A

2
< 0,

Then, we have the Jacobi stability at the equilibrium point E if and only if (trA)2 −
4 det A < 0 and (trA)2 − 2 det A < 0.

In order to point out and clarify the link between Lyapunov (classical or linear) stability
and Jacobi stability for two-dimensional systems and following [25], we present the next
diagram relative to S = λ1 + λ2 = trA and P = λ1λ2 = det A (see Figure A1):
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Figure A1. Relation between Jacobi stability and linear stability for two-dimensional systems.
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