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Abstract

:

With the explosion of the generation, transmission and sharing of image data over the Internet and other unsecured networks, the need for and significance of the development of novel image encryption algorithms are unprecedented. In this research work, we propose a novel framework for image encryption that is based on two hyperchaotic maps utilized in conjunction with the single neuron model (SNM). The framework entails three successive stages, where in every stage a substitution box (S-box) is applied, then XORing with an encryption key is carried out. The S-boxes and the encryption keys are generated from the numerical solutions of the hyperchaotic maps and the SNM. The performance of the proposed framework is gauged through a number of metrics, reflecting superior performance and complete asymmetry between the plain images and their encrypted versions. The main advantages of this work are (1) vast key space and (2) high encryption efficiency. The superior key space of 22551 is the result of employing the two hyperchaotic maps, while the improved efficiency, resulting in an average encryption rate of 8.54 Mbps, is the result of using the SNM as well as the employment of optimized parallel processing techniques. In addition, the proposed encryption framework is shown to output encrypted images that pass the NIST SP 800 suite. Average achieved values for the metrics include MSE of 9626, PSNR of 8.3 dB, MAE of 80.99, entropy of 7.999, NPCR of 99.6% and UACI of 31.49%.
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1. Introduction


With the widespread use of digital images in various fields, including healthcare, finance and personal communication, there is a growing need to ensure their secure communication and storage. This is especially true in terms of protecting them from unauthorized access, tampering and interception [1,2]. Encryption is the process of converting plaintext (unencrypted data) into ciphertext (encrypted data) using an encryption algorithm and a secret key. The encrypted data can only be decrypted and read by someone who has the correct key. Image encryption is a specific type of encryption that is designed to protect digital images by eradicating any symmetry between a plain image and its encrypted version. The need for image encryption arises from several factors. Firstly, digital images often contain sensitive information, such as personal photos, medical images or confidential documents. This information needs to be protected from unauthorized access or interception during transmission over the Internet or storage on a device [3]. Secondly, images can be easily tampered with and it is often difficult to detect such tampering. Encryption can help prevent unauthorized modifications of the image data by providing a way to verify the authenticity of the image [4]. Thirdly, images are often stored and transmitted in large quantities, making it difficult to ensure the security of each individual image. Image encryption algorithms can help secure large quantities of images by providing a way to efficiently and securely process their data [5].



Recent literature shows the reliance of image encryption algorithms on substitution-permutation networks (SPNs). SPNs are a popular cryptographic primitive used in symmetric key encryption algorithms. These operate by applying a series of substitution and permutation operations to plaintext blocks, producing ciphertext blocks that are difficult for an attacker to decipher without the correct key. SPNs have been widely used in image encryption research due to their ability to efficiently encrypt large amounts of data while maintaining strong security guarantees [6,7,8]. In an image encryption algorithm, the plaintext is typically represented as a matrix of pixel values and the SPN is applied to each pixel value individually or to a block of pixels simultaneously. One of the main advantages of using SPNs in image encryption is their ability to provide a high degree of confusion and diffusion, satisfying Shannon’s theory of secure communication [9]. Confusion refers to the property of the encryption algorithm that makes it difficult for an attacker to relate the ciphertext to the plaintext, while diffusion refers to the property that ensures that small changes in the plaintext lead to significant changes in the ciphertext [2].



SPNs have also been used in combination with other cryptographic techniques, such as key management and authentication, to provide a more comprehensive approach to image security [10]. For example, some image encryption algorithms based on SPNs use secret key management techniques to ensure that the encryption key is securely distributed and protected from unauthorized access [11]. Overall, the importance of SPNs in image encryption research lies in their ability to provide strong security guarantees while efficiently processing large amounts of data. As such, they have become a cornerstone of modern image encryption algorithms and continue to be an active area of research in the field of cryptography. In general, most recent literature on image encryption carries out confusion through the application of one or more substitution boxes (S-boxes), while diffusion is carried out through the application of an encryption key that is based on a pseudo-random number generated bitstream, where an appropriate logical operation is utilized [7,12,13]. The next couple of paragraphs introduce each of those steps.



Substitution boxes are an important component of many image encryption algorithms. These are used to substitute plaintext bits with ciphertext bits and they provide a key component of the confusion step in many encryption algorithms [7]. The importance of S-boxes in image encryption algorithms lies in their ability to provide strong security guarantees by introducing non-linear transformations into the encryption process. S-boxes help to ensure that changes to a single input bit have unpredictable and significant effects on the output, making it difficult for an attacker to analyze and reverse-engineer the encryption process. In image encryption, S-boxes are typically used in combination with permutation operations to form SPNs [12]. As mentioned, the SPN structure is particularly well-suited to image encryption because it provides a high degree of confusion and diffusion, which are both important properties for secure encryption. The use of S-boxes in image encryption algorithms can also help to prevent common attacks, such as differential and linear cryptanalysis, which rely on analyzing the statistical properties of the encryption process. S-boxes can help obscure these statistical properties, making it more difficult for an attacker to break the encryption [12].



Pseudo-random number generators (PRNGs) play an important role in image encryption algorithms. PRNGs are used to generate a sequence of random numbers that are used to encrypt the image data. These random numbers are combined with the original image data using various encryption techniques to produce encrypted image data that is difficult to decipher without the correct key [2]. The importance of PRNGs in image encryption algorithms lies in their ability to generate a large amount of unpredictable and uniformly distributed random numbers. These random numbers are crucial for achieving the two main goals of encryption: confidentiality and integrity [3]. Confidentiality refers to the property of the encryption algorithm that ensures that only authorized parties can access the encrypted data. Integrity refers to the property that ensures that the encrypted data has not been tampered with or modified during transmission or storage. PRNGs are designed to produce random numbers that are indistinguishable from true random numbers. However, unlike true random number generators, PRNGs are deterministic and rely on a seed value to produce the same sequence of numbers each time they are used with the same seed [12]. The seed value is typically generated from a source of true randomness, such as atmospheric noise, mouse movements or keyboard timings, to ensure that the resulting sequence of numbers is sufficiently unpredictable. In image encryption algorithms, PRNGs are used to produce a large sequence of random numbers that are combined with the original image data to produce encrypted data [2]. The strength and quality of the encryption depend on the randomness and uniformity of the PRNG output. Therefore, selecting a secure and robust PRNG is essential for ensuring the security and effectiveness of the image encryption algorithm.



Chaotic functions exhibit sensitive dependence on initial conditions and cycloidal behavior, making them suitable for encryption applications [6,8]. There are two main types: low-dimensional chaotic functions with two or three variables and hyperchaotic functions with four or more variables, thus spanning multiple dimensions and interacting in complex ways [14]. Low-dimensional chaotic functions, such as the Lorenz or Henon maps, have a smaller key space but simpler computational requirements, making them faster and easier to implement [13,15,16]. However, their lower dimensionality means they have weaker encryption strengths. Hyperchaotic functions, on the other hand, have a much larger key space due to their extra variables, providing stronger encryption. However, they also have greater complexity, requiring more computing power and being slower to compute. Each type has its advantages and disadvantages for image encryption. Low-dimensional chaos is suitable for real-time encryption of streaming videos or wireless communications due to its simplicity. Hyperchaos provides very high encryption strength, making it suitable for encrypting still images or large file transmissions. However, its added complexity may be impractical for some applications with limited resources. By tuning the parameters of a chaotic map, its dynamics can be made sufficiently random-like for encryption yet still deterministic for decryption [12]. Chaotic ciphers have been shown to withstand various attacks such as brute force, known plaintext and statistical analysis [12]. When combined with other techniques such as diffusion and confusion layers, chaos-based encryption schemes can achieve robust and versatile encryption of images and multimedia data [17]. Chaos provides an efficient and simple means of generating the complex, nonlinear transformations needed for strong encryption.



Recent literature in the field of image encryption provides a plethora of articles that combine the use of successive applications of PRNGs and S-boxes to carry out image encryption. In many instances, chaos theory is employed to generate the PRNGs and construct the S-boxes. In [12], the authors numerically solve the fractional-order hyperchaotic Chen system and generate a PRNG as an encryption key from its solution. They combine its use, in a multi-layer encryption algorithm, with other keys and S-boxes based on the Mersenne Twister, OpenSSL, Rule 30 cellular automata (CA) and Intel’s math kernel library. The authors of [7] make use of a tan variation of the Logistic map to carry out Deoxyribonucleic acid (DNA) coding as a first stage of encryption. Subsequent stages utilize the Lorenz chaotic system to construct an S-box, as well as the Logistic map in its original form for PRNG key generation. Recaman’s sequence, in conjunction with the Rossler chaotic system, is used to generate PRNG encryption keys in [18]. In [19], the authors employ chaotic functions, DNA computing, SHA-256, as well as the random movements of a chess piece, castle, on a hypothetical chess board, to carry out image encryption. The combination of DNA coding with chaos theory is also utilized in [20], where the authors further the image encryption abilities through SHA-2. A number of dynamical functions that exhibit chaotic behavior are utilized in [17] to generate PRNG encryption keys, including the linear congruential generator, the Arnold cat map, the Bernoulli map, the 2D Logistic sine map and the tent map. In [21], parameters are computed over the finite field   Z N   through the utilization of a finite field with the aim of generalizing the Logistic map and searching for an auto morphic mapping between two Logistic maps, to carry out robust image encryption. The work of [15] adopts a continuous chaotic system, with the aim of achieving diffusion and an LA-semi group, with the aim of achieving confusion, for efficient image encryption. A 6D discrete hyperchaotic system is employed in [22] to generate six PRNGs as encryption keys. Those are used in conjunction with DNA coding, to encrypt each of the color-separated RGB channels of a color image. The authors of [23] make use of the spatio-temporal chaos of the 2D nonlinear coupled map lattices and genetic operations, to carry out low-complexity image encryption. The Mandelbrot set is utilized in a color image encryption scheme proposed in [24], where the Arnold map combined with DNA sequences enhances the attained encryption security. The authors of [25] propose an innovative image encryption algorithm that draws on the distinctive concept of a rotor machine, in addition to the employment of a piece-wise linear chaotic map and a one-time key. The Logistic map is used in combination with a dynatomic modular curve, as a form of an SPN, to perform secure image encryption in [26]. In [27], the authors employ a cloud model, a Fibonacci chaotic system and a matrix convolution operation to implement a secure image cryptosystem. Interesting work involving the Josephus problem and its corresponding Josephus function is employed in [28] in combination with a 4D hyperchaotic function. Image compression and encryption is carried out in [29], where the Arnold map and Choas theory are utilized for effective and reliable image transmission over unsecured networks. The authors of [30] devise a novel chaotic map, the Salomon map and showcase its superior chaotic behavior, in terms of positive and large Lyapunov exponents, then they employ its use in image encryption in conjunction with a pixel-splitting algorithm. Another novel chaotic map is introduced in [31], where the authors conceive a Schaffer map for high complexity applications. In their work, they compare the Schaffer map with counterparts from the literature and showcase that it has the best ergodicity and erraticity characteristics. Next, they illustrate its use in generating encryption keys and apply it to carrying out permutation and diffusion in a simple image encryption algorithm. In [32], the authors focus on improving encryption efficiency. This is carried out by designing a parallel image encryption algorithm using intra bitplane scrambling. In their proposed scheme, multiple processing threads are employed to carry out image encryption at the bit-level to achieve permutation. Next, every thread scrambles two bitplanes.



It is clear from the literature review that there are an abundance of techniques and algorithms that may be utilized to successfully implement secure, robust and efficient image encryption frameworks. However, almost all of the mentioned algorithms are only able to offer two of those three vital encryption traits. Such that the offering of higher security, through more encryption stages, is counteracted with higher design complexity and software implementations. In some cases, efficiency is capitalized on, but security is not fully achieved, such that key spaces are rather small. In order to achieve all three traits of security, robustness and efficiency, this work proposes and accomplishes the following:




	
A chaos-based, three-stage, dual-acting image encryption framework is proposed. In every stage, a novel S-box is constructed and applied. This is followed by the generation and application of the logical XOR operation between a generated PRNG key and the image bits.



	
In the first stage, a 7D hyperchaotic system of differential equations is numerically solved and its solution is utilized both for PRNG key generation and S-box construction.



	
In the second stage, a single neuron model is numerically solved and its solution is utilized both for PRNG key generation and S-box construction.



	
In the third stage, a 4D hyperchaotic system of differential equations is numerically solved and its solution is utilized both for PRNG key generation and S-box construction.



	
With the utilization of three different systems, two of which are hyperchaotic, as well as the selection of three S-boxes that satisfy certain criteria, a rather wide key space of   2 2551   is achieved, providing sufficient resistivity to brute-force attacks.



	
The software implementation of the proposed image encryption framework making use of advanced parallel processing techniques allows for an average encryption rate of   8.54   Mbps to be achieved.








This article is organized as follows. Section 2 makes reference to the foundational systems of differential equations that are to be employed for PRNG key generation and outlines the adopted methodology for the construction of S-boxes. Section 3 introduces the image encryption and decryption processes of the proposed framework. Section 4 provides the numerical results and performance evaluation of the proposed framework. A comparative study of the state-of-the-art is also carried out in this section. Section 5 concludes this research work and provides some suggestions for possible future areas of research.




2. Preliminary Mathematical Constructs


A number of mathematical constructs are used in the proposed image encryption framework to generate the PRNG keys and S-boxes. These are presented in this section.



2.1. The Single Neuron Model


The single neuron model (SNM) is a mathematical model that describes the behavior of a single neuron with an adaptive feedback synapse. The model consists of two differential equations: one that describes the membrane potential of the neuron and one that describes the dynamics of the feedback synapse. The authors of [33] have shown that an SNM with an adaptive feedback synapse has two coexisting chaotic attractors. In this work, we make use of this SNM because of its rich, complex dynamics and its suitability with respect to inducing randomness in a simple and deterministic manner. The SNM is described as follows:


       u ˙  = −  u τ  + f  ( q s )  f  ( p u )  + I ,        s ˙  = − α s + α  f 2   ( p u )  ,      



(1)




where   α = 1 / B  , while p and q are positive constants. As in [33],   f  ( x )  = 3 x e x p  ( −  x 2  / 2 )    (shown in Figure 1), while   I ( t ) = ϵ s i n ( ω t )  . The connected chaotic attractor of this system is plotted in Figure 2 for   α = 3  ,    u 0  = 0.1   and    s 0  = 0.5  . In Figure 2, the colors model the time factor representing initiations with cold colors and endings with hot colors. In [33], bifurcation diagrams are provided for the SNM, confirming its chaotic behavior; however, a Lyapunov exponents plot is not provided, so we provide such a plot in Figure 3. It is clear from Figure 3 that two Lyapunov exponents materialize and one of them is positive.




2.2. The 4D Hyperchaotic System


A 3D hyperchaotic system was proposed for the first time by the authors of [34]. This system was later improved by the authors of [35], who added a linear controller, resulting in the following 4D system of differential equations:


       u ˙  = a  ( ν − u )  + e ν w ,        ν ˙  = c u + d ν − u w + m p ,        w ˙  = − b w + u ν ,        p ˙  = − k u − k ν ,      



(2)




where   u , ν , w   and p are the states of the system and   a , b , c , d , e , m , k   are positive real parameters of the system and   c ∈ R  . By letting   a = 15 ,   b = 43 ,   c = − 1 ,   d = 16 ,   e = 5 ,   m = 5   and varying k, such that   k ∈ [ 1.5 , 5.5 ]  , the authors of [35] show that the system in (2) possesses hyperchaotic attractors (shown for various spaces in Figure 4) and two positive Lyapunov exponents, providing the related plots that justify their claims (see Figure 1 for the Lyapunov exponents and Figure 2 for the bifurcation diagram, in [35]). In relation to image encryption, these properties make this system a good choice for utilization in PRNG generation and subsequent S-box construction. Furthermore, as a 4D system, the system in (2) has a large number of states and parameters, which allows it to provide an excellent expansion to the key space of the proposed image encryption framework.




2.3. The 7D Hyperchaotic System


The authors in [36] presented a 7D hyperchaotic system. In their work, they propose coupling the classical Lorenz 3D system with a 6D hyperchaotic system. This 6D system is obtained through the addition of a nonlinear feedback controller to the first equation and a linear feedback controller to the second equation of the classical Lorenz 3D system. Such coupling results in a novel 7D hyperchaotic system as follows:


        x 1  ˙  = a  (  x 2  −  x 1  )  +  x 4  + b  x 6  ,         x 2  ˙  = c  x 1  −  x 2  −  x 1   x 3  +  x 5  ,         x 3  ˙  = − d  x 3  +  x 1   x 2  ,         x 4  ˙  = e  x 4  −  x 1   x 3  ,         x 5  ˙  = − f  x 2  +  x 6  ,         x 6  ˙  = g  x 1  + h  x 2  ,         x 7  ˙  = l  x 7  + m  x 4  ,      



(3)




where    x i  , i ∈  [ 1 , 7 ]    are the states of the system and   a , b , c , d , e , f , g , h , l   and m define its parameters. The following set of values for the parameters allows the system in (3) to have seven Lyapunov exponents of which five are positive:   ( a , b , c , d , e , f , g , h , l , m ) = ( 10 , 8 / 3 , 28 , 2 , 9.9 , 1 , 2 , 1 , 1 , 1 )  . Figure 5 displays the hyperchaotic attractors of this 7D system. While the system in (3) is shown to have a rather simple algebraic structure, nevertheless it exhibits complex dynamical behaviors due to possessing five positive Lyapunov exponents. The authors in [36] provide the related plots that justify their claims (see Figure 6 for the Lyapunov exponents and Figure 7 for the bifurcation diagram, in [36]). In relation to image encryption, these properties make this system a good choice for utilization in PRNG generation and subsequent S-box construction. Furthermore, being a 7D system, it has a large number of states and parameters, which allows it to provide an excellent expansion to the key space of the proposed image encryption framework.




2.4. S-Box Construction


In this work, the main aim of the S-box construction process is to involve the S-box evaluations in the generation process. In other words, the numerical values produced by the techniques used in evaluating the performance of S-boxes are utilized as part of the key space of the S-box generation step (which is reflected in the overall key space of the proposed image encryption framework). Moreover, the process adopted here makes use of the generated PRNG bitstreams discussed in Section 2.1 through Section 2.3. Accordingly, two mechanisms are applied to achieve that, with one of them being a sub-routine to the other.



Starting with the inner process, the aim is to transform a bit stream of length 2048 into an S-box. This is performed by, first, converting the 2048 bits into 256 integers. As these integers are randomly generated, they are expected to be unsorted and to contain duplicates. Hence, this set of integers is utilized as a selection function applied to a sorted set [0–255], where the selected element from the set is removed. Therefore, the selected integers are re-adjusted to the length of the sorted set using the modulus operator. As a result of the selection and the re-adjustment processes being applied sequentially, values are shifted from the sorted set (which descends in size) into the S-box, generating an S-box by the time the length of the sorted set reaches 0.



Based on the inner process discussed above, the role of the outer process is to generate a set of S-boxes, evaluate each one individually and select the S-box with performance evaluation values closest to a provided set of values. In consequence, a bitstream of size   2048 × n   is needed as an input, such that n is the number of S-boxes to be generated and evaluated, and from which one is selected. Given such input, the bitstream is partitioned into sections of length 2048, transformed into S-boxes (using the inner process) and evaluated and the performance evaluation values are subtracted from the given target evaluations yielding the S-box with the smallest difference.





3. Proposed Image Encryption Framework


The encryption process is described in Section 3.1, while the decryption process is described in Section 3.2. Section 3.3 presents algorithms that are employed as part of the encryption and decryption processes.



3.1. The Encryption Process


The following sequence of steps outlines the proposed three-stage encryption process.




	
A color image I of length M and width N is chosen and the pixel values of its RGB channels are arranged as a single bitstream d, of length   L d  , where:


   L d  = M × N × 3 × 8 .  



(4)







	
Encryption stage 1: The 7D hyperchaotic system encryption key and S-box.




	(a)

	
The 7D hyperchaotic system is numerically solved for the S-box seeds, then the numerical solution is utilized in Algorithm 1, resulting in an S-box   S  H C 7 D    (shown in Table 1).



[image: Table] 





Table 1. Seven-dimensional hyperchaotic system based S-box.






Table 1. Seven-dimensional hyperchaotic system based S-box.





	30
	62
	124
	248
	235
	148
	35
	202
	143
	22
	43
	85
	170
	76
	161
	48



	129
	2
	253
	231
	190
	93
	153
	60
	50
	100
	198
	75
	151
	11
	61
	212



	4
	228
	167
	111
	220
	142
	13
	89
	210
	118
	237
	168
	25
	51
	101
	197



	174
	38
	78
	152
	54
	41
	17
	65
	105
	183
	29
	64
	112
	215
	94
	214



	10
	125
	74
	56
	16
	242
	136
	6
	122
	147
	132
	251
	146
	28
	18
	34



	69
	130
	95
	217
	52
	102
	191
	126
	113
	79
	0
	119
	223
	40
	82
	141



	3
	120
	236
	109
	162
	159
	137
	115
	45
	177
	239
	222
	86
	171
	63
	186



	241
	21
	42
	200
	175
	123
	12
	68
	110
	234
	218
	145
	221
	199
	149
	24



	47
	91
	179
	88
	157
	55
	140
	255
	14
	250
	213
	138
	194
	66
	58
	108



	207
	131
	172
	70
	165
	71
	187
	44
	240
	107
	243
	227
	67
	182
	232
	211



	7
	23
	32
	73
	133
	184
	163
	173
	98
	192
	117
	230
	208
	158
	128
	225



	196
	81
	144
	9
	33
	247
	39
	169
	185
	104
	77
	31
	164
	114
	229
	204



	189
	103
	226
	166
	57
	46
	96
	249
	15
	178
	181
	155
	49
	106
	244
	209



	26
	201
	135
	20
	139
	246
	238
	245
	180
	176
	156
	72
	193
	116
	84
	83



	252
	254
	195
	53
	27
	134
	205
	87
	97
	219
	127
	150
	121
	99
	188
	154



	160
	37
	216
	80
	224
	19
	233
	59
	1
	90
	206
	36
	203
	8
	5
	92











	(b)

	
A replacement process is applied to the image I, employing   S  H C 7 D    and resulting in image   I 11  .


   I 11  =  S  H C 7 D    ( I )  .  



(5)








	(c)

	
The pixels of the encrypted image   I 11   are transformed into a 1D bitstream   d 11  .




	(d)

	
The 7D hyperchaotic system is numerically solved for the key seeds. Algorithm 2 is utilized to generate an encryption key   k  H C 7 D    from the obtained solution, such that the length of this key is equal to   L d  .




	(e)

	
The plaintext bitstream   d 11   is XORed with the encryption key   k  H C 7 D   .


   d 12  =  d 11  ⊕  k  H C 7 D   .  



(6)








	(f)

	
The resulting bitstream   d 12   is transformed back into an image   I 12  .









	
Encryption stage 2: The single neuron model encryption key and S-box.




	(a)

	
The single neuron model is numerically solved for the S-box seeds, then the numerical solution is utilized in Algorithm 1, resulting in an S-box   S  S N M    (shown in Table 2).




	(b)

	
A replacement process is applied to image   I 12  , employing   S  S N M   , resulting in image   I 21  .


   I 21  =  S  S N M    (  I 12  )  .  



(7)








	(c)

	
The pixels of the encrypted image   I 21   are transformed into a 1D bitstream   d 21  .




	(d)

	
The single neuron model is numerically solved for the key seeds. Algorithm 2 is utilized to generate an encryption key   k  S N M    from the obtained solution, such that the length of this key is equal to   L d  .



[image: Table] 





Table 2. SNM-based S-box.






Table 2. SNM-based S-box.





	36
	119
	247
	239
	72
	35
	152
	117
	47
	126
	236
	87
	11
	241
	183
	98



	67
	15
	61
	127
	90
	217
	198
	139
	159
	106
	167
	101
	177
	197
	20
	170



	163
	109
	165
	99
	235
	173
	216
	134
	26
	238
	17
	16
	34
	229
	110
	212



	69
	150
	196
	86
	180
	115
	192
	209
	146
	203
	223
	95
	22
	137
	120
	71



	189
	129
	74
	154
	114
	200
	246
	80
	6
	46
	214
	59
	97
	65
	77
	176



	108
	62
	224
	14
	213
	29
	226
	172
	242
	0
	89
	84
	195
	33
	4
	23



	118
	245
	116
	252
	174
	96
	40
	48
	240
	148
	227
	54
	78
	164
	38
	104



	131
	64
	205
	100
	142
	52
	169
	215
	178
	157
	51
	66
	222
	237
	91
	37



	138
	30
	207
	123
	234
	149
	221
	219
	230
	50
	175
	155
	141
	125
	12
	92



	60
	187
	251
	8
	93
	105
	83
	179
	121
	41
	181
	171
	5
	124
	19
	225



	250
	185
	166
	85
	112
	130
	10
	228
	73
	42
	18
	253
	190
	79
	7
	249



	220
	147
	218
	156
	248
	161
	107
	182
	94
	53
	208
	82
	136
	13
	133
	63



	145
	231
	31
	143
	135
	202
	255
	2
	43
	56
	28
	103
	199
	201
	232
	70



	39
	122
	1
	160
	58
	111
	233
	194
	44
	206
	210
	24
	193
	76
	211
	191



	49
	88
	102
	244
	27
	45
	57
	81
	188
	254
	32
	128
	153
	3
	68
	204



	21
	132
	243
	140
	151
	113
	55
	168
	25
	75
	144
	184
	162
	186
	9
	158











	(e)

	
The bitstream of the encrypted image   d 21   is XORed with the encryption key   k  S N M   .


   d 22  =  d 21  ⊕  k  S N M   .  



(8)








	(f)

	
The resulting data bits   d 22   are transformed back into an image   I 22  .









	
Encryption stage 3: The 4D hyperchaotic system encryption key and S-box.




	(a)

	
The 4D hyperchaotic system is numerically solved for the S-box seeds, then the numerical solution is utilized in Algorithm 1, resulting in an S-box   S  H C 4 D    (shown in Table 3).




	(b)

	
A replacement process is applied to image   I 22  , employing   S  H C 4 D    and resulting in image   I 31  .


   I 31  =  S  H C 4 D    (  I 22  )  .  



(9)








	(c)

	
The pixels of the encrypted image   I 31   are transformed into a 1D bitstream   d 31  .




	(d)

	
The 4D hyperchaotic system is numerically solved for the key seeds. Algorithm 2 is utilized to generate an encryption key   k  H C 4 D    from the obtained solution, such that the length of this key is equal to   L d  .




	(e)

	
The bitstream of the encrypted image   d 31   is XORed with the encryption key   k  H C 4 D   


   d 32  =  d 31  ⊕  k  H C 4 D   .  



(10)








	(f)

	
The resulting data bits   d 32   are transformed back into an image   I 32  .    I ′  =  I 32    is the final output encrypted image.














A flow chart illustrative of the proposed three-stage encryption process is provided in Figure 6.
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Table 3. Four-dimensional hyperchaotic system-based S-box.






Table 3. Four-dimensional hyperchaotic system-based S-box.





	87
	103
	129
	234
	78
	114
	219
	70
	90
	239
	108
	223
	106
	135
	133
	116



	107
	91
	229
	79
	71
	3
	122
	83
	8
	240
	17
	148
	2
	150
	55
	1



	32
	35
	22
	137
	204
	97
	16
	136
	52
	27
	220
	58
	202
	217
	43
	218



	138
	54
	157
	53
	46
	80
	81
	59
	60
	232
	248
	215
	161
	251
	62
	152



	227
	235
	164
	163
	177
	226
	73
	23
	186
	191
	120
	38
	112
	246
	95
	172



	101
	1
	11
	72
	160
	25
	15
	126
	47
	6
	253
	100
	183
	24
	216
	39



	7
	19
	26
	93
	194
	67
	10
	149
	140
	99
	171
	154
	88
	77
	132
	228



	48
	225
	128
	243
	245
	12
	254
	139
	184
	49
	5
	151
	42
	44
	145
	66



	34
	185
	65
	82
	221
	189
	36
	175
	244
	213
	130
	30
	69
	144
	236
	142



	9
	29
	197
	28
	165
	115
	188
	41
	74
	76
	196
	110
	61
	155
	211
	124



	75
	238
	89
	181
	252
	222
	98
	237
	241
	63
	121
	224
	85
	212
	199
	131



	57
	143
	4
	51
	84
	167
	105
	190
	173
	203
	141
	198
	207
	200
	176
	174



	179
	214
	242
	20
	195
	205
	192
	14
	111
	134
	119
	230
	96
	33
	170
	18



	146
	158
	68
	123
	127
	94
	250
	31
	206
	169
	147
	168
	180
	64
	92
	40



	178
	231
	255
	56
	37
	193
	182
	156
	208
	117
	201
	21
	109
	118
	166
	153



	187
	50
	45
	104
	102
	162
	209
	247
	233
	125
	113
	249
	159
	86
	0
	210









3.2. The Decryption Process


The following sequence of steps outlines the proposed three-stage decryption process. They are in a reverse order to those applied in the encryption process.




	
Beginning with the three-stage encrypted image    I ′  =  I 32    of length M and width N.



	
Decryption stage 3: The 4D hyperchaotic system decryption key and inverse S-box.




	(a)

	
The pixel values of the encrypted image   I 32   are transformed into a bitstream   d 32  .




	(b)

	
The encrypted data bits   d 32   are XORed with the decryption key   k  H C 4 D   .


   d 31  =  d 32  ⊕  k  H C 4 D   .  



(11)








	(c)

	
The resulting encrypted data bits   d 31   are converted into an image   I 31  .




	(d)

	
A reverse replacement process is applied to image   I 31  , employing   S  H C 4 D   − 1    and resulting in image   I 22  


   I 22  =  S  H C 4 D   − 1    (  I 31  )  .  



(12)













	
Decryption stage 2: The single neuron model decryption key and inverse S-box.




	(a)

	
The pixel values of the encrypted image   I 22   are transformed into a bitstream   d 22  .




	(b)

	
The encrypted data bits   d 22   are XORed with the decryption key   k  S N M   .


   d 21  =  d 22  ⊕  k  S N M   .  



(13)








	(c)

	
The resulting encrypted data bits   d 21   are converted into an image   I 21  .




	(d)

	
A reverse replacement process is applied to the image   I 21  , employing   S  S N M   − 1    and resulting in image   I 12  .


   I 12  =  S  S N M   − 1    (  I 21  )  .  



(14)













	
Decryption stage 1: The 7D hyperchaotic system decryption key and inverse S-box.




	(a)

	
The pixel values of the encrypted image   I 12   are transformed into a bitstream   d 12  .




	(b)

	
The encrypted data bits   d 12   are XORed with the decryption key   k  H C 7 D   .


   d 11  =  d 12  ⊕  k  H C 7 D   .  



(15)








	(c)

	
The resulting encrypted data bits   d 11   are converted into an image   I 11  .




	(d)

	
A reverse replacement process is applied to the image   I 11  , employing   S  H C 7 D   − 1    and resulting in a plain image I.


  I =  S  H C 7 D   − 1    (  I 11  )  .  



(16)


















A flow chart illustrative of the proposed three-stage decryption process is provided in Figure 7.




3.3. Utilized Algorithms


Algorithm 1 describes the generation of an S-box given a pseudo-random bitstream generated using one of the three PRNGs proposed earlier in Section 2. As discussed in Section 2.4, by treating the evaluation values of the S-box as part of the key space, Algorithm 1 attempts to achieve a certain set of provided values for S-box evaluations. The approach towards that is to generate an agreed upon number of S-boxes (which is a part of the key space as well), then each S-box is evaluated separately and the chosen S-box is the one with performance evaluation values closer to the target values. Accordingly, it may come naturally to always provide optimal S-box evaluation values for every attempt at S-box generation. Nevertheless, to fulfill the need to complicate any cryptanalysis efforts, other sub-optimal values may be provided, resulting in the generation of different S-boxes. Such a decision would not affect the overall encryption process much as each generated S-box is only one component out of many stages. Therefore, the performance evaluation of the encryption process is based on the integration of all the components in all three stages of the proposed encryption framework. Algorithm 2 elaborates on the procedure for generating a PRNG bitstream given the solution of a chaotic system.






	Algorithm 1 Generate an S-box given a bitstream   b  P R N G   , the number of S-box trials n, target performance evaluation values   M = { N L , S A C , B I C , L A P , D A P }   and a bitstream   b  P R N G    (an adaptation from that proposed in [12])



	
	
   S  b i t s   = P a r t i t t i o n  (  b  P R N G   , 2048 )   



	
  S b o  x  r e s   =  []



	
   M  r e s   = M  



	
For each    S i  ∈  S  b i t s    :




	(a)

	
   Z i  = T o D e c i m a l  ( P a r t i t i o n  (  S i  , 8 )  )   




	(b)

	
   L i  =  [ 0 − 255 ]   




	(c)

	
For each    U j  ∈  Z i   :




	
        L o  c j  =  U j  % L e n g t h  (  L i  )   



	
       A p p e n d (  L i   [ L o  c j  ]  , S b o  x i  )  



	
      D e l e t e (  L i   [ L o  c j  ]  ,  L i  )  









	(d)

	
   M i  =  { N L  ( S b o  x i  )  , S A C  ( S b o  x i  )  , B I C  ( S b o  x i  )  , L A P  ( S b o  x i  )  , D A P  ( S b o  x i  )  }   




	(e)

	
If    |   M i   − M | <   M  r e s    :




	
         M  r e s   =  |  M i  − M |   



	
       S b o  x  r e s   = S b o  x i   














	
Return   S b o  x  r e s    
















	Algorithm 2 Generate a PRNG bitstream given a chaotic system S of k dimensions and the number of needed bits n (first proposed in [12])



	
	
Solve S for the size of    n k  + 1   and the sufficient seeds producing the list of lists   {  L 1  ,  L 2  , … ,  L k  }   where   L i   is the solution for dimension i



	
Convert the list of lists into a 1D list as follows:


  L = {  L 1   [ 1 ]  ,  L 2   [ 1 ]  , … ,  L k   [ 1 ]  ,  L 1   [ 2 ]  ,  L 2   [ 2 ]  , … ,  L k   [ 2 ]  , … }  











	
Drop the last   | L | − n   elements from L



	
   L  b i t s    [ i ]  =      1 ,     if  L [ i ] > M e d i a n ( L )       0 ,    otherwise      















4. Numerical Results and Performance Evaluation


The performance of the proposed image encryption framework is provided in this section. A number of common performance evaluation metrics from the literature are utilized in this work [2,7,12]. Their mathematical expressions are provided in Table 4. The tests carried out aim to gauge the security, robustness and efficiency of the proposed framework in eradicating any identifiable information from the output encrypted images, such that they are completely asymmetric to their plaintext versions. The proposed framework is implemented on a machine running macOS Catalina v.10.15.7 with a 2.9 GHz 6-Core Intel® CoreTM i9 and 32 GB of 2400 MHz DDR4 RAM. The software of choice is Wolfram Mathematica® v.13.2. Common images found in the state-of-the-art are also utilized in this work to allow for a comparative analysis. All images are 256 pixels in length and 256 pixels in width, unless stated otherwise.



4.1. Visual and Visual-Statistical Analyses


The first measure employed for testing the output encrypted images is an examination through the human visual system (HVS). It is clear from Figure 8, Figure 9, Figure 10, Figure 11, Figure 12 and Figure 13 that no relation whatsoever can be observed between the plain images and their encrypted versions (i.e., complete asymmetry is achieved). The same can be noticed for their respective histograms. The histograms of the encrypted images depict a rather uniform distribution of values, which characterizes excellent encryption.




4.2. Statistical Analyses


The statistical analysis starts with the computation of the mean squared error (MSE), the peak signal-to-noise ratio (PSNR) and the maximum absolute error (MAE) between input plain images and output encrypted images. These are quantitative metrics that measure the degree of change between two images and are very common in the literature on image encryption. The computed values are reported in Table 5, Table 6 and Table 7, respectively. It is clear from each of the tables that the computed values for the proposed image encryption algorithm are comparable or superior to the state-of-the-art, with high MSE and MAE values and thus low PSNR values, indicating excellent scrambling and randomization performance of the proposed image encryption framework.



As for Shannon’s information entropy, Table 8 displays the computed values for various encrypted images and compares those values with the state-of-the-art. Excellent entropy performance of   7.999   is showcased for the proposed image encryption framework, being superior or comparable to counterpart algorithms.



The pixel cross-correlation coefficient  ρ  is a measure of the linear dependency between neighboring pixel values in an image. It quantifies how well the encryption process has scrambled the pixels and eliminated any spatial relationships. For a well-encrypted image,  ρ  should have a value close to 0, indicating little or no correlation between adjacent pixel values. Table 9 provides the  ρ  values for various images, each computed in three directions (horizontal, vertical and diagonal). While the plain images have  ρ  values close to 1, their encrypted versions have  ρ  values close to 0. A visual illustration of this metric is provided as a set of 2D plots in Figure 14 for the House image, as well as in Figure 15, Figure 16 and Figure 17, respectively, for each of its RGB channels, while sub-figures (c) and (f) of Figure 13 provide 3D plots of the same metric for the House image. It is clear that the plots of encrypted images exhibit a uniform distribution of values, unlike those of their plain versions. Table 10 and Table 11 display a comparison of  ρ  with the state-of-the-art, utilizing the Lena image and each of its RGB channels, respectively. The computed  ρ  values are shown to be near 0, as is the case in the state-of-the-art, in each of the tables.



Another interesting manner of examining the pixel cross-correlation among pixels would be to do so in the Fourier domain by generating the discrete Fourier transform (DFT) of the plain and encrypted House images, as shown in sub-figures (b) and (e) of Figure 13 and visually examining them. The presence of a bright star-like shape at the center of the DFT plain image is characteristic of a normal plain image which has pixels depicting edges and corners. This is unlike the DFT of the encrypted image, which lacks any identifying visual characteristics.



Since randomness is an integral measure of any image encryption algorithm, an objective quantitative measure of it should be utilized. This is best carried out through a National Institute of Standards and Technology (NIST) SP 800 analysis [37]. In brief, a NIST analysis tests a bitstream for a number of characteristics, including its randomness, quantifies its randomness and detects structural weaknesses. Such an analysis provides empirical evidence of the suitability of a PRNG’s use in cryptography applications. Table 12 presents the results of a NIST analysis carried out on a bitstream depicting the data of an encrypted Girl image. All NIST tests are successfully passed, with scored p-values greater than   0.01  .
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Table 5. MSE values for various images, for the proposed framework and the state-of-the-art.






Table 5. MSE values for various images, for the proposed framework and the state-of-the-art.





	Image
	Proposed
	[7]
	[13]
	[38]
	[15]
	[6]
	[19]
	[12]





	Lena
	   8890.05   
	   9112.1   
	   8926.96   
	10,869.73
	   4859.03   
	   8888.88   
	N/A
	   8912.4   



	Mandrill
	   8345.25   
	   8573.38   
	   8290.84   
	10,930.33
	   6399.05   
	   8295.21   
	N/A
	   8320.41   



	Peppers
	10,074.0
	10,298.7
	10,045.1
	N/A
	   7274.44   
	10,092.3
	N/A
	10,065.4



	House
	   8361.44   
	   8427.04   
	   8351.64   
	N/A
	N/A
	N/A
	N/A
	   8395.53   



	House2
	   9190.27   
	   9374.65   
	N/A
	N/A
	N/A
	N/A
	N/A
	   9142.54   



	Girl
	12,152.8
	12,450.9
	N/A
	N/A
	N/A
	N/A
	N/A
	12,104.2



	Sailboat
	10,063.3
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	10,071.9



	Tree
	   9931.63   
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	   9873.24   



	Average
	   9626.09   
	   9706.13   
	   8903.64   
	10,900
	   6177.51   
	   9092.13   
	N/A
	   9610.65   
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Table 6. PSNR values for various images, for the proposed framework and the state-of-the-art.






Table 6. PSNR values for various images, for the proposed framework and the state-of-the-art.





	Image
	Proposed
	[7]
	[13]
	[38]
	[15]
	[6]
	[19]
	[12]





	Lena
	   8.64176   
	   8.53462   
	   8.6237   
	   7.7677   
	   11.3   
	   8.64233   
	   8.5674   
	   8.63086   



	Mandrill
	   8.91641   
	   8.79929   
	   8.9448   
	   7.7447   
	   10.10   
	   8.94253   
	   10.0322   
	   8.92936   



	Peppers
	   8.09877   
	   8.00296   
	   8.11128   
	N/A
	   9.55   
	N/A
	N/A
	   8.10248   



	House
	   8.90799   
	   8.87405   
	   8.91309   
	N/A
	N/A
	N/A
	N/A
	   8.89032   



	House2
	   8.49752   
	   8.41125   
	N/A
	N/A
	N/A
	N/A
	N/A
	   8.52013   



	Girl
	   7.28403   
	   7.17879   
	N/A
	N/A
	N/A
	N/A
	N/A
	   7.30144   



	Sailboat
	   8.10339   
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	   8.0997   



	Tree
	   8.1606   
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	   8.18621   



	Average
	   8.32631   
	   8.30016   
	   8.64822   
	   7.7562   
	   10.3167   
	   8.79243   
	   9.2998   
	   8.33256   
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Table 7. MAE values for various images, for the proposed framework and the state-of-the-art.






Table 7. MAE values for various images, for the proposed framework and the state-of-the-art.





	Image
	Proposed
	[7]
	[6]
	[38]
	[39]
	[19]
	[12]





	Lena
	   77.409   
	   78.3564   
	   77.3752   
	87
	   77.35   
	   77.96   
	   77.4877   



	Peppers
	   82.0156   
	   82.3273   
	   81.7740   
	N/A
	   74.71   
	N/A
	   81.9832   



	Mandrill
	   75.3335   
	   81.913   
	   75.1659   
	92
	   73.91   
	   67.85   
	   75.1632   



	House
	   75.3132   
	N/A
	N/A
	N/A
	N/A
	N/A
	   75.4983   



	House2
	   78.5675   
	N/A
	N/A
	N/A
	N/A
	N/A
	   78.3327   



	Girl
	   90.1646   
	N/A
	N/A
	N/A
	N/A
	N/A
	   89.9807   



	Sailboat
	   82.0101   
	N/A
	N/A
	N/A
	N/A
	N/A
	   82.1003   



	Tree
	   81.4948   
	N/A
	N/A
	N/A
	N/A
	N/A
	   81.1623   



	Average
	   80.9993   
	   80.8656   
	   78.105   
	   89.5   
	   75.3233   
	   72.905   
	   80.2136   
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Table 8. Entropy values for various images, for the proposed framework and the state-of-the-art.






Table 8. Entropy values for various images, for the proposed framework and the state-of-the-art.





	Image
	Proposed
	[7]
	[13]
	[38]
	[40]
	[15]
	[6]
	[19]
	[12]





	Lena
	   7.999   
	   7.9856   
	   7.999   
	   7.999   
	   7.997   
	   7.996   
	   7.997   
	   7.9972   
	   7.99887   



	Mandrill
	   7.999   
	   7.9905   
	   7.999   
	   7.999   
	   7.999   
	N/A
	   7.996   
	   7.9969   
	   7.99866   



	Peppers
	   7.999   
	   7.9951   
	   7.999   
	   7.9991   
	N/A
	   7.997   
	   7.9969   
	N/A
	   7.99834   



	House
	   7.999   
	   7.9577   
	   7.999   
	N/A
	N/A
	N/A
	N/A
	N/A
	   7.99729   



	House2
	   7.999   
	   7.9847   
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	   7.99848   



	Girl
	   7.999   
	   7.9789   
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	   7.99477   



	Sailboat
	   7.999   
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	   7.99875   



	Tree
	   7.999   
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	   7.99713   



	Average
	   7.999   
	   7.98208   
	   7.999   
	   7.999   
	   7.99903   
	   7.9965   
	   7.99663   
	   7.99705   
	   7.99711   










[image: Table] 





Table 9. Correlation coefficient values for various plain and encrypted images.






Table 9. Correlation coefficient values for various plain and encrypted images.





	
Plain Image

	
Encrypted Image






	
Correlation Coefficient

	
Correlation Coefficient




	
Image

	
Horizontal

	
Diagonal

	
Vertical

	
Horizontal

	
Diagonal

	
Vertical




	
Lena

	
   0.938611   

	
   0.913175   

	
   0.96833   

	
   0.00180128   

	
   − 0.000991502   

	
   − 0.00018608   




	
Mandrill

	
   0.848778   

	
   0.750624   

	
   0.79088   

	
   0.00713777   

	
   − 0.00152782   

	
   0.00491305   




	
Peppers

	
   0.959422   

	
   0.930426   

	
   0.966795   

	
   0.00301689   

	
   0.00419115   

	
   − 0.00012237   




	
House

	
   0.978232   

	
   0.936044   

	
   0.952926   

	
   − 0.00147997   

	
   − 0.00286442   

	
   − 0.0015624   




	
House2

	
   0.907075   

	
   0.850782   

	
   0.923091   

	
   0.000841531   

	
   − 0.00214171   

	
   − 0.00626431   




	
Girl

	
   0.974013   

	
   0.951471   

	
   0.965671   

	
   0.000841531   

	
   − 0.00214171   

	
   − 0.00626431   




	
Sailboat

	
   0.952381   

	
   0.0 . 919872   

	
   0.950138   

	
   0.00608092   

	
   0.00279574   

	
   0.00170383   




	
Tree

	
   0.968153   

	
   0.929967   

	
   0.94515   

	
   − 0.00226616   

	
   0.00137505   

	
   0.00332063   
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Table 10. Correlation coefficient values comparison with the state-of-the-art, for an encrypted Lena image.






Table 10. Correlation coefficient values comparison with the state-of-the-art, for an encrypted Lena image.





	Algorithm
	Horizontal
	Diagonal
	Vertical





	Proposed
	   0.00180128   
	   − 0.000991502   
	   − 0.000186079   



	[6]
	   0.002287   
	   − 0.00132   
	   − 0.00160   



	[7]
	   0.003265   
	   − 0.00413   
	   0.002451   



	[12]
	   0.0064113   
	   − 0.0015143   
	   0.000568333   



	[17]
	   0.00144   
	   − 0.00151   
	   0.00795   



	[19]
	   − 0.0061   
	   − 0.0018   
	   0.0067   



	[22]
	   0.000199   
	   0.003705   
	   − 0.000924   



	[38]
	   0.0054   
	   0.0054   
	   0.0016   










[image: Table] 





Table 11. Color channel separated correlation coefficient value comparison with the state-of-the-art, for the Lena image.






Table 11. Color channel separated correlation coefficient value comparison with the state-of-the-art, for the Lena image.





	
Channel

	
Direction

	
Plain Image

	
Encrypted Image

	
[23]

	
[24]

	
[25]

	
[6]






	
Red

	
Horizontal

	
   0.952474   

	
   0.00266725   

	
   0.001365   

	
   0.0021   

	
   0.9568   

	
   − 0.00364   




	
Diagonal

	
   0.928029   

	
   0.00564219   

	
   0.000232   

	
   − 0.0026   

	
   0.0075   

	
   0.00016   




	
Vertical

	
   0.975913   

	
   − 0.0008351   

	
   0.004776   

	
   0.0018   

	
   − 0.0376   

	
   0.000697   




	
Green

	
Horizontal

	
   0.935628   

	
   0.00307568   

	
   0.003294   

	
   − 0.0006   

	
   0.0020   

	
   0.000118   




	
Diagonal

	
   0.910534   

	
   − 0.0020740   

	
   0.004807   

	
   0.0001   

	
   − 0.0046   

	
   0.00177   




	
Vertical

	
   0.966647   

	
   − 0.0011823   

	
   − 0.000579   

	
   0.0004   

	
   − 0.0013   

	
   − 0.0011   




	
Blue

	
Horizontal

	
   0.917439   

	
   − 0.00046821   

	
   0.002060   

	
   − 0.005   

	
   0.0071   

	
   − 0.00164   




	
Diagonal

	
   0.888482   

	
   − 0.0025489   

	
   − 0.004043   

	
   − 0.0104   

	
   − 0.0009   

	
   − 0.00523   




	
Vertical

	
   0.947961   

	
   0.0053944   

	
   0.000194   

	
   0.001   

	
   − 0.0423   

	
   0.006041   











[image: Table] 





Table 12. NIST analysis on Girl encrypted image.






Table 12. NIST analysis on Girl encrypted image.





	Test Name
	Value
	Remarks





	Frequency
	   0.425242   
	Success



	Block Frequency
	   0.276783   
	Success



	Run
	   0.714157   
	Success



	Longest run of ones
	   0.932530   
	Success



	Rank
	   0.138292   
	Success



	Spectral FFT
	   0.846825   
	Success



	Non overlapping
	   0.613084   
	Success



	Overlapping
	   0.449023   
	Success



	Universal
	   0.687511   
	Success



	Linear complexity
	   0.241374   
	Success



	Serial
	   0.850353   
	Success



	Approximate Entropy
	   0.030357   
	Success



	Cumulative sum (forward)
	   0.503876   
	Success



	Cumulative sum (reverse)
	   0.783156   
	Success









4.3. Differential Attack Analysis


A differential attack analysis is a type of cryptanalytic attack on encryption algorithms where an attacker analyzes the effect of specific changes in the input plaintext on the output ciphertext. For example, the change of a single bit in the input plain image. By analyzing these differences, the attacker may be able to deduce information about the key or algorithm used. Two tests are commonly employed in the literature for such an analysis: The number of pixel change ratios (NPCR) for pixel-by-pixel comparison and the unified averaged change intensity (UACI) for the evaluation of the mean average difference [41] have ideal values for well-encrypted images of   100 %   and   33.33 %  , respectively. The mathematical expressions corresponding to each of those metrics are provided in Table 4. The computed NPCR and UACI values for various images are displayed in Table 13, with achieved average values of   99.6186 %   and   31.4857 %  , respectively, reflecting excellent performance. Table 14 compares the computed values with the state-of-the-art for the RGB channels of various images. As expected, a comparable performance is achieved. Moreover, Table 15, displays another comparison with counterpart algorithms for the Lena image. Once again, a comparable performance is achieved.




4.4. Key Space Analysis


It is of vital importance to carry out a key space analysis of any image encryption technique. Such an analysis quantifies how much information (in bits) is required to specify an encryption key. The more bits needed, the larger the key space. Consequently, a large key space makes brute-force attacks infeasible. The larger the number of possible keys, the greater the resources and time required to try every key. This helps ensure encryption is secure against brute-force cracking. In the proposed image encryption framework, the attained key space is vast, mainly due to the utilization of the hyperchaotic maps. The 4D hyperchaotic map employs four initial values and seven constants; the 7D hyperchaotic map employs seven initial conditions and 10 constants; and the SNM employs a total of five variables only. For each of the three S-boxes, five specific values for the metrics are chosen. This gives a total of   4 + 7 + 7 + 10 + 5 + 3 × 5 = 48   variables in the computation of the key space. The computer and software package used to implement the proposed image encryption framework have a machine precision of   10  − 16   . Ultimately, this gives a key space of    10  48 × 16   =  10 768  ≈  2 2551   . This computed value far surpasses the threshold suggested earlier in the literature [45], of   2 100  , for successful resistance to brute-force attacks. A comparative analysis is carried out with the state-of-the-art in Table 16, showcasing the superior key space of the proposed image encryption framework.




4.5. Histogram Dependency Tests


In this testing perspective, the histograms of the plain and encrypted images are statistically compared in order to show the lack of statistical dependence between the two. Table 17 shows the five utilized tests (Blomqvist  β , Goodman–Kruskal  γ , Kendall  τ , Spearman  ρ  and Pearson r) and their mathematical expressions [46]. Table 18 demonstrates the results of applying these tests to a variety of images. As seen in the table, most of the resulting values approach 0, which shows a lack of any statistical dependency between every plain image and its encrypted version.




4.6. Execution Time Analysis


The execution time of an image encryption algorithm is an important metric, as it allows for a comparison of the efficiency and performance of different algorithms as well as an estimation of the computational resources required for software and hardware implementation. Moreover, an analysis of the execution time reveals the applicability of an algorithm for real-time image encryption applications. The software implementation of the proposed image encryption framework is carried out over Wolfram Mathematica® v.13.2. The algorithm’s execution time is optimized through parallel processing over the six cores of the Intel® CoreTM i9 processor. The full details of the computing environment are provided in the first paragraph of Section 4. Table 19 reports the attained execution times of the Lena image at various dimensions. These times result in an average encryption rate of   8.54   Mbps. Moreover, Table 20 provides a comparative analysis of the state-of-the-art algorithms. The superiority of the proposed framework is clear, with the attained encryption times being much shorter in comparison to their counterparts, irrespective of the machine specifications.




4.7. S-Box Performance Analysis


The proposed S-boxes are evaluated in this section independently of the proposed framework’s performance as a whole. This is because an S-box is a consistent element that is nearly always at the core of image encryption algorithms and is tasked with applying Shannon’s property of confusion. In order to evaluate the ability of an S-box to cause confusion, five metrics are commonly computed [47]. These are the non-linearity (NL), linear approximation probability (LAP), differential approximation probability (DAP), bit independence criterion (BIC) and strict avalanche criterion (SAC). They are calculated for the proposed S-boxes (shown in Table 1, Table 2 and Table 3) and compared to those reported in the state-of-the-art as well as to the ideal values, in Table 21. While all three proposed S-boxes exhibit performances comparable to counterpart algorithms from the literature, it is clear that the S-boxes constructed from the hyperchaotic functions perform better than the S-box constructed from the SNM. This is an advantage of hyperchaotic functions [48]. As in [12] and as described earlier in Section 3.3, upon designing and constructing each of the proposed S-boxes, the aim is not to reach the ideal values of the metrics but rather to reach a set of target metrics that are in close proximity to the ideal ones. This was carried out so as to include this set of target values as part of the key space, expanding it by   5 × 3 = 15   variables and allowing it to reach a key space of   2 2551  , as explained earlier in Section 4.4.





5. Conclusions and Future Works


This work attempted to propose a novel framework for image encryption, capitalizing on the inherent characteristics of hyperchaotic functions and the simplicity of the single neuron model. Encryption was carried out over three stages, where in each stage the solution of one of the systems was numerically computed and used to generate a PRNG and construct an S-box. Next, the S-box was applied to scramble the image data, while an XOR operation with the encryption key was applied to randomize it. The main advantages of the proposed framework could be summarized as attaining a vast key space of   2 2551   and a high encryption rate of   8.54   Mbps. Reaching such a key space is attributed to the usage of hyperchaotic functions, while the efficiency of the framework is attributed to the optimization of its software implementation and making use of parallel processing over six cores. Moreover, the proposed framework was tested against an array of security tests, both quantitative and qualitative in nature and was shown to exhibit comparable or even superior performance, in comparison to the state-of-the-art. Average achieved values for the quantitative metrics include MSE of 9626, PSNR of   8.3   dB, MAE of   80.99  , entropy of   7.999  , NPCR of   99.6 %   and UACI of   31.49 %  .



Future research efforts could be dedicated to attempting to improve the efficiency of the proposed image encryption framework even more. This could be carried out through an enhanced parallel processing architecture by running it over a network of connected machines or, better yet, by implementing it in hardware (i.e., on an FPGA, for example).
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	Deoxyribonucleic acid



	HVS
	Human Visual System



	MAE
	Maximum absolute error



	MSE
	Mean Square Error



	NIST
	National Institute of Standards and Technology



	NPCR
	Number of Pixel Changing Ratio



	PRNG
	Pseudo-Random Number Generation



	PSNR
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	S-box
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	Single Neuron Model
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Figure 1. A plot of   f  ( x )  = 3 x e x p  ( −  x 2  / 2 )   . 
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Figure 2. The connected chaotic attractor for the SNM at   α = 3  . 
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Figure 3. Lyapunov exponent plot for the SNM at   α = 3  . 
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Figure 4. Hyperchaotic attractors for system (2) with    u 0  = 5.2 ,    ν 0  = 7.4 ,    w 0  = 1.4 ,    p 0  = 3.4  , shown for various 3D spaces. 
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Figure 5. Hyperchaotic attractors for system (3) with   ( a , b , c , d , e , f , g , h , l , m ) = ( 10 , 8 / 3 , 28 , 2 , 9.9 , 1 , 2 , 1 , 1 , 1 )  , shown for various 3D spaces. 
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Figure 6. Flow chart of the proposed three-stage encryption process. 
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Figure 7. Flow chart of the proposed three-stage decryption process. 
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Figure 8. Mandrill image and RGB-separated histogram comparison of the plain and encrypted versions. 
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Figure 9. Peppers image and RGB-separated histogram comparison of the plain and encrypted versions. 
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Figure 10. Sailboat image and RGB-separated histogram comparison of the plain and encrypted versions. 
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Figure 11. Tree image and RGB-separated histogram comparison of the plain and encrypted versions. 
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Figure 12. House2 image and RGB-separated histogram comparison of the plain and encrypted versions. 
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Figure 13. House image, its DCT, and 3D plot of its pixel cross-correlation matrix pre- and post-encryption. 
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Figure 14. Two-dimensional plot of pixel cross-correlation matrices of the House image pre- and post-encryption. 
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Figure 15. Two-dimensional plot of pixel cross-correlation matrices of the red channel of the House image pre- and post-encryption. 
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Figure 16. Two-dimensional plot of pixel cross-correlation matrices of the green channel of the House image pre- and post-encryption. 
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Figure 17. Two-dimensional plot of pixel cross-correlation matrices of the blue channel of the House image pre- and post-encryption. 
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Table 4. Performance evaluation metrics and their mathematical expressions.
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	Metric
	Mathematical Expression





	MSE
	

  M S E =    ∑  i = 0   M − 1    ∑  j = 0   N − 1     (  I  ( i , j )   −  I  ( i , j )  ′  )  2    M × N   ,  



(17)




where I and   I ′   are 2 images of dimensions   M × N  .



	PSNR
	

  P S N R = 10 log    I  m a x  2   M S E    ,  



(18)




where    I  m a x   = 255  .



	MAE
	

   M A E =    ∑  i = 0   M − 1    ∑  j = 0   N − 1    |  I  ( i , j )   −  I  ( i , j )  ′  |    M × N   .   



(19)







	Entropy
	

  H  ( m )  =  ∑  i = 1  M  p  (  m i  )   log 2   1  p (  m i  )   ,  



(20)




where   p (  m i  )   is the probability of occurrence of symbol m, while M is the total number of bits for each symbol.



	DFT
	

  F  ( k , l )  =  ∑  i = 0   N − 1    ∑  j = 0   N − 1   f  ( i , j )   e  − i 2 π (   k i  N  +   l i  N  )   ,  



(21)




  f ( a , b )   is the spatial domain representation of the image, where the exponential term is the basis function corresponding to each point   F ( k , l )   in the Fourier space.



	CC
	

   ρ  ( x , y )  =   c o v ( x , y )     σ ( x )     σ ( y )     ,   



(22)






    where ,   c o v  ( x , y )  =  1 N   ∑  i = 1  N   (  x i  − μ  ( x )  )   (  y i  − μ  ( y )  )  ,   



(23)






   σ  ( x )  =  1 N   ∑  i = 1  N    (  x i  − μ  ( x )  )  2  ,  and  μ  ( x )  =  1 N   ∑  i = 1  N   (  x i  )  .   



(24)







	NPCR
	

   N P C R =    ∑  x = 1  M   ∑  y = 1  N  D  ( x , y )    M × N   × 100 ,   



(25)






    where ,   D  ( x , y )  =      0    I  ( x , y )  =  I ′   ( x , y )       1    O t h e r w i s e       x ∈  [ 1 , M ]    &   y ∈  [ 1 , N ]  .   



(26)







	UACI
	

   U A C I =  1  M × N    ∑  x = 1  M   ∑  y = 1  N     | I  ( x , y )  −   I ′    ( x , y )  |   255  × 100 .   



(27)
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Table 13. NPCR and UACI values of various images.
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Metric

	
Image

	
Result






	
NPCR

	
Lena

	
   99.6114   




	
Peppers

	
   99.6267   




	
Mandrill

	
   99.6094   




	
House

	
   99.6165   




	
House2

	
   99.6318   




	
Girl

	
   99.6287   




	
Sailboat

	
   99.6318   




	
Tree

	
   99.5926   




	

	
Average

	
   99.6186   




	
UACI

	
Lena

	
   30.3565   




	
Peppers

	
   32.163   




	
Mandrill

	
   29.5425   




	
House

	
   29.5346   




	
House2

	
   30.8108   




	
Girl

	
   35.3587   




	
Sailboat

	
   32.1608   




	
Tree

	
   31.9587   




	

	
Average

	
   31.4857   
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Table 14. NPCR and UACI values comparison with the state-of-the-art for various images.






Table 14. NPCR and UACI values comparison with the state-of-the-art for various images.





	
Metric

	
Image

	
Color Channel

	
Proposed

	
[6]

	
[42]

	
[12]






	
NPCR

	
Lena

	
Red

	
   99.6231   

	
   99.6109   

	
   99.6355   

	
   99.5712   




	
Green

	
   99.614   

	
   99.6109   

	
   99.6256   

	
   99.5758   




	
Blue

	
   99.5972   

	
   99.6375   

	
   99.6159   

	
   99.6094   




	
Peppers

	
Red

	
   99.6002   

	
   99.6032   

	
   99.6307   

	
   99.6338   




	
Green

	
   99.6429   

	
   99.6032   

	
   99.6250   

	
   99.6338   




	
Blue

	
   99.6368   

	
   99.3750   

	
   99.6213   

	
   99.6628   




	
Mandrill

	
Red

	
   99.5819   

	
   99.5880   

	
   99.6102   

	
   99.5911   




	
Green

	
   99.6292   

	
   99.5880   

	
   99.6134   

	
   99.5865   




	
Blue

	
   99.617   

	
   99.5880   

	
   99.6057   

	
   99.6292   




	
UACI

	
Lena

	
Red

	
   32.8621   

	
   33.4158   

	
   33.4657   

	
   33.1056   




	
Green

	
   30.6466   

	
   30.3902   

	
   33.4552   

	
   30.5178   




	
Blue

	
   27.5607   

	
   33.2420   

	
   33.4550   

	
   27.5385   




	
Peppers

	
Red

	
   28.9367   

	
   33.3459   

	
   33.4832   

	
   28.8353   




	
Green

	
   33.8071   

	
   33.4702   

	
   33.4904   

	
   33.8409   




	
Blue

	
   33.7452   

	
   33.4357   

	
   33.4619   

	
   33.7746   




	
Mandrill

	
Red

	
   29.7236   

	
   33.4273   

	
   33.5002   

	
   29.5137   




	
Green

	
   28.0515   

	
   33.4635   

	
   33.4711   

	
   28.0464   




	
Blue

	
   30.8524   

	
   33.7951   

	
   33.4951   

	
   30.8671   
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Table 15. NPCR and UACI values comparison of the Lena image with the state-of-the-art.






Table 15. NPCR and UACI values comparison of the Lena image with the state-of-the-art.





	Scheme
	NPCR
	UACI





	Proposed
	   99.6114   
	   30.3565   



	[2]
	   99.625   
	   30.5681   



	[6]
	   99.63   
	   30.3432   



	[12]
	   99.5855   
	   30.3873   



	[17]
	   99.6246   
	   30.5681   



	[19]
	   99.61   
	   33.516   



	[38]
	   99.52   
	   26.793   



	[43]
	   99.63   
	   33.48   



	[44]
	   99.61   
	   33.434   
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Table 16. A comparison of key space values with the state-of-the-art.






Table 16. A comparison of key space values with the state-of-the-art.





	Algorithm
	Key Space





	Proposed
	   2 2551   



	[2]
	   2 478   



	[7]
	   2 372   



	[12]
	   2 1658   



	[17]
	   2 554   



	[19]
	   2 604   



	[20]
	   2 312   



	[21]
	   2 256   



	[22]
	   2 187   



	[26]
	   2 128   



	[27]
	   2 219   
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Table 17. Histogram dependency tests and their mathematical expressions.






Table 17. Histogram dependency tests and their mathematical expressions.









	Metric
	Mathematical Expression





	Blomqvist
	

   β =  {  ( X −  x ¯  )   ( Y −  y ¯  )  > 0 }  −  {  ( X −  x ¯  )   ( Y −  y ¯  )  < 0 }  .   



(28)







	Goodman–Kruskal
	

   γ =    n c  −  n d     n c  +  n d    .   



(29)







	Kendall
	

   τ =    n c  −  n d     n ( n − 1 )  2   .   



(30)







	Spearman
	

   ρ =   ∑  (  R  i x   −   R ¯  x  )   (  R  i y   −   R ¯  y  )     ∑   (  R  i x   −   R ¯  x  )  2  ∑   (  R  i y   −   R ¯  y  )  2     .   



(31)







	Pearson
	

   r =   ∑  (  X i  −  X ¯  )   (  Y i  −  Y ¯  )     ∑   (  X i  −  X ¯  )  2  ∑   (  Y i  −  Y ¯  )  2     .   



(32)
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Table 18. Tests of histogram dependency for various images.






Table 18. Tests of histogram dependency for various images.





	
Image

	
Color

	
  β   (28)

	
  γ   (29)

	
  τ   (30)

	
  ρ   (31)

	
r (32)






	
Lena

	
Red

	
   0.00397832   

	
   0.0313687   

	
   0.0303408   

	
   0.0434341   

	
   0.0270663   




	
Green

	
0

	
   0.0215872   

	
   0.014269   

	
   0.0166966   

	
   0.0193475   




	
Blue

	
   − 0.0793976   

	
   − 0.0608106   

	
   − 0.0572115   

	
   − 0.0818634   

	
   − 0.109206   




	
Combined

	
   0.0277309   

	
   − 0.0199151   

	
   − 0.0198071   

	
   − 0.0329345   

	
   − 0.0468979   




	
Peppers

	
Red

	
   − 0.0316218   

	
   − 0.0270098   

	
   − 0.0264574   

	
   − 0.036404   

	
   − 0.0223967   




	
Green

	
   0.0355072   

	
   0.0185307   

	
   0.0183487   

	
   0.0317549   

	
   0.0375528   




	
Blue

	
   − 0.00396106   

	
   − 0.0164391   

	
   − 0.016167   

	
   − 0.0263073   

	
   − 0.0482875   




	
Combined

	
   0.0948802   

	
   0.0436563   

	
   0.0433807   

	
   0.0645118   

	
   0.0666087   




	
Mandrill

	
Red

	
   − 0.0198078   

	
   − 0.0466956   

	
   − 0.0462145   

	
   − 0.0686459   

	
   − 0.0672317   




	
Green

	
   0.0676058   

	
   0.0704028   

	
   0.0691334   

	
   0.099575   

	
   0.108835   




	
Blue

	
   − 0.00394524   

	
   − 0.027233   

	
   − 0.0269739   

	
   − 0.0414617   

	
   − 0.032399   




	
Combined

	
   0.0316238   

	
   − 0.00105387   

	
   − 0.00104776   

	
   − 0.00335102   

	
   − 0.00619468   




	
House

	
Red

	
   − 0.078125   

	
   − 0.0735036   

	
   − 0.0713676   

	
   − 0.10807   

	
   0.129594 − 0.124939   




	
Green

	
   0.0278483   

	
   0.0505291   

	
   0.0499853   

	
   0.0757827   

	
   0.100048   




	
Blue

	
   − 0.0558677   

	
   − 0.0186177   

	
   − 0.0178087   

	
   − 0.0270381   

	
   − 0.0762734   




	
Combined

	
   − 0.03125   

	
   − 0.0270421   

	
   − 0.0268626   

	
   − 0.0384522   

	
   − 0.0603119   




	
House2

	
Red

	
   − 0.122785   

	
   − 0.11135   

	
   − 0.109577   

	
   − 0.159726   

	
   − 0.187521   




	
Green

	
   − 0.0159414   

	
   − 0.00680612   

	
   − 0.00674228   

	
   − 0.00405984   

	
   0.0230262   




	
Blue

	
   0.0560937   

	
   0.0890006   

	
   0.0876046   

	
   0.131527   

	
   0.132005   




	
Combined

	
   − 0.109375   

	
   − 0.0772136   

	
   − 0.0768099   

	
   − 0.110878   

	
   − 0.0822007   




	
Girl

	
Red

	
   0.0830847   

	
   0.0581335   

	
   0.0489882   

	
   0.0663806   

	
   0.0108236   




	
Green

	
   0.0336761   

	
   0.0192351   

	
   0.0159392   

	
   0.0191791   

	
   0.0103639   




	
Blue

	
   − 0.0232813   

	
   − 0.0120988   

	
   − 0.00979622   

	
   − 0.0113034   

	
   − 0.0309034   




	
Combined

	
   0.15625   

	
   0.0462478   

	
   0.0441833   

	
   0.0606254   

	
   − 0.00724911   




	
Sailboat

	
Red

	
   − 0.0158755   

	
   0.00608236   

	
   0.00584084   

	
   0.00894156   

	
   0.015278   




	
Green

	
   − 0.0994093   

	
   − 0.0609726   

	
   − 0.060292   

	
   − 0.0933644   

	
   − 0.0969401   




	
Blue

	
   − 0.0357981   

	
   − 0.0261754   

	
   − 0.025861   

	
   − 0.0370723   

	
   − 0.104682   




	
Combined

	
   0.031754   

	
   − 0.0324742   

	
   − 0.0322749   

	
   − 0.0539398   

	
   − 0.123518   




	
Tree

	
Red

	
   − 0.0239129   

	
   − 0.0587334   

	
   − 0.0575335   

	
   − 0.0886452   

	
   − 0.116216   




	
Green

	
   0.00401018   

	
   0.00607749   

	
   0.00597875   

	
   0.00638248   

	
   − 0.0328477   




	
Blue

	
   0.0236235   

	
   0.0389318   

	
   0.0374368   

	
   0.0573412   

	
   0.0216757   




	
Combined

	
   0.015625   

	
   0.00158429   

	
   0.00157335   

	
   0.00789208   

	
   − 0.0243032   
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Table 19. Execution times, in terms of encryption, decryption and their combined values for the proposed framework at various image dimensions.






Table 19. Execution times, in terms of encryption, decryption and their combined values for the proposed framework at various image dimensions.





	Image Dimensions
	   t Enc    (s)
	   t Dec    (s)
	   t Add    (s)





	   64 × 64   
	   0.011306   
	   0.011419   
	   0.0227249   



	   128 × 128   
	   0.039643   
	   0.038158   
	   0.077801   



	   256 × 256   
	   0.167471   
	   0.161055   
	   0.328526   



	   512 × 512   
	   0.732927   
	   0.751684   
	   1.48461   



	   1024 × 1024   
	   2.99817   
	   3.161   
	   6.15917   
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Table 20. A comparison of the encryption time for various algorithms from the literature for a Lena image with dimensions   256 × 256  .






Table 20. A comparison of the encryption time for various algorithms from the literature for a Lena image with dimensions   256 × 256  .





	Algorithm
	   t Enc    (s)
	Machine Specifications (CPU and RAM)





	Proposed
	   0.167471   
	2.9 GHz Intel® CoreTM i9, 32 GB



	[2]
	   2.750966   
	3.4 GHz Intel® CoreTM i7, 8 GB



	[6]
	   2.582389   
	2.9 GHz Intel® CoreTM i9, 32 GB



	[7]
	   1.42545   
	2.9 GHz Intel® CoreTM i9, 32 GB



	[12]
	   0.426243   
	2.9 GHz Intel® CoreTM i9, 32 GB



	[17]
	   3.0019   
	3.4 GHz Intel® CoreTM i7, 8 GB



	[19]
	   2.7236   
	2.7 GHz Intel® CoreTM i7, 8 GB



	[27]
	   3.45   
	N/A



	[28]
	   1.112   
	3.4 GHz Intel® CoreTM i3, 4 GB



	[29]
	   1.1168   
	3.4 GHz Intel® CoreTM i7, 8 GB
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Table 21. Comparison of the numerical evaluation of the proposed S-boxes (displayed in Table 1, Table 2 and Table 3) among those provided in the literature.






Table 21. Comparison of the numerical evaluation of the proposed S-boxes (displayed in Table 1, Table 2 and Table 3) among those provided in the literature.





	S-box
	NL
	SAC
	BIC
	LAP
	DAP





	Ideal values
	112
	   0.5   
	112
	   0.0625   
	   0.015625   



	Proposed, SNM (1)
	106
	   0.499268   
	104
	   0.09375   
	   0.015625   



	Proposed, HC 4D (2)
	108
	   0.500977   
	108
	   0.078125   
	   0.015625   



	Proposed, HC 7D (3)
	108
	   0.506592   
	108
	   0.078125   
	   0.015625   



	[12] MT
	108
	   0.503662   
	92
	   0.140625   
	   0.015625   



	[12] OpenSSL
	108
	   0.499023   
	112
	   0.0625   
	   0.015625   



	[12] Intel’s MKL
	108
	   0.499268   
	104
	   0.09375   
	   0.015625   



	[38]
	111
	   0.5036   
	110
	   0.0781   
	   0.0234   



	[49]
	107
	   0.497   
	   103.5   
	   0.1560   
	   0.0390   



	[50]
	100
	   0.5007   
	   104.1   
	   0.0390   
	   0.1250   



	[51] S4
	112
	   0.5   
	112
	   0.0625   
	   0.0156   
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