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Abstract: The codimension is an important invariant, which measures the complexity of map germs
and play an important role in classification and recognition problems. The restricted A-equivalence
was introduced to obtain a classification of reducible curves. The aim was to classify simple parame-
terized curves with two components, one of them being smooth with respect to the A-equivalence in
characteristic p. In characteristic 0, the corresponding classification was given by Kolgushkin and
Sadykov. The aim of this article is to present an algorithm to compute the codimension of germs of
singularities under a restricted left–right equivalence (A-symmetry). We also give the implementation
of this algorithm in the computer algebra system SINGULAR.
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1. Introduction

Let F be a field of characteristic 0 and f : (Fn, 0)→ (F p, 0) be a map germ. A sym-
metry of f is a pair (α, β), where α is a diffeomorphism germ of (Fn, 0) and β is a diffeo-
morphism germ of (F p, 0), such that the following diagram commutes:

(Fn, 0) (F p, 0)

(Fn, 0) (F p, 0)

α−1

f

f

β

Let F [[z]], where z = (z1, . . . , zm) denotes the local ring of formal power series in
m-indeterminates. Consider a local ordering > on F [[z]] and we denote by� the extension
of ordering > on F [[z]]n = ∑n

i=1 F [[z]]ei, where ei = (0, . . . , 1, . . . , 0), and defined as:
zαei � zβej, if i < j or (i = j and zα > zβ).

Let S(m, n) = 〈z〉F [[z]]n, R = AutF (F [[z]]) and L = AutF (F [[y]]), where y =
(y1, . . . , ym). Define the left–right group A = L×R. The action of the group A on S(m, n)
is given as follows:

A× S(m, n)→ S(m, n)

such that
((ϕ1, ϕ2), h) 7→ ϕ2 ◦ h ◦ ϕ−1

1 .
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Any two map germs h1, h2 ∈ S(m, n) are said to be A-equivalent (h1 ∼A h2) if they
lie in the same orbit under the group action of A. For h ∈ S(m, n), the orbit map can be
defined as: Φh : A→ S(m, n) such that Φh(ϕ1, ϕ2) = ϕ2 ◦ h ◦ ϕ−1

1 . Particularly, Φh(id) = h.
The orbit of h under the group action of A is the image of Φh; we set Img(Φh) = Ah. We
denote by TAh ,h a tangent space which is the image of the tangent map

TAh ,id : TA,id → TS(m,n),h

to the orbit at h. Note that the orbit map is separable, since char(F ) = 0. It is easy to
see that

TAh ,h = 〈z〉F [[z]]〈
∂h
∂z1

, . . . ,
∂h

∂zm
〉F [[z]] + 〈h1, . . . , hm〉F [[h1,...,hn ]]F [[h1, . . . , hn]]

n.

and

codimA(h) = dimF
S(m, n)
TAh ,h

.

Definition 1. f ∈ S(m, n) is A-finitely determined if there exists a k > 0 such that for all
g ∈ S(m, n) with jet( f , k) = jet(g, k), g is in the orbit of f under the action of A.

Definition 2. Let U1 ⊆ F [[z]] be a subspace of F -vector space F [[z]] and a > 0 a local monomial
ordering. A subset U2 ⊆ U1 is called a standard basis of U1 if L(U1) = L(U2). Here, L(U1) is the
F vector space generated by the leading monomials of U1 with respect to the ordering >.

In the history of the theory of singularities of map germs, A-equivalence has been the
most natural equivalence among map germs from the view point of differential topology.
Group A, the tangent space to the orbit under the action of this group and its codimension
play an important role in the classification of map germs (see [1–12]). In [13], the authors
gave an algorithm to compute the codimension of map germs under an A-equivalence.
Our aim is to present a similar algorithm, which computes the codimension of map germs
under an Ar-equivalence (restricted A-equivalence).

2. Computation of Codimension under Restricted Left–Right Action

Let fi : F [[y1, y2, . . . , yn]]→ F [[z]] define a germ of a parameterized curve singularity,
i = 1, 2, . . . , k. LetR = AutF (F [[z]]), L = AutF (F [[y1, y2, . . . , yn]]) and A = L×Rk. Let
G act on the set E = {( f1, f2, . . . , fk) : fi : F [[y1, y2, . . . , yn]]→ F [[z]], dimF (F [[z]]/im( fi)) < ∞} by

(g, (h1, h2, . . . , hk)) ◦ ( f1, f2, . . . , fk) = (h−1
1 ◦ f1 ◦ g, . . . , h−1

k ◦ fk ◦ g).

Definition 3. Let ( f1, f2, . . . , fk), (g1, g2, . . . , gk) ∈ E. They are called A-equivalent if they are in
the same orbit under the action of G. We write in this case ( f1, f2, . . . , fk) ∼A (g1, g2, . . . , gk).

Let us consider a special case. Let f1(t, 0, 0, . . . , 0), g1(t, 0, 0, . . . , 0), f2 = (x1(t), x2(t),
. . . , xn(t)) and g2 = (y1(t), y2(t), . . . , yn(t)). Then, ( f1, f2) ∼A (g1, g2) if and only if, for
suitable (g, (h1, h2)) ∈ G,

(g1, g2) = (h−1
1 ◦ f1 ◦ g, h−1

2 ◦ f2 ◦ g).

Let g = (H1(x1, x2, . . . , xn), H2(x1, x2, . . . , xn), . . . , H1(x1, x2, . . . , xn)); then, we must
have Hi(x1, x2, . . . , xn) = 0, i = 2, 3, . . . , n and ∂H1/∂x1(0) 6= 0. This implies that the
classification of parameterized curves with two components, one of them smooth, is
equivalent to the classification of simple irreducible curves with respect to the action of the
following group Gr = Lr × R (the action is as above for k = 1) with

Lr = {φ ∈ AutF (F [[x1, x2, . . . , xn]]) : φ(xi)(x1, 0, . . . , 0) = 0, i = 2, 3, . . . , n}.
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In [10,14], the authors introduced a direct and natural generalization of A-equivalence
denoted by AG -equivalence, where G was a subgroup of L = AutF (F [[y]]). Define the
group AG = G ×R. The action of the group AG on S(m, n) is defined as follows:

AG × S(m, n)→ S(m, n)

such that
((ϕ1, ϕ2), h) 7→ ϕ2 ◦ h ◦ ϕ−1

1 .

Any two map germs h1, h2 ∈ S(m, n) are said to be AG -equivalent (h1 ∼ArG h2) if they
lie in the same orbit under the group action of AG .

Example 1. (1) (t4, t5, t4 + t6, t8) ∼Ar (t
6, t4 + t6, t5, t8) ∼Ar (t

6, t4 + t6, t5), therefore γ =<
4, 5, 6 >= {0, 4, 5, 6, 8, . . .} and γr = {0, 4, 5, 8, . . .}.
(2) (0, t4, t6 + t7, t13) ∼Ar (0, t4, t6 + t7, t15) since 13 ∈ γ(< t4, t6 + t7 > F[[t4, t6 + t7]]).
(3) (t2, t4, t6 + t7) ∼Ar (t

2, t4, t7) since 6 ∈ γ(< t4, t6 + t7 > F[[t2, t4, t6 + t7]]).

Proposition 1. Let h ∈ S(m, n) and G be a subgroup of AutF (F [[y]]). The tangent space with
respect to the AG -equivalence is

TAGh ,h =: 〈z〉〈 ∂h
∂z1

, . . . ,
∂h

∂zm
〉F [[z]] + {H(h1, ..., hm) : H ∈ Lie(G)},

where Lie(G) denote the Lie algebra associated with group G, i.e., TAGh ,id =Lie(G).

Proof. Let

R = AutF (F [[z]]) = {ϕ1 =


ϕ11

.

.

.
ϕ1m

 : ϕ1i ∈ 〈z〉F [[z]], det(
∂ϕ1i
∂zj

(0)) 6= 0},

G ⊆ L = AutF (F [[y]]) = {ϕ2 =


ϕ21

.

.

.
ϕ2n

 : ϕ2i ∈ 〈y〉F [[y]], det(
∂ϕ2i
∂yj

(0)) 6= 0}

and AG = G ×R. We have Lie(AG) = Lie(G)⊕ Lie(R) and

Lie(R) = {


H1
.
.
.

Hn

 : Hi ∈ 〈z〉F [[z]]},

Lie(G) ⊆ {


L1
.
.
.

Lp

 : Li ∈ 〈y〉F [[y]]}.

Given (ϕ2, ϕ1) ∈ AG , we obtain the following commutative diagram:
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F [[y]] F [[z]]

F [[y]] F [[z]]

ϕ−1
2

ϕ1 ◦ h ◦ ϕ−1
2

h

ϕ1

This way, AG acts on S(m, n)

AG × S(m, n)→ S(m, n)

((ϕ2, ϕ1), h) 7→ ϕ1 ◦ h ◦ ϕ−1
2 .

For h ∈ S(m, n), we have the orbit map

Φh : AG → S(m, n)

defined by
Φh(ϕ2, ϕ1) = ϕ1 ◦ h ◦ ϕ−1

2 .

The orbit map induces a map

TΦh ,id : TAG ,id → TS(m,n),h,

where TAG ,id = Lie(G)⊕Lie(R) and TS(m,n),h = 〈z〉F [[z]]n. This gives

TΦh ,id(


L1
.
.
.

Lp

+


H1
.
.
.

Hn

) = ∑ Hi
∂h
∂zi

+


L1(h)

.

.

.
Lp(h)

.

Since the characteristic of F is zero, the image of TΦh ,id is the tangent space to the orbit
at f :

TAGh,h =: 〈z〉〈 ∂h
∂z1

, . . . ,
∂h

∂zm
〉F [[z]] + {H(h1, ..., hm) : H ∈ Lie(G)}.

The following theorem is a generalization of a theorem of Du Plessis [9] (Corollary
3.10) and can be proved similarly to [13].

Theorem 1. Let h ∈ S(m, n) and assume that

〈z〉pF [[z]]n ⊆ TFh,h + 〈z〉p+1F [[z]]n,

〈z〉qF [[z]]n ⊆ TAGh,h + 〈z〉p+qF [[z]]n.

Then, h is (p + q)-determined and 〈z〉qF [[z]]n ⊆ TAGh,h.

The theorem is the basis to pass to `-jets. We assume that h is `-determined and let
A(`)
G = jet(AG , `) and S(`)(m, n) = jet(S(m, n), `). Then, we have an induced action of A(`)

G
on S(`)(m, n). Moreover, we have

T
A(`)
G h,h

=
AGh,h

〈z〉`+1F [[z]]n



Symmetry 2023, 15, 1042 5 of 7

and

codimAG (h) = dimF
S(m, n)

〈z〉`+1F [[z]]n
− dimFTA(`)

G h,h
.

Remark 1. 1. If G = {id}, then AG = R, i.e., the right equivalence. In this case, the computa-
tion of the codimension of map germs is trivial.

2. If G = L = AutF (F [[y]]), then AG = A, i.e., the left–right equivalence. For this case an
algorithm to compute the codimension of map germs can be found in [13].

We consider the following case:
Let G = Gr = {ψ ∈ AutF (F [[y]]) : ψ(yi) ∈ 〈y2, . . . , yn〉F [[y]], i ≥ 2} then AG = Ar,

i.e., the restricted left–right equivalence. This equivalence relation is considered in [15],
where it reduces the A-classification of simple multigerms into the Ar-classification of
irreducible simple germs. In this article, our aim was to give an implementation of an
algorithm in the computer algebra system SINGULAR [16] to compute the Ar-codimension
of map germs.

Proposition 2. If G = Gr, then Lie(Gr) = {ψ ∈ F [[y]]n : ψi ∈ 〈y2, . . . , yn〉F [[y]], i ≥ 2}.

Proof. If G is a subgroup of AutF (F [[y]]), then, by definition, Lie(G) = TG,id, the tangent
space of the group G at the identity id (id(yi) = yi, ∀i). If we take any curve ϕt in G such
that ϕ0 = id, then dϕt

dt |t=0 gives a tangent vector. Thus, for the case G = Gr, such a curve is
of type

ϕt(y) =


ϕ1

t (y)
.
.
.

ϕn
t (y)


with ϕi

t(y) = yi + tψi(y, t) and ψi ∈ 〈y2, . . . , yn〉F [[y]], if i ≥ 2. This gives

dϕt

dt
|t=0 =


ψ1(y, 0)

.

.

.
ψn(y, 0)

.

Therefore, we obtain the required result.

Theorem 1 is the basis for the following algorithm (Algorithm 1):

Algorithm 1 (codim)

Input: h = (h1, . . . , hn) ∈ F [[z]]n and N a F -basis of Lie(G).
Output: Ar-codimension of h.

1: Compute k, a bound for the determinacy of h such that 〈z〉kF [[z]]n ⊆ TAGh,h.

2: Compute an F -basis {N1, . . . , Ns} of (Lie(G) + 〈z〉k+1)F [[z]]/〈z〉k+1F [[z]].

3: Compute S, a standard basis of 〈z〉〈 ∂h
∂x1

, . . . , ∂h
∂xm
〉.

4: Compute a reduced row echelon form M = (M1, . . . , Mt) of NF(N1|S), . . . , NF(Ns|S)
by using the Gaussian algorithm.

5: Return dimF [[z]]
n

M(S) − t.
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Remark 2. An estimated value for the determinacy of h can be computed by using the code
computeBound. We compute a standard basis of TFh,h and check the condition 〈z〉pF [[z]]n ⊆
TFh,h + 〈z〉p+1F [[z]]n case by case for computing the value of p satisfying 〈z〉pF [[z]]n ⊆ TFh,h +
〈z〉p+1F [[z]]n. As an initial bound, it uses q = 10 and the value of the bound q increases as long
as the condition 〈z〉qF [[z]]n ⊆ TAGh,h + 〈z〉p+qF [[z]]n has been satisfied. Then, Theorem 1 gives
h as (p + q)-determined.

3. Singular Examples

We give some examples.

ring R=0,t,ds;
> ideal I=t3,t5,t6+t7;
> coDimMap(I);
[1]:
13
[2]:
11

ring R=0,t,ds;
> ideal I=t4,t7+t9,t17;
> coDimMap(I);
[1]:
44
[2]:
37

ring R=0,(x,y),ds;
> ideal I=x,xy+y4;
> coDimMap(I);
[1]:
13
[2]:
3

By using Algorithm 1, we computed the Ar codimension of different map germs.
Moreover, Table 1 gives a comparison between the A-codimension and Ar-codimension of
map germs from the plane to the plane.

Table 1. A comparison between the A-codimension and Ar-codimension of map germs from the
plane to the plane

Normal Form A-Codimension Ar-Codimension

(x, y2) 1
(x, y3 ± xky), k > 1,±agree for odd k k + 1 4k− 3

(x, xy + y3) 2 1
(x, xy + y4) 3 3
(x, xy + y5) 5 6

(x, xy + y5 ± y7) 4 4
(x, xy + y6) 8 10

(x, xy + y6 + y14) 7 8
(x, xy + y6 + y9) 6 8

(x, xy + y6 + y8 + αy9) 6 7
(x, x2y + y4 ± y5) 5 8

(x, x2y + y4) 6 10
(x, y4 + x3y2 + xl y), l ≥ 5 l + 4 3(l + 4)

(x, y4 + xky + xl y2), k = 4, 5 k− 1 ≤ l < 2k− 1 k + l + 1 7k− 6
(x, y4 + xky + xl y2), k = 4 l = 2k− 1 k + l + 1 23
(x, y4 + xky + xl y2), k = 5 l = 2k− 1 k + l + 1 30

(x, y4 + x2y2 + xky), k ≥ 4 k + 3 3k + 6
(x, y4 + x3y− 3

2 x2y2 + xky), k ≥ 6 k + 3 k + 12
(x, y4 + x3y + αx2y2), α 6= −3

2 9 17
(x, y4 + x3y− 3

2 x2y2 + x4y2) 8 17
(x, y4 + x3y + αx2y2 + x4y2), α 6= −3

2 8 15
(x, y4 + x3y− 3

2 x2y2 + x3y2) 7 16
(x, y4 + x3y + αx2y2 + x3y2), α 6= −3

2 7 15
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4. Conclusions

In [13], the authors computed the codimension of map germs with respect to the
left–right equivalence and contact equivalence. In this work, we gave an algorithm to
compute the codimension of map germs with respect to the restricted left–right equivalence.
Moreover, this algorithm was implemented in the computer algebra system SINGULAR.
In the future, one can find the codimension of map germs with respect to several other
equivalence relations, such as the B-equivalence.
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