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Abstract: This paper presents a new two-step approach for record linkage, focusing on the creation 
of high-quality training data in the first step. The approach employs the unsupervised random forest 
model as a similarity measure to produce a similarity score vector for record matching. Three con-
structions were proposed to select non-match pairs for the training data, with both balanced (sym-
metry) and imbalanced (asymmetry) distributions tested. The top and imbalanced construction was 
found to be the most effective in producing training data with 100% correct labels. Random forest 
and support vector machine classification algorithms were compared, and random forest with the 
top and imbalanced construction produced an F1-score comparable to probabilistic record linkage 
using the expectation maximisation algorithm and EpiLink. On average, the proposed approach 
using random forests and the top and imbalanced construction improved the F1-score by 1% and 
recall by 6.45% compared to existing record linkage methods. By emphasising the creation of high-
quality training data, this new approach has the potential to improve the accuracy and efficiency of 
record linkage for a wide range of applications. 
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1. Introduction 
Databases enable entities’ information to be stored in repositories that are dispersed 

across different computer systems. Occasionally, entity resolution is required to ensure 
that records from different databases refer to the same real-world entities, which can be a 
person, a place, an object, or an event [1]. Dunn [2] devised the resolution process while 
compiling the Book of Life, which records persons’ information from birth to death. He 
coined the term “record linkage” for the entity resolution process at the time. Dunn’s idea 
of the resolution reflects the deterministic record linkage mechanism, as a shared key 
identifier is required. Dunn uses the birth certificate number as the key identifier to bind 
a person to their life’s record index. Dunn also pointed out that the process would im-
prove the accuracy of important information by highlighting inconsistencies that may 
arise. Additionally, the process makes certification a more efficient and less expensive 
managerial task. It also enriches a person’s information, resulting in meaningful statistics. 
Nowadays, data are already considered an asset. Such a record linkage process is already 
regarded as a significant process within the data pre-processing stage for data quality 
assurance [3]. 

1.1. Deterministic Record Linkage 
According to [1], record linkage typically involves a matching process in which a 

similarity measure is determined based on the fields of the record pairs being compared. 
The most basic matching process is exact matching, which is used in deterministic record 
linkage. In exact matching, a similarity weight of 1 is assigned when the key identifying 
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fields of the two records agree, and 0 is assigned otherwise. However, such rules are too 
rigid and can lead to high levels of mismatches [4]. 

1.2. Probabilistic Record Linkage 
To relax the deterministic rules and account for field comparisons in the absence of 

shared key identifiers, different approaches were proposed, with probabilistic record link-
age being the most commonly used [5]. Fellegi and Sunter [6] developed a rigorous math-
ematical model (FSM) that derives a similarity weight vector from the probability of rec-
ord field agreement and disagreement, which is then used to calculate the similarity score. 
Thresholds are set to determine whether record pairs should be classified as linked (rec-
ords are a match), unlinked (records are not a match), or possibly linked (records could 
be a match). Generally, a higher score indicates that the record pairs are highly similar 
and should be classified as linked, while a lower score indicates that they are not. To con-
sider the possibility of erroneous data, similarity measures that use approximate matching 
have also been employed, based on distance or character edit measures. Sometimes, pho-
netic encoding is applied first to account for similar sounding string values, typically usu-
ally names, before conducting the similarity measure function [7]. A list of approximate 
matching and encoding methods is detailed in [5,7]. 

1.3. Machine Learning-Based Record Linkage 
From the deterministic and probabilistic approaches, it is clear that similarity 

measures are crucial for the matching process, and determining the optimal threshold is 
critical in the probabilistic approach. Optimal thresholds are normally determined by an-
alysing the record pairs, and the priori error bound between false matches and mis-
matches is used to make this determination [5]. However, determining the thresholds can 
be challenging without access to duplicate records, known as “gold standard data”. There-
fore, other record linkage approaches exist that do not rely on similarity measures and 
thresholds. 

One such approach is the supervised machine learning approach, which reframes the 
record linkage process as a classification problem that requires training a classifier. The 
work by [8] has shown that trained classifiers can better classify record pairs compared to 
FSM. However, a potential issue with the supervised approach is that it requires training 
data, which normally must be labelled manually, making the process quite costly. 

The unsupervised machine learning approach has been proposed to eliminate the 
need to train data. This approach utilises the clustering algorithms to group the record 
pairs into two clusters: matches and non-matches. This method has been implemented by 
various studies, such as [9–11]. Although [9] reported a good result for the clustering using 
K-means, another study done by [12] found clustering to be unfeasible, possibly due to 
the highly imbalanced data. However, the work by [9] has implemented blocking that may 
have evened out the classes [11]. Some recent unsupervised approaches to record linkage 
use a graph-based approach that does not require a match threshold to be set [13], consider 
the interdependency between fields [14], focus on complex entities where some of the field 
values may change over time [15], and consider integration between different types of 
data sources [16]. 

Another approach that can be considered is the two-step approach [12,17–20], which 
involves creating the training data in the first step and classifying the record pairs in the 
second step. 

1.4. Paper Construction and Contribution 
This paper describes a similar approach based on the two-step approach, where the 

focus is on the first step. In order to show the differences in the proposed approach, we 
will be using the data science trajectories (DST) map model [21], which highlights the gen-
eral approach to record linkage, as the activities in the general approach become the 
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building blocks for the activities in the two-step approach as well as in the proposed ap-
proach. The next section of the paper will first explain the DST for the three approaches. 
It is then followed by a related study section that focuses on the creation of the training data 
that were used in record linkage classification. The methodology section is divided into four 
parts: the first part explains the datasets being used; the second part describes the main activ-
ities that set apart the proposed approach from the original two-step approach; the third 
part lists the other classification methods used for comparison; the last part discusses the 
performance measurements used. This is then followed by the results and discussion. This 
paper’s conclusion will also describe the future work we intend to pursue. 

The contributions of this paper are twofold. First, a new approach to record linkage 
is demonstrated that combines unsupervised and supervised machine learning ap-
proaches, utilising the unsupervised random forest (URF) model as a simplified similarity 
measure compared to prior research. Second, preliminary results of using URF to create 
high-quality training data are presented, and the best construction for selecting match and 
non-match records is identified. Additionally, the proposed approach is illustrated using 
the data science trajectory (DST) map model, demonstrating its potential for improving 
the accuracy and efficiency of record linkage for a wide range of applications. 

2. Data Science Trajectories Models of the Record Linkage Approaches 
The DST model is an extension of the popular (de facto) CRISP-DM data mining and 

knowledge discovery project approach. The model was designed to make it more appli-
cable to today’s data science projects, which typically include some kind of exploratory 
activities. The main components of the DST model then comprise the activities that come 
from the existing CRISP-DM approach, which are data management (denoted by the cyl-
inder shape) and goal-driven activities (denoted by the rounded square shape). The DST 
model includes exploratory activities (denoted by the circle shape in the map) and the 
numbered arrows to show the transition between activities which start from 0. The list of 
all activities and some examples of DST can be referred to in [21]. 

2.1. The General Approach 
The deterministic and probabilistic approach to record linkage can be seen as a four-

step general approach in the DST map (see Figure 1) that consists of four activities includ-
ing data preparation, data architecting, modelling, and results exploration. The data prep-
aration activity is where data are processed, standardised and parsed [22] so that record 
pairs can be generated in the next activity of data architecting. Assuming that there are 
databases A and B, then there will be a total of A × B record pairs generated. The modelling 
activity is where the matching process takes place. This is when the field-wise comparison 
is conducted (similarity measure) and the composite weight (similarity score) for each 
record pair is determined. If blocking is considered, it will be within this activity. Lastly, 
the decision about linking is made when the results, or the composite weight vector, are 
explored in the last activity. The DST in Figure 1 was superimposed on the general record 
linkage processes [17] for better comparison. 
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Figure 1. DST map of deterministic and probabilistic record linkage approaches imposed on the 
general record linkage process. 

2.2. The Two-Step Approach 
The two-step record linkage approach (see Figure 2) also consists of the same activi-

ties as the general approach, with the addition of another data preparation activity in step 
3 for the training data preparation; and a modelling activity in step 4 for record pair clas-
sification based on the trained classifier. Therefore, in total, there are six activities, and the 
first three are the same as the general approach. The two-step record linkage approaches 
usually conduct a binary classification; hence, the record pairs will be classified as linked 
or unlinked during the modelling activity. The performances are later evaluated in the 
exploration activity. 

 
Figure 2. DST map of the two-step record linkage approach. 

2.3. The Proposed Approach 
The DST of the proposed method also consists of six steps, with the same elements 

as those in the DST for the two-step approach. The main difference between the ap-
proaches is in steps 1 and 2, where the modelling phase comes first in the proposed ap-
proach before data architecting (see Figure 3). In the proposed approach, step 1 represents 
the implementation of URF, where records from databases A and B will be combined to 
produce A + B records with the length of n and sent to the URF model. Step 2 represents 
the generation of record pairs from the upper triangle of the proximity matrix produced 
by URF. The total number of record pairs is then: 

𝑛𝑛(𝑛𝑛 −  1)
2

 (1) 
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The remaining steps then are the same as in the two-step approach, where training 
data are created in step 3 and used to train selected classifiers in step 4. The results are 
then evaluated in step 5, in the results exploration activity. 

 
Figure 3. DST map of the proposed approach. 

The two-step approach and the proposed approach differ not only in steps 1 and 2 of 
the DST map but also in the training data preparation in step 3. In Section 4.2.3, we pro-
pose three different constructions for selecting training data, and their details are dis-
cussed further. 

3. Related Studies 
We categorised training data preparation approaches based on the level of human 

involvement in labelling the instances for match and non-match sets. Full involvement 
was considered manual selection, minimal as semi-automatic, and non-involvement as 
automatic. 

3.1. Manual Training Data Selection 
Manually reviewing training data is an effective method for acquiring high-quality 

training data [23]. However, this procedure is expensive in terms of money or time. It is 
undeniable that humans are much better at identifying similarities compared to computer 
algorithms. Therefore, to produce high-quality training data, human power was em-
ployed in [12,24]. Similar human power employment was seen in [25,26] through 
crowdsourcing, but the main focus of these studies is producing smaller HITs (human 
intelligent tasks) that minimise the number of records that need to be manually compared. 
Since the process of determining the record pairs is still done by humans, we considered 
the crowdsourcing task a manual approach. 

3.2. Semi-Automatic Training Data Selection 
A small amount of human involvement in manual labelling can be seen in some ac-

tive learning approaches, such as those in [23,27–29]. Active learning typically involves an 
iterative method in which humans are involved initially for some seed selection to train 
the classifier [23,28] or humans are involved in each loop for labelling pairs that are con-
sidered difficult to classify [27]. In the seed selection approach, the concern is to select 
pairs that are highly representative. The approach by [23] uses distinct record pairs sam-
pled from each stratum based on field-wise comparison agreement. On the other hand, 
[28] uses the entropy of the record pairs to establish those that are uncertain (with high 
entropy) and those that are of high confidence (low entropy). A much more recent active 
learning approach in entity resolution [29] formed training data by manual review, where 
record pairs under a certain limit (budget) were considered based on their informativeness 
measure. The selection of the record pairs was conducted iteratively by evaluating a se-
lected similarity vector space where the entropy and uncertainty of the vector were 
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considered. The approach was said to be independent of any classifiers and did not rely 
on the assumption that a higher similarity score leads to a matched record pair. 

3.3. Automatic Training Data Selection 
Automating the process of training data selection is still relevant for dealing with 

highly sensitive data [20]. In [20], an automatic seed selection was used, where the algo-
rithm was based on the nearest-based approach proposed by [17,18]. The nearest-based 
approach uses a distance measure to select certain percentages of record pairs based on 
the distance of the similarity weight vectors from vectors containing only exact similarity 
and total dissimilarity. The weight vectors are then sorted according to their distance. The 
match pairs for the training data are selected from those closer to the high likelihood of 
matched pairs, and the non-match pairs are those closer to the high likelihood of non-
matched pairs. In [17], the nearest-based selection was also considered for only choosing 
consecutively or only those with unique weight vectors. Balanced and imbalanced distri-
butions were also evaluated. The results show that there is not much difference between 
unique and non-unique selection. However, the imbalanced training data size shows bet-
ter results than a balanced size in most cases. 

Along with the nearest-based approach, a threshold-based approach was also pro-
posed by [17,18]. The threshold-based selection method selects record pairs whose simi-
larity weight vectors are all within a certain distance from the set threshold. The nearest-
based approach, however, generally outperformed the threshold-based approach [18]. 
The experiments in [17] also show that the results are highly sensitive to the threshold 
value. We believe that the threshold-based approach was not able to capture the propor-
tion of the highly imbalanced class of the candidate record pairs. Since the nearest-based 
approach was able to explicitly set the percentage of records going to be considered in the 
match and non-match sets, an imbalanced proportion can be mirrored. As seen in [20], the 
match pairs were set to 0.01% and the non-match pairs were set to 1% for the automatic 
seed selection. 

A recent study by [30] utilised the informativeness measure proposed by [29] and 
coupled it with the cosine similarity measure to select a certain number of high-quality 
record pairs with the highest score as the training dataset. Their experiments showed that 
such selection is better than random sampling from the whole record pair set or random 
sampling from the matched and non-matched record pair sets. Additionally, the authors 
of [31] proposed a novel data augmentation technique named EMix to generate training 
data, which was utilised in their MixER model. The experimental results demonstrated 
that the MixER model outperformed existing methods in recall and robustness. 

4. Materials and Methods 
4.1. Dataset 

The first dataset used in this study can be found in the R RecordLinkage package, 
named RLdata500. It contains 500 records, with 50 duplicates. We only remove empty 
columns in the RLdata500, leaving the first name and last name fields, and expand the date 
of birth to three fields: day, month, and year. 

The second dataset is the restaurant records collected from Zagat with 533 and Fodor 
with 331 observations of restaurant reviews that are now available from the R restaurant 
package. There are a total of 864 records with 112 duplicates. We cleaned the data by han-
dling missing values and standardising the format, which included removing any addi-
tional information. We also expanded the phone number into three fields, where phn_1 
consists of the first three digits, phn_2 contains the next three digits, and phn_3 contains 
the last four digits. The other fields included in the Restaurant dataset are name, address, 
city, and type. 

We started off with these two datasets in this study since they contain fields of mixed 
data types (numbers and strings). Based on the initial study that we performed in [32], 
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any number values were set as integer data types and strings as characters. Both datasets 
have a one-to-one relationship, which means that duplicate records have only one match. 

4.2. Modelling, Data Architecting, and Data Preparation Activities 
This section will discuss steps 2–3 of the DST map (see Figure 3) for the proposed 

approach, which involved modelling, data architecture, and data preparation activities. 
The remaining activities represent the second step of the two-step approach for classifying 
the record pairs. Although this paper’s main concern is on forming the training data, the 
only way to know the best construction was by looking at the classification results. There-
fore, this study chooses RF [33] and support vector machine (SVM) [34]. The main reason 
for choosing these classifiers was because they both were able to handle data of mixed 
data types and were known to have been successfully applied for record pairs classifica-
tion [17]. The R caret package was used at this stage since it offers a plethora of options for 
classifiers and allows easy switching between them. A cross-validation and confusion ma-
trix is also available. The selected classifiers were then trained using five-fold cross-vali-
dation and repeated three times for parameter tuning. The confusion matrix was used to 
assess the classifiers’ performances based on the selected indexes. 

4.2.1. The Modelling Activity 
We proposed using URF as a similarity measure function, where a score is generated 

based on the normalised count of record pairs that fall on the same leaf in all the decision 
trees in the forest [33,35]. The URF will treat the linkage as a duplicate detection problem 
as all records will be combined and labelled as class 1. A generated record will be added 
and labelled as class 2. URF, then, will create decision trees based on the subsample of the 
two classes. The original data will then be compared in pairs on all trees to determine their 
proximity. The concept of proximity assumes that if the record pairs fall on the same leaf, 
then they are similar. The paper by [36] explains the algorithm of URF in detail. 

Record pairs’ similarity score derived from the proximity matrix only considers ele-
ments where the row value is greater than the column. Formally, if we are to assume C as 
the proximity matrix with a cardinality of n × n, then C = (𝑐𝑐𝑖𝑖𝑖𝑖)1 ≤ 𝑖𝑖,𝑗𝑗 ≤ 𝑛𝑛. To form the record 
pairs, only those elements where i < j were considered. The i value was the id for the first 
record, j for the second, and 𝑐𝑐𝑖𝑖𝑖𝑖  was the pair similarity score. Since only half of the matrix 
was read, then the implementation of the record pair generation takes O(n2/2) times. 

4.2.2. The Data Architecting Activity 
Based on the ids of the record pairs, the ids were mapped back to the original records 

so that the Jaro–Winkler string comparator [37,38] can be applied for its corresponding 
string fields and absolute distance for numerical fields. These similarity measure functions 
were conducted to represent the pair’s fields as a single value and not as a field-wise com-
parison weight since the record pairs’ similarity score had already been calculated. The 
similarity score vector was also included so that the pairs could be sorted but later ex-
cluded from the training data as the training data will be labelled. 

4.2.3. The Data Preparation Activity 
The data preparation in step 3 was when the training data were constructed from the 

record pairs that were sorted in descending order based on the similarity score field. The 
training data follows three constructions that represent the selection of the labelled non-
match record pairs, denoted as 𝑝𝑝𝑛𝑛𝑛𝑛, that started at the bottom, the top, or are selected at 
random, after a lower threshold, denoted as 𝑡𝑡𝑙𝑙 (see Figure 4). The labelled match record 
pairs 𝑝𝑝𝑚𝑚 will always be from the top until the upper threshold 𝑡𝑡𝑢𝑢. The training data were 
then a mix of 𝑝𝑝𝑚𝑚 and 𝑝𝑝𝑛𝑛𝑛𝑛. The remaining record pairs were the ones that were going to 
be the testing data or record pairs to be classified. However, record pairs with a similarity 
score of zero, denoted as 𝑝𝑝0 , were excluded as these pairs were assumed to be non-
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matches. For each of the constructions, a balanced (symmetry) and imbalanced (asym-
metry) distribution will be tested. The imbalance distribution was decided based on a pre-
determined imbalance ratio. The algorithms that represent the complete training data con-
struction for the bottom, top, and random constructions can be referred to as Algorithms 
1, 2 and 3, respectively. 

 
Figure 4. Proposed method training data constructions where (a) the non-match training data were 
taken from the bottom, (b) the non-match training data were taken after the specified lower thresh-
old, and (c) the non-match training data were taken at random after the specified lower threshold. 

Algorithm 1. Bottom Selection. 
Input: 

– p, record pairs in descending order where similarity score > 0 
– Set tu, r*//for balanced r* = 1 

Output: 
– tr—training data 
– ts—record to classify 

1 Set pm ← p.similarity score ≥ tu 
2 Get pm length → l 
3 Set pnm ← last p with length (l × r*) 
4 Set pm.label ← “match” 
5 Set pnm.label ← “nonmatch” 
6 Set tr ← rbind(pm, pnm) 
7 Set ts ← p(−pm & −pnm) 
Remove similarity score column from tr and ts 

 
Algorithm 2. Top Selection. 
Input: 

– p, record pairs in descending order where similarity score > 0 
– Set tu, tl, r*//for balanced r* = 1 

Output: 
– tr—training data 
– ts—record to classify 

1 Set pm ← p.similarity score ≥ tu 
2 Get pm length → l 
3 Set pnm ← from p where similarity score ≥ tl, with length (l × r*) 
4 Set pm.label ← “match” 
5 Set pnm.label ← “nonmatch” 
6 Set tr ← rbind(pm, pnm) 
7 Set ts ← p(−pm & −pnm) 
Remove similarity score column from tr and ts 
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Algorithm 3. Random Selection. 
Input: 

– p, record pairs in descending order where similarity score > 0 
– Set tu, tl, r*//for balanced r* = 1 

Output: 
– tr—training data 
– ts—record to classify 

1 Set pm ← p.similarity score ≥ tu 
2 Get pm length → l 
3 Set pnm ← randomly from p where similarity score ≥ tl, with length (l × r*) 
4 Set pm.label ← “match” 
5 Set pnm.label ← “nonmatch” 
6 Set tr ← rbind(pm, pnm) 
7 Set ts ← p(−pm & −pnm) 
Remove similarity score column from tr and ts 

4.3. Classification Methods 
Other than comparing RF and SVM based on all training data constructions, we also 

compared it with FSM, where the similarity measures were based on the expectation maximi-
sation (EM) algorithm and EpiLink [39]. These methods are built into the RecordLinkage pack-
age as the emWeights and epiWeights functions [40]. The package also provides linkage using 
clustering methods. We used K-means [41] and bagged clustering (bclust) [42]. We categorise 
the clustering methods as unsupervised and include the URF within this category. 

4.4. Classification Performance Measures and Training Data Quality 
Due to the large number of true non-match (true negative) record pairs, the classifi-

cation performances will be evaluated using performance indexes that exclude true nega-
tive (TN), such as precision, P = TP/TP + FP; recall, R = TP/TP + FN; and the F-measure, F1 
= 2(P × R)/(P + R). True positive (TP) is the number of correctly classified true matches, 
while false negative (FN) is the number of wrongly classified true matches (mismatches). 
The precision tells how well the classification process is doing in classifying the true 
matches, while the recall tells how well the classification process is doing in identifying 
all true matches. The F-measure is the harmonic mean between precision and recall and 
is used as the main index [43]. In the event of a tie in the F-measure, recall will be consid-
ered, as a higher recall indicates more true matches were discovered. Since this was an 
empirical study, no blocking was applied to the record pairs. The optimal threshold for 
the EM, EpiLink, and URF was decided based on the maximum F1-score. Although these 
classification performance measures show how accurate the performance of classifiers is, 
we nevertheless used the measure to identify the best constructions of the training data. 

The training data quality was decided based on the percentage of correctly labelled 
record pairs 𝑝𝑝𝑚𝑚 as matched and 𝑝𝑝𝑛𝑛𝑛𝑛 as non-matched [17]. Determining the quality of the 
training data as well as the performances of all compared methods was made possible 
because the ground truth (gold standard) data were available for both datasets. 

5. Results and Discussion 
In total, the RLdata500 dataset produced 124,750 pairs, of which 74% were already 

considered non-matches since the similarity score was zero (𝑝𝑝0). As for the Restaurant 
dataset, there were 372,816 pairs, and 𝑝𝑝0 was also 74%. When compared with the gold 
standard, the 𝑝𝑝0 for both datasets were true non-match (quality was 100%). The nearest-
based approach in [17,19] also excluded zero weighted scores in the training data. 
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5.1. Setting Thresholds and Training Data Quality 
Determining the 𝑡𝑡𝑢𝑢  in the training data creation is critical for distinguishing the 

matched record pairs. We had set 𝑡𝑡𝑢𝑢 to start at 0.9 and decreased the threshold by 0.1 at 
a time, and we observed the quality of the training data. The process was stopped once 
the match record pairs’ quality had worsened. The thresholds of 0.6 and 0.7 were the low-
est 𝑡𝑡𝑢𝑢 for the Rldata500 and restaurant data, respectively (see Table 1). As observed, the 
generated training data for all constructions produced training data of high quality, with 
the highest percentage of the training data over all records (excluding 𝑝𝑝0) being just less 
than 1.5% for the RLdata500 and slightly over 0.5% for Restaurant datasets. 

Table 1. Training data quality and the percentage of total training data over the record pairs exclud-
ing 𝑝𝑝0. 

Dataset RLdata500 Restaurant 
Upper Threshold 𝒕𝒕𝒖𝒖 ≥ 𝟎𝟎.𝟗𝟗 𝒕𝒕𝒖𝒖 ≥ 𝟎𝟎.𝟖𝟖 𝒕𝒕𝒖𝒖 ≥ 𝟎𝟎.𝟕𝟕 𝒕𝒕𝒖𝒖 ≥ 𝟎𝟎.𝟔𝟔 𝒕𝒕𝒖𝒖 ≥ 𝟎𝟎.𝟗𝟗 𝒕𝒕𝒖𝒖 ≥ 𝟎𝟎.𝟖𝟖 𝒕𝒕𝒖𝒖 ≥ 𝟎𝟎.𝟕𝟕 
Imbalance Ratio 1:1 1:9 1:1 1:9 1:1 1:9 1:1 1:9 1:1 1:7 1:1 1:7 1:1 1:7 

Tr
ai

ni
ng

 S
et

 
Q

ua
lit

y Match 100 100 100 100 100 100 97.62 97.62 100 100 100 100 92.42 92.42 
Bot, Non-match 100 100 100 100 100 100 100 100 100 100 100 100 100 100 
Top, Non-match 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

Rand, Non-match 100 100 100 100 100 100 100 100 100 100 100 100 100 100 
Training % 0.17 0.87 0.22 1.09 0.25 1.24 0.26 1.30 0.06 0.23 0.07 0.29 0.14 0.55 

In setting the 𝑡𝑡𝑙𝑙, the challenge is to determine a value that will ensure only true non-
matches are included. The lowest similarity score in the gold standard for RLdata500 was 
0.11, so we set 𝑡𝑡𝑙𝑙  = 0.1. The same 𝑡𝑡𝑙𝑙  value was set for the Restaurant dataset for con-
sistency even though there were three true matches with a similarity score below 0.1. 
Somehow, the true matches were not included in the non-match training data, and we 
believe this was because the distribution of the lower part of the similarity score vector 
was highly right-skewed (see Figure 5). However, this may have affected the perfor-
mances of the classifiers, as the best F1-score achieved was 0.94. The classifiers were able 
to distinguish two of the true matches (weights 0.03 and 0.09), but not one since its weight 
was 0.1. 

  
(a) (b) 

Figure 5. The lower half of the similarity weight vector distribution, where the blue bars indicate 
the candidate record pairs for non-match training data, where (a) is the distribution for RLdata500 
and (b) is the distribution for the Restaurant dataset. 
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5.2. Training Data Construction Performance 
The initial setup for the training data only considers a balanced sample from the 

match (𝑝𝑝𝑚𝑚) and non-match (𝑝𝑝𝑛𝑛𝑛𝑛) record pairs, as seen in [8]. This is because a classification 
model that is trained on a symmetric number of samples from each class or with a similar 
distribution of samples from each class helps to avoid bias towards one class and can lead 
to a more accurate and generalisable model. However, the results then showed both clas-
sifiers, RF and SVM, were not sufficient in discriminating the false matches (FP). Unlike 
[8], they have reported favourable results of using RF as compared to SVM (and other 
compared methods) when 𝑝𝑝𝑛𝑛𝑛𝑛 was down-sampled to create the balanced classes. In gen-
eral, down-sampling follows the random construction of selecting 𝑝𝑝𝑛𝑛𝑛𝑛. From our results 
(see Figure 6), the RF performance using balanced and random training data construction 
was also seen to be better than SVM for both datasets. However, the authors of [17] stated 
the need to reflect the highly imbalanced data in the training data and suggested the ratio 
r to be the number of true matches to the number of true false matches. The estimated r 
can then be derived by: 

𝑟𝑟 =  
𝑚𝑚𝑚𝑚𝑚𝑚(|𝐴𝐴|, |𝐵𝐵|)

|𝑊𝑊|  −  𝑚𝑚𝑚𝑚𝑚𝑚(|𝐴𝐴|, |𝐵𝐵|) (2) 

where W is the total number of weight vectors, which is the number of candidate record 
pairs after blocking. 

  
(a) (b) 

Figure 6. Boxplot comparison between balanced and imbalanced training data for both classifiers, 
RF and SVM, where comparison (a) is on the RLdata500 dataset and comparison (b) is on the Res-
taurant dataset. 

In the study, the imbalanced training data were created by gradually increasing the 
ratio in 𝑝𝑝𝑛𝑛𝑛𝑛 and it was found that a 1:9 imbalanced ratio of 𝑝𝑝𝑚𝑚 to 𝑝𝑝𝑛𝑛𝑛𝑛 was ideal for the 
RLdata500 dataset and 1:7 for the Restaurant dataset. The imbalance ratio was found to 
follow the number of true matches to the number of distinctive records instead. As dis-
covered by [23], training data do not need to follow the same proportion of all record 
pairs. Having training data that is able to capture all distinct record pairs is more im-
portant than having more samples in the training data, which has also been demonstrated 



Symmetry 2023, 15, 1060 12 of 16 
 

 

by [30]. Following the notation in [17], the estimated imbalance ratio 𝑟𝑟∗ can be derived as 
follows: 

𝑟𝑟∗  =  �
𝑚𝑚𝑚𝑚𝑚𝑚(|𝐴𝐴|, |𝐵𝐵|)

|𝐴𝐴|  + |𝐵𝐵|  −  𝑚𝑚𝑚𝑚𝑚𝑚(|𝐴𝐴|, |𝐵𝐵|)� (3) 

The comparison of the F1-score results between balanced and imbalanced training 
data is summarised in the boxplots shown in Figure 6. Upon initial examination, the im-
balanced training data produced significantly better results collectively across all con-
structions for both datasets and classifiers. This suggests that intentionally choosing an 
asymmetrical training data distribution can help to counter the inherent imbalance in the 
record pairs distribution, forcing the classifiers to learn to handle bias. This is similar to 
[17], where their experiments showed that imbalanced training size was better than bal-
anced in most cases. The plot also shows that the top and random constructions were 
always better than the bottom construction. 

To determine which construction is better, a dot plot of the F1-score against recall was 
used, and the plot area was divided into four quadrants. Since high F1-score and recall 
values are preferable, the upper triangle of the top-right quadrant is the area of interest. 
Figure 7 shows the performances of the classifiers given the constructions, and it can be 
observed that the top construction places both classifiers in the top-right quadrant for the 
RLdata500 dataset. The Restaurant dataset also shows most instances of the top construc-
tion were in the top-right quadrant, except for one instance that was placed in the bottom-
right, which indicated an F1-score that was below 0.5, but the recall was greater than 0.5 
(high in false matches). Despite that, as compared to the other two constructions, the top 
construction produced much better classification results for both classifiers for the given 
datasets. 

  
(a) (b) 

Figure 7. Dot plot comparison for the three constructions, where the comparisons were based on F1-
score against recall for (a) the RLdata500 dataset and (b) the Restaurant dataset. 

When comparing the F1-score of the proposed approach classifiers (RF, SVM) against 
the optimal threshold methods (EM, EpiLink) and the unsupervised approach (URF, K-
means, and bclust) for the RLdata500 dataset using the top and imbalanced construction, 
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the RF classifier achieved the highest score of 0.97 at 𝑡𝑡𝑢𝑢  =  0.7. The same construction 
produced the best F1-score for the Restaurant dataset, with RF and SVM achieving the 
highest scores (0.94) at 𝑡𝑡𝑢𝑢  =  0.9 and 𝑡𝑡𝑢𝑢  =  0.8, respectively. However, the RF classifier 
had the highest recall value of 0.99 at 𝑡𝑡𝑢𝑢  =  0.9 and 𝑡𝑡𝑢𝑢  =  0.8 for the top and random 
construction. In our opinion, the top construction is preferred due to its simplicity, and 
promoting it for the Restaurant dataset would be consistent with the RLdata500 dataset. 
The previous best F1-score and recall results were achieved by the optimal threshold ap-
proach using EM, with scores of 0.96 and 0.94 for the RLdata500 dataset, and by EpiLink 
with scores of 0.93 and 0.95 for the Restaurant dataset. On average, the top and imbalanced 
construction using RF classifier had improved the performances based on F1-score by 1% 
and recall by 6.45%. Table 2 shows the performance results of all the methods compared 
under the top and imbalanced constructions. The method with the highest performance 
index is in bold. 

Table 2. Classification performance results for the proposed approach, the optimal threshold meth-
ods, and the unsupervised approach to record linkage. 

Classification Approach 
Dataset 

RLdata500 Restaurant 
Precision Recall F1-Score Precision Recall F1-Score 

EM 0.98 0.94 0.96 0.81 0.86 0.83 
EpiLink 1 0.92 0.96 0.91 0.95 0.93 

URF 1 0.82 0.9 0.85 0.65 0.73 
K-Means 0.01 0.98 0.03 0 1 0 

bclust 0.03 0.98 0.06 0.89 0.96 0.92 
RF-T-𝑡𝑡𝑢𝑢  ≥  0.9 1 0.84 0.91 0.9 0.99 0.94 
RF-T-𝑡𝑡𝑢𝑢  ≥  0.8 1 0.84 0.91 0.75 0.97 0.85 
RF-T-𝑡𝑡𝑢𝑢  ≥  0.7 0.94 1 0.97 0.5 0.93 0.65 
RF-T-𝑡𝑡𝑢𝑢  ≥  0.6 0.91 1 0.95  

SVM-T-𝑡𝑡𝑢𝑢  ≥  0.9 0.84 0.92 0.88 0.94 0.94 0.94 
SVM-T-𝑡𝑡𝑢𝑢  ≥  0.8 0.85 0.88 0.86 0.95 0.93 0.94 
SVM-T-𝑡𝑡𝑢𝑢 ≥  0.7 0.82 0.92 0.87 0.55 0.93 0.69 

The best linkage results of using the proposed approach were then achieved by using 
the RF classifier under imbalanced data selected from the top construction. The best selec-
tion of training data for RLdata500 was at 𝑡𝑡𝑢𝑢  =  0.7 and 𝑡𝑡𝑢𝑢  =  0.9 for the Restaurant da-
taset. These two training data constructions only comprise 1.24% and 0.23% of the total 
records (excluding 𝑝𝑝0), respectively, yet achieved comparable performance with the opti-
mal threshold methods of EM and EpiLink. 

Having training data that is of high quality definitely helps in the classification pro-
cess for RF as well as SVM. Both of these classifiers were also known to work well in small 
training datasets [23], with the advantage of RF being that it is an assembly of decision 
trees that is able to minimise bias and variance [24]. Having RF as the best classifier in this 
study also supported one of the conclusions in [23], where tree-based classifiers work well 
in record linkage classification due to their low dimensionality (𝑝𝑝 ≪  𝑛𝑛) and simplicity of 
the underlying problem. 

5.3. Study Limitations 
Having access to the gold standard data enables us to identify the best construction 

for the training data. With knowledge of the similarity score in gold standard data, we 
were able to set optimal values for 𝑡𝑡𝑢𝑢  and 𝑡𝑡𝑙𝑙 , and with knowledge of the number of 
matching records, we were able to set the optimal imbalance ratio. However, this kind of 
information is not typically available in real-world scenarios. Without the gold standard, 
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determining the optimal values for 𝑡𝑡𝑢𝑢, 𝑡𝑡𝑙𝑙, and the imbalanced ratio can be challenging. 
Therefore, the current state of training data preparation in this study is still considered 
semi-automatic, as it requires human inspection and intervention to set these parameters. 

It is also important to note that this study is limited to datasets containing only strings 
and numeric datatypes. The success of a linkage process depends heavily on the quality 
of the data and the available fields [4]. While we used two public datasets in our study, 
the different treatments applied to the fields make it difficult to compare our results with 
those of other studies. As a result, we only compared our method with the ones stated in 
this study, and our main focus was not to determine the best classifier but to identify the 
best construction method for the training data. 

6. Conclusions 
In conclusion, this study presented a novel approach to record linkage that is based 

on a two-step process utilising URF as a similarity measure in the first step. The URF 
model simplifies the similarity measure process by using decision trees to handle pairwise 
comparisons. The proximity values produced by the decision trees in the forest were used 
as the similarity score between record pairs, which facilitated the creation of high-quality 
training data. The study tested three different constructions for the training data on two 
datasets (RLdata500 and Restaurant) with two classifiers, RF and SVM. Different distribu-
tions of the training data were also evaluated. The results showed that the imbalanced 
(asymmetrical) distribution with non-matched record pairs chosen from the top construc-
tion consistently produced the best performance when using the RF classifier, which out-
performed all other linkage methods tested, including FSM methods using epi- and em-
weights, and the unsupervised K-means, bclust, and URF methods. While more work is 
needed to automate the determination of optimal thresholds and imbalance ratios for this 
approach, this study highlights its potential for improving the record linkage process. Fu-
ture research will test the proposed approach on different datasets to confirm the best 
training data constructions and classifiers. Overall, this study demonstrates the effective-
ness of the proposed approach, which on average improved the F1-score by 1% and recall 
by 6.45% compared to the previous best results achieved by the EM and EpiLink methods. 
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