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Abstract: In this paper, we study a coupled fully hybrid system of (k, ®)-Hilfer fractional differential
equations equipped with non-symmetric (k, ®)-Riemann-Liouville (R L) integral conditions. To
prove the existence and uniqueness results, we use the Krasnoselskii and Perov fixed-point theorems
with Lipschitzian matrix in the context of a generalized Banach space (GBS). Moreover, the Ulam—
Hyers (U{H) stability of the solutions is discussed by using the Urs’s method. Finally, an illustrated
example is given to confirm the validity of our results.
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1. Introduction

Fractional differential equations (FDEs) are equations that include fractional-order
derivatives instead of classical integer-order derivatives. There are several types of frac-
tional derivative definitions that have appeared in area of fractional calculus, for example,
the Riemann-Liouville (R£), Hadamard, Grunwald-Letnikov, Caputo, Caputo—Fabrizo,
and Atangana-Baleanu-Caputo derivatives [1-5]. Indeed, FDEs have a large flood of appli-
cations in different scopes such as chemistry, physics, finance, engineering, and infectious
disease. The combination of FDEs and other analytical and numerical methods can be found
in many works such as impulsive FDEs [6,7], implicit hybrid FDEs [8-10], mathematical
modelings with the help of FDEs [11-15], neutral FDEs [16,17], p-Laplacian FDEs [18], vari-
able order time-fractional FDEs [19], random and fuzzy FDEs [20,21], integro-differential
inclusions [22,23], and references therein.

In 2012, R L-fractional integral was extended by Mubben et al. [24] to k-R L-fractional
integral. Later, in 2018, Kwun et al. [25] introduced the (k, ®)-R L definition for these
operators; then, Kucche and Mali presented the most generalized operator named the
(k, @)-Hilfer fractional operator [26], which attracted the attention of many authors such
as Samadi et al. [27] who studied the existence of solutions for the coupled (k, ®)-Hilfer
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nonlinear FDEs with (k, ®)-R L integral conditions. Additionally, Tariboon et al. [28]
employed the Krasnoselskii, Banach, and Leray-Schauder theorems to study the qualitative
properties of (k, ®)-Hilfer FDEs and inclusions with multi-point boundary conditions.
Recently, in [29], Kamsrisuk et al. investigated the existence and uniqueness results of
multi-point non-local (k, ®)-Hilfer FDEs via the fixed-point method.

Over the course of many years, i H stability was utilized to examine the behavior
of solutions for FDEs, and it can be discussed by employing fixed-point methods or by
comparing the distance between the solutions of the primary equation and the so-called
linearization equation, which relates to the primary equation. We also study this notion
for solutions to our proposed system with a special technique. We mention some papers
devoted to the study of UH stability [30-33].

Inspired by the aforementioned works, in this paper, we study the following coupled
fully hybrid system of (k, ®)-Hilfer FDEs:

KHDa AP 41 () = Fr(k, u(k), v(K)), o
{k’HDaz'ﬁ2'®W2(K) — .7:2<K, H(K),V(K)), K€ ] T [a/ b]’ (1)
with (k, ®@)-fractional integrals conditions
o [ (@) @(r) (o)) P!
w(a) =1 = [ e U U UL N
o , _ 7271 1= 17 *1 7
V(@) — g = [ L =BT 1,6, 4(0), v,
where

_ a0~ ) oy = YO =¥(0)
G (x, 100, V(1) G, 1), V(K))”

KHDi.Bi® is the (k, @ )-Hilfer fractional derivative of orders a; € (0,1] and types ; € [0,1],
kIj’fD is the (k, ®)-R L-fractional integrals of order ; > 0, ¢; € Rand G; : [a,b] x R" x
R" — R"™\ {0}, and F;, H; : [a,b] x R" x R" — R", i = 1,2 are continuous functions.

This research is the first paper in which we analyze the uniqueness and existence
properties in connection to solutions of a coupled fully hybrid system of (k, ®)-Hilfer-
fractional BVPs of FDEs with newly defined (k, ®)-Hilfer-fractional operators. In view of
the nature of these operators, our results will cover all of the previous studies in special
cases. It is sufficient that we take k = 1 and ®(x) = «; then, we obtain the classical standard
Hilfer fractional derivative. The main technique of this paper for the existence property is
to use of Lipschitzian matrices and the Perov theorem. Additionally, another contribution
of this paper is that the criterion of Urs is used for studying the U/ stability in combination
with (k, ®)-Hilfer-fractional operators. These items constitute the novelty of this paper in
comparison to other studies.

This paper is organized as follows: several definitions and preliminaries in connection
to these new operators are given in Section 2. The existence and uniqueness of the solutions
of the (k, ®)-Hilfer-fractional fully hybrid BVPs of FDEs (1)-(2) are proved in GBS by
employing fixed-point theorem techniques in Section 3. In addition, the {H stability of the
solution is established. In Section 4, an application of the main results is illustrated and
examined by an example.

w1

2. Background Notions

In this section, we present some notions and definitions that will be used to investigate
the desired results.
Assume that C([a,b],R") is used for the description of the Banach space of each

continuous function  : [4,b] — R" with the norm ||u|| = sup [|u(k)||. Let w, v € R" with
KE[a,b]
w=(p, 2, -, n),v=(v1,Vv2,...,vs). Then, p < vmeans y; < v;,i =1,...,n, and if
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ceR, thenu < cmeansy; <c,i=1,...,n Set R = {u eR": w, € Ry,i= 1,...,71}.
Moreover, we take

Il = ([l szl - [1al),
max(p, v) = (max(p, vi), max(pp, va),. .., max(py, vy)).

Definition 1 ([25]). Consider a (increasing) function ® from [a,b] into R s.t. ' (k) # 0, Vk €
[a,b]. Then, the (k, ®)-R L-fractional integral of order « > 0 for the function b € L'([a, b], R) is

“LEPh() = krkl(ﬂé) /aK @' (1) (D(x) — D(u))k~'h(u)du, k >0,

where the k-Gamma function I'y is formulated by
o] Sk
Ti(z) = / s*lem¥ds,z € C,R(z) >0,
0

with some properties such as

14

. o L |
lim I () = [(w), Ti() = k1T (

) and T (e + k) = al' ().

Definition 2 ([26]). Suppose that k € RT = (0,00),® € C"([a,b],R), ®' (k) # 0,Vk € [a,]].
Then, the (k, ®)-Hilfer derivative of order « € (n — 1, n] with the type B € [0, 1] for the function
h € C"([a,b],R) is given as

kHw, ;@ _ kyB(nk—a);® k i n(l*ﬂ)(ﬂk*ﬂé)}q) _ [
(k) = as <<1>/(K)dK lox ), =[]

Remark 1. Forn—1 < e—kk <nst f€(n—1nlandp € [0,1]s.t. O = « + p(nk — «) and
B(nk — a) = 6 — a, the (k, ®)-Hilfer fractional derivative can be reformultaed in the sense of
(k, @)-R L-fractional derivative as the following form:

K H 1, B: woewo Kk d\ kg0 k1B —a:® (K RL0 D
D) = ) M0 = S (SR ),

In the next lemmas, we provide some properties of (k, ®)-fractional operators.

Lemma 1 ([26]). Let h € C"([a,b],R). With the same assumptions given in the above remark,

we have 0b
kg (k,RLDGk;CDb) (k) = ki@ (k,HDa,ﬁ;‘Ph) (x).

Lemma 2 ([26]). For k > 0and with the above assumptions, let b € C"([a, b], R) and KI2X~%%p ¢
C"([a, b],R). Then,

R R e (C e M O]

j=1

z=a

Lemma 3 ([26]). Let ¢,k € R* andn € Rs.t. § > —1. We have

(i) MR (D(k) — D(a))F = m@m —®(a))"F".
(ii) D (@(x) — () = m@w — ®(a))"F".
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Definition 3 ([34]). A real square matrix A convergent to zero iff its spectral radius p(A) is precise
less than 1; this means that |A| < 1 with det(A — Al) = 0 for each A € C and I represents the
unit matrix of Ay (R).

Theorem 1 ([34]). Let A be a non-negative square matrix. Then, the following items are equivalent:
(i) Asn — oo, A" — 0;

(ii) The spectral radius p(A) < 1;

(iii) (I—A) is non-singularand (1 —A) ' =T+ A+ + A" +..-;

(iv) The matrices T — A and (1 — A)~! are non-singular and non-negative, respectively.

Definition 4 ([35,36]). Let the generalized metric space be denoted by (E,d). If there is a matrix

A converging to zero, then the mapping I1: E — E is contractive, where
Yu,ver, d(II(n),I1(v)) < Ad(w,v).
Now, we recall two fixed-point theorems that will be used in the next sections.

Theorem 2 ([35,37]). Let complete generalized metric space be (2, d). If the mapping I1: E — E
is a contractive with Lipschitz’s matrix A, then 11 possesses one and only one fixed point yy, and
Yu € E, we obtain

VkeN, d(IT(w), no) < AX(I—A)"'d(u, I1(w)).

Theorem 3 ([38]). Assume that ¥ be a convex, closed, non-empty subset of a GBS E. Let I and
Y map ¥ into E such that

(i) TIu+YveY,Vuvevy,;
(ii)  The mapping 11 is continuous and compact;
(iii) The mapping Y is an A-contraction.

Then, ITx + Yx = x possesses at least one solution on Y.

3. Qualitative Results

Throughout this section, we prove the existence, uniqueness, and UH stability of
solutions for the coupled fully hybrid system of (k, ®)-Hilfer BVPs (1)—(2).

Now, in order to establish qualitative results of the mentioned system (1)—(2), we need
to provide the following lemma. In this lemma, we derive the main structure of solution in
form of an integral equation.

Lemma 4. If the solution of the fully hybrid (k, ®)—Hilfer BVP given by
KHD®E® (k) = F(k,u(k)), «€J:=[a,b],
k(@) = &1 =K H(T u(v), B<ac(01)TE], Gk ule)

exists, then it is equivalent to the integral equation

TP/ (o ) — d(0)) !
w) =+ [ ”‘I’S(F)k(&)q’( DY 34 (6, u(0))do

'Kk @ (o K) — o -1
#0605 u(x) [ DO F(o)do, @
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Proof. Let p(k) be a solution of the problem (3). Integrating on (3) and then, using the
properties of the fractional operators, we obtain

x d'(o K) — ®(c))F !
() = () + Gk, u()) [ N =L (6, (o)

a

and (4) can be obtained. Secondly, let i be a solution of the integral Equation (4). Then,

(6) = ) = Gk, W) M F (o, (o))do, G M2 (0, (o),

and

KHoupe LK) — 1) gpteaye( k  d \ 1 -p)k-a)je 1(k) — n(a)
D G onte) (¢'<K> dK) far G (x u(x))

— (i 5t M (0 (@) = Fa, (o))

This completes the proof. [

In view of Lemma 4, we need to present the following lemma, which plays a key role
in the main theorems. In fact, this lemma shows the solution of the given system via two
integral equations.

Lemma 5. Let a; € (0,1] be fixed, 6;; = a; + Bi(k — a;) witha;,k € RT = (0,00),0; <
k,and B; € [0,1],and G; € C(J x R" x R",R"\{0}), F;, H; € CJ x R" x R",R"), i=1,2.
Then, the solution of the coupled fully hybrid system of (k, ®)—Hilfer BVPs (1)—~(2) is equivalent to
the following integral equations:

o

(o ) — ®(0))F !
w) =+ [N LDy, ,14(0), v(o)o

K ® (o K) — d(0)) T 1
461009, v(w) [ LI LD 7 (0, 0), v(@),
, KEIJ.

T /0- ) — o 57271
v(k) = b2 +/a il )(q)(klz*i(&z;p( ) Ha (o, u(0),v(0))do

F2(o,1(0),v(0))do,

* 9 K) — 2-1
+gz<K,u(K),v(K))./u <1>(<r)(d>§cr)k(a2q)>(g))

Now, the product space X := C(J,R") x C(J,R") is a GBS with the following norm:

= ().

Additionally, let the operator T = (T4, T2): X — X define

T(H/V) = (Tl(u/V)ITZ(H/V))I (5)

with

P (o 1) — ®(0 571_1
Taam)(6) = o+ [ TLELEEVZDE 306,400, (@) ©

K ®(o K) — (o)) T 1
#0100, v()) [T LD 7 0, 0), v(@) o,

a
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and

(o —d(o 572_1
(T2l () = -+ [ N DL 34,6, 1(0), v(0)0 )

< @ (0)(D(k) — P(0)) F 1
+Galiut,v00) [ HHLE BT (6,4 0), () do.

a

For computational convenience, we introduce the following notations:

Fimax :=sup || Fi(«,0,0)||, Gimax :=sup ||Gi(k,0,0)|,

KEJ KEJ
(@(b) — @(a)

Tp(ai +k) 7

.Ai - Mgi BZL]:I, Bi = Mgl .Blﬁ]:l,

Al = Bl =

Let us list the following hypotheses:

(HPy) Fori = 1,2, the functions F; and G; are bounded on the J x R" x R" subject to
bounds Mz, and Mg, respectively.
(HP,) Lz, > 0and EZI- >0, Z; = (F;,G;, Hi), i = 1,2 exist, where

| Fi(x, w1, vi) — Fi(k, u2,v2)| < Lz |lwg — w2l + Ly [ve — val|,
[1Gi(x, 1, v1) — Gi(k, 12, v2)| < Lg,[[m1 — w2l + Lg,[[v1 — val|,

[ Hi(x, 11, v1) = Hi(k, 12, v2) | < Ly llwg — wall 4+ Ly [ v — vz,

for all k € J and each wy, vy, 1p, vo € R™.
(HP3) Ai/ Ei < 1, where

A; = [AiLy, +B;(Lg My, + LEMg,)],
B = (A, + BulLgMs, + LM

Next, we are in a position to investigate and prove the uniqueness result by using
Perov’s fixed-point theorem.

Theorem 4. Let the hypotheses (HP1)—(HP3) hold. Then, the coupled fully hybrid system of
(k, ®)—Hilfer BVPs (1)—(2) possesses one and only one solution.

Proof. In order to show that T has exactly one fixed point, we will use Perov’s fixed-point

theorem. Indeed, we prove that the mapping T is an Apap-contraction on X. For given
(11, v1), (12, v2) € X, and «k € J, using (HP;) and (HP;), we can obtain

| (T (11, v1)) () = (Tr(k2,v2)) (x) ||

1 P (o — o (57171
< @' ><<1><;i(51<)1>< ) [#1(0, 11(0),V1(0) — Hi (0, 1a(), v2(0)) |do

/K ®'(0)(P(k) — P(0)) T !
a kT (1)

+ |61k, 11 (<), v1 ()

X ).7-"1(6, w (0),vi(0)) — Fi(o, ma(0), va(o))|do
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[ ' (0) (@(k) — P(0)) T !
a kT (1)

1610 1100, 1 (0)) = G (1,12 (4), 2 ()

X ’]-'1(0, uz(c),vz(c))‘dc

é

< [ 2@ () 7!

(Lo, [In1 (0) = m2(0) | + Ly, [[va (o) — v2(0) || )do

- kT (61)
kP (o K) — ®(0)) T _
Mg, [N DL (11 s 0) — wa(0)] + L [va (o)~ va(o) o
kP (o K)— ®(o)) T
+ (L1 = k2] + Ly () = va( ) [~ AL DTy o

(@(71) — D(a) *

< L — L -

(D(b) — D(a) T

a _
L — L —
+Mg] rk(“l +k) ( f]””l H2|| + ]:1||V1 VZH)
3|
(O(b) —@(a))* _
M L - L —
+Mr Ti(ag + k) ( 91||”1 ol + 91HV1 VZH)

< Aq(Lyg, I — wall + Loy [[ve — va2|)
+ Mg, By (Lr, [ — w2l + Lz v — val])
+ Mz B (Lg, [ — 12| +Lg, v — vall).

Hence,
T4 (11, v1) = T1(p, vo2) || < [AlLHl + By (Lg, M7, +Lf1Mg1)} 11 — w2l
+ |1y, +B1(Lg Mg +LrMg,) | [vi = va |
1= Aqflm — ol + Billvi — v2.-
By the same technique, we can also obtain

| T2(11,v1) = T2(pa, v2) || < [AzLHZ + By (Lg,M 7, + szMgz)} |11 — w2
+ [Az]:%z + B, (E(‘;ZM]:2 + E]:ZMQZ):| ||V1 — V2||

= Mgl — ol + Baljvy — val|.
This implies that
T (11, v1) = T(u2,v2) || < Amarll(ne,v1) — (12, v2)[Ix,

where _ _
Ay B
Apar = ( A; ]E%; ) 8)
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According to (HP3), we have A’fM ar —> 0asn — oo Thus, T is contractive, and due to
Perov’s theorem, T has exactly one fixed point. Thus, the coupled fully hybrid system of
(k, ®)-Hilfer BVPs (1)—(2) possesses a unique solution in X. [

The following result is achieved based on the Krasnoselskii’s Theorem 3. In fact, here
we prove the existence result with the help of the Krasnoselskii’s fixed-point theorem in a
generalized Banach space.

Theorem 5. Let (HPy) and (HP,) hold. Also, if p(Dyiat), p(Byat + Dyvar) < 1, such that

A B ALy, ALy,
Bmar = ( A; B; >, and Dyt = < Aol AL ,
H, H,

then, the coupled fully hybrid system of (k, ®)-Hilfer BVPs (1)—(2) admits at least one solution.

Proof. In order to use Theorem (3), we need to take a set Qg C Xsuch that Qg is closed,
convex, bounded, and defined as

Q= {(v) eX:|[(mV)llx <¢}

with & := (&1,&) € ]R%r such that

&1 = p1My + p2 My,
&2 = p3My + paMp,

where My, My, and p;,i = 1,4 are non-negative real numbers that will be specified later.
Now, consider the mappings U = (Uy,Uz) and V = (V1,V3) on Q¢ as

K @ (0)(P(x) — B(0)) F !

Ui (1, v)(K) = Gi, 1), ¥(6)) | o Fi(o,u(0),¥(0))do,
kP (o K) — ®(0)) F 1
a1 %) (%) = Galr (), v(x)) [ LA RENT 7 6,000, v(@) o,

and

(1)) — D(0)) !
kT (61)

Vi) = oy + [ TN H1(0,1(0), v(0))do,

O (1) — () !
kT (62)

Va(p, v) (k) = dg + /;z @'(o)( Hy (0, u(c), v(0))do.

It is obvious that both U and V are well-defined. Moreover, by Lemma 5 the mappings
form the system (5) as

Tk, v) == (Ui, v), U2(, v)) + (Vi(, v), Va(, v))- ©)

Our purpose is to confirm this fact that U and V fulfill all properties of Theorem 3. For
better clarity, the proof is broken down into three steps.

Step 1: U(w, v) +V(i,v) € Qg V (1, v), (1,7V) € Qg
In fact, from (HP3), for (1, v), (i, V) € X, Vk € J, we can obtain

101 (V) ()

< [|G1(k, u(x), v(x))||
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<[ @' (0) (D(x) — P(0)) T !

KTy (a1) (IF1(o, w(), v(0)) = Fi(0,0,0) ||+ F1(0,0,0)| ) do

< Mg/ @' (0)(P(x) — P(0))F !

) (LA + LA [MO)1]) + Fimax|do

< Mg, By | (L [l + L, [1V]) + Fr.ma
< Mg, BiLx, [[p] + Mg, BiLx, [[v]| + Mg, .B1 71 max-
Hence,
101 (ke VI < Ar[[ul] + By[[v]| + Ci. (10)
By similar procedure, we obtain
U2 (kW) < Azl[ull + Bz V][ + Ca. (11)

Thus, inequalities (10) and (11) imply that
_ (6w [ Ci
Uk, V)| = ( [Ua (i, v) | < BumaT V] + C, )’ (12)
_ (A B
Byvat = < A, By )
’) (HFLH) (¢1)
) =P sl ) e ) (13

D B AlLHi Aliq.[].
VAT ALy Aoy, )

where

In a similar way, we obtain

v sle= (|

where

Recombine (12) and (13), which implies that

_ ¥ C
109k < 2 ) 5 1)+ (&580):

Therefore, we check for & = (&1, &) € R? such that U(w, v) 4+ V(i, ¥) € Q. Regard-
ing this, in view of (14), it is sufficient to verify that

&1 M, > ( &1 >
C < ,
MM( £2>+(M2 —\ &
where Cyiar = ByaT + DyviaT, and

(i)-(2:)
My Co+do )7

( ﬁ; > < (H—CMM)( Z ) (15)

Equivalently,
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Since the spectral radius of Cypa is <1, according to Theorem 1, we have the matrix
(I — Cpgar) is non-singular and (I — Cygar) ~! has positive elements. So, (15) is equal to

< 2 ) > (]I—AMM)_1< ZZt/I/I; )

In addition, if we take

P3 P4

(I— Apar) ' = ( P12 )

thus, we find
&1 = p1My + p2 My,
& 2 p3My + paMp.

Therefore, G(i, v) +H(f, v) € Q.

Step 2: The mapping V is D5 r-contraction on Q.
Indeed, Vk € J and for any (i1, v1), (12, v2) € Qg, by a similar procedure in the proof of
Theorem 4, it is not difficult to verify that

HV(M,W) —V(Hzrvz)Hx,% < DMATH(M,W) - (H2,V2)||X~

Since the spectral radius of Dy is <1, the mapping V is an Dy r-contraction on Q.

Step 3: The mapping U is continuous and compact.
By the continuity of G; and G,, we deduce that U is continuous. Moreover, we show that
U is uniformly bounded on Q¢. From (12), and V(u, v) € Qg, we find that

Uy (1, v)| > ( &1 ) ( C1 >
Uy, = H 1 <B .
H (. V)Hx < HUz(HIV)H = BMAT| £ + C, <
This means that the mapping U is uniformly bounded on Q.

At the last step, we are going to prove that U(Qz) is equicontinuous. From the
hypotheses (HP) and (HP), for (1, v) € Qg, and k; < k3 for any ky, kp € ], we obtain

U1 (1, v)(x2) = Up(p, v) (k1)

G (k2 w2, () [ LD SNE 5 ) ao
~Galra lr) v() [ ‘I"(“)(‘D(,f;i(mjp(“”?1f1<o, 4(0),¥(0))do
G (k2 w2 () [ LD SEN T 50) ydo
=Gy ) ) [ DRSO 5 ) o

2 @' (o k) — ()T
+ G (s m(s), () [ ) = D(0)

a KTy (a7) Fi(o,u(0),v(0))do
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K2 @' (o kr) — Do) F 1
= Gilsa ) () [ MBI 7 (@), v(o)do

<|G1(k2, u(k2), v(k2)) — Gi(ky, m(ky), v(ky))

./a'KZ CID/(G)(‘D(;I%Z(;:)D(G 7] 1“/71 (0, u(o) )dcr—l— ’gl K, (K1), (Kl))‘
x (o) [(<D(Kz) —®(0)) T — (D(xy) — CI)(o'))aTl_l}
/‘1 kT (1) ‘}—1 (0, 1(0) ‘do

=|G1(k2, 1(k2), v(k2)) — G1(Kk1, 1(x1), V(K1) — Gi(k1, p(k2), v(K2))

K2 @/ (¢ k) — D(0)) T
00 uta) v(sa)) [ NI 0, 0), w(o) o

#6106 ) v | T Fi(o,u(0)

<|G1(xo, w(k2), v(k2)) — G1(Kk1, 1(K2), v(K2))

k2 @/ (0)(P(Kky) — D(0)) F L
/u k;k(“l) ‘fl (07 (o)

K2 (o Ky) — ®(o 71*1
161 (k1 (), ¥(52) = G, ) vl | [ LU=z 400

I ¥/(0) [(®(x2) = ©(0)) ¥ ! = (@ (k1) — (o))

+1G1(x 1lk1), v(k1)) kT (a1)

k2 @/ (0)(D(kp) — B(0)) F !
<e,(0) | ) [ Fi(0,1(0), ¥(0))|do

a

+ (Lg, llu(x2) = n(ka) [l + Lg, [[v(x2) = v(x1)|)

. /u“q"“’)(q’(;;g(;l‘f(“a [Fi(0,1(0),v(x))|do

+ [ (Lo Ikl + Lo, [¥ (1)) + G1.mn

[ @(0)[((x2) = @(@)) 1 = ((x1) = () ]

(D (k2) — B(0)) T

_ (@
My, +6,(5)(Lg, + T
T MATa0)(Lg +Lg)

<01(9)

+ [ (Lol + Ly V1) + Gr.max | M,
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« @'(0) [(CD(Kz) - CID((I))'%*1 — (P(xq) — @(0))"%,1} )
/a KLy (a1)

Sel(J)BlM]ﬁ + 91 (5) (Lg1 + i‘gl)BlM]‘-l + [(Lgl HH” + Egl ”V”) + glAmax:|

M7,

14 o
| ! u

Toa+h) [2(<D(Kz) —®(k)) F + ’(d>(|<2) —®(a))F — (@(k;) — D(a))

}

= B+ B [2P(k2) — (k1) T+ [(@(12) = D) T~ (@(x1) — Ba) ¥

B

Similarly,

a-‘,\?

[U2(1, ) (k2) = Ua(, v) (k1) || < B2+ Az [Z(CD(KZ) —@(x1))

“2 “2

+|(@(k2) = ®()) = (@(k1) = ®(a)) 7 |].

Therefore,

U1 (1, v) (t2) = Ur (g, v) (1) |
U1, v)(t2) — U, v) (11| :=

U2, v)(t2) — U, v) (t1) |

B+ 81 [2((k2) = B(k1) ¥ + |(@(k2) — B(@)) # — (B(x1) — (@) ¥

]
]

Thus, we deduce that T(Q¢) is equicontinuous. Due to Arzela-Ascoli’s theorem,
we conclude that the mapping U is compact. Hence, the requirements of Theorem 3 are
fulfilled. Thus, in view of the Krasnoselskii’s FPT, we derive that the mapping T =U+V
defined by (9) possesses at least one fixed point (1, v) € Qg which is the solution of the
coupled fully hybrid system of (k, ®)-Hilfer BVPs (1)-(2). O

= ay

B2+ 82 [2(®(k2) = (k1)) ¥ + |(@(k2) — ()

x-‘,f?

a

— (®(x1) — P(a)) ¥

Now, we end this section by discussing the i/ stability of the coupled fully hybrid

system of (k, ®)-Hilfer BVPs (1)-(2) by utilizing its solution in the sense of integral form
given as

w(t) = Ti(w, v)(7),  v(1) = Ta(, v)(T),
such that T and T, are given in (6) and (7).
Let us define the following mappings S1,S; : X — C(J,R) as:

{k,HDoq,ﬁ]ﬁbwl(K) — Fi(k, ii(k),¥(k)) = Sy (1, ¥)(k),

Ke€J.
KD P22y (k) — Fa(x, k), ¥(K)) = S2 (R, ¥) (x),
In addition, we assume that the next inequalities
[S1(, ) (D] < er,
TE], (16)
[S2(, ) (1) || < €2,

for some €1, €, > 0 are to be held.
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Definition 5 ([39]). The coupled fully hybrid system of (k, ®)—Hilfer BVPs (1)—(2) is UH-stable
if there are constants w; > 0,1 = 1,4 such that Vey,e1 > 0 and for all solutions (i, v) € X of
inequality (16), 3 a solution (u,v) € X of (1)—~(2) such that

{Hﬁ(”f) - H(T)H < wi€1 + waey,
TE].

|9(t) = v(7)|| < wser + waer,

In this part of the paper, we aim to prove that the given coupled fully hybrid system
(1)-(2) is U H-stable. To do this, we use Urs’s technique.

Theorem 6. Consider the hypotheses of Theorem 4 to be held. Then, the coupled fully hybrid system
of (k, ®)—Hilfer BVPs (1)—~(2) is UH-stable.

Proof. Let (p, v) € X be the solution of the coupled fully hybrid system of (k, ®)-Hilfer
BVPs (1)-(2) satisfying (6) and (7). Assume that (i, ¥) is any solution verifying (16):

{k,HDler,qu)zT)l(K) = F1(k, fi(k), ¥(x)) + S1(fK, ¥)(k),
KHDR 2205 (k) = Fa(, 1K), (x)) + Sa(f, 9) ().

TE].

So,
kP (o K) — d(0)) T
(%) =T (1, 9)(6) + 61 0 1(x),3() [ A= LEDE g, (5, 5)(a)as, (17
and
xd'(o K) — ®(0)) F 1
(1) =Tal 9) (1) + Ga(, (), 3(x) [ NS 5 9) 0)as. 19
Now, (17) and (18) give
= TR 0 <61 (6 R0, 7)) | [ (o kn“i“”k_u&rwxwmm
< Mg, Byey, (19)
and
/ o “7271
= Ta(p, %)W) <20 n(0), 50 | - AL 1, 9)(0) s
< Mg2B2€2. (20)

Thus, by (H2) and inequalities (19) and (20), we obtain
[R(k) = w(K)]| = [[R(k) = T1(® ¥) (k) + T1 (R, ¥) (k) — u(K)|]
< [[(e) = Ta (8 %) ()| + [ T2 %) () = T1 () (<) |
< Mg, Bier + (Aq]|— | +B1[|v — v])).
Hence, we obtain

It —ull < Mg, Brer + (Aqllft— wfl + By [|v — ). (21)
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Similarly, we have
19 = VIl < Mg, Baes + (Agl|ft — u| + Bal|v — v]). (22)

Inequalities (21) and(22) can be rewritten in a matrix form as

iL— Mg Be
I—A HH HH ><( G1121€1 >, 23
( MM)( [v—=vl ) = \ Mg,Bse> *)
where Appar is the matrix given by (8). Since the spectral radius of Ayat is < 1, by

Theorem 1, we deduce that (I — Apga) is non-singular and (I — Apar) ! possesses posi-
tive elements. Hence, (23) is equivalent to the form

I — ] ) 1( Mg, B1eq )
3 <(I-A 1 ,
( lv—v] ) S T~ Auar) Mg, Bses
which yields that
e
— 1
{llu w| < p1Mg, Bie; + paMg, Boea,

[V = || < p3sMg,Bie1 + psMg,Boe,

where p;,i = 1,4 are the elements of (I — Aygar)~!. Consequently, the coupled fully hybrid
system of (k, ®)-Hilfer BVPs (1)—(2) is i H-stable. [I

4. Applications

We provide an example in this part to investigate and guarantee the validity of
the results.

Example 1. Consider the following coupled fully hybrid system of (k, ®)-Hilfer BV Ps:

%/HD%'%'q)wl(K) = F1(k, n(k),v(k)), e
{%IHD§ 2w (k) = Fa(k, u(k), v(x)), el=01 @)
with (k, ®)—fractional integrals conditions
19
_ [} () @(r) —(0))?
n(0) — —/0 %F%(l) Hi(o,u(o),v(o))do,
| (e} (r) o)} e ®
e o T) — 0))2
v(0) — —/0 %F%(%) H1(o,u(0),v(0))do,
where
wr — <) —1(0) 0, — V(€)= ¥(0)
PTGl V() T Galou(k), v(x)

Here, a1 = 3,00 = 3, p1 =3 o= k=36 =16=31=3n=10¢ =
1,y =2,®(x) = k2, ] := [0,1], and the functions

i ol e .

1(K, H(K)/V(K)) 100(1+ ’U(K>|) + 49 Sln(V(K)) +3k;
Falky (), ¥(K0) = fooe 7 S0 4 cos(v(x);

P (<) (09) = o am(u00) + g O e
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_ 1l
3vk+45+|u(k)| 25+

1,—«
Gi(k, u(k),v(x)) = cos‘1<|”('<)) 43¢

Ha (K, 1(K), V()  cos(x)[V3(x)l;

&) TRl
sin([W(k)[) | . q/x
G (), v(x)) = o5 sin (5 cos (V1)) +4x

Obviously, the functions F;, H;, G;, (i = 1,2) are continuous. Furthermore, for all k € ]
and each 1, vy, pp, vo € R", we have (HP;) satisfied as follows:

| Fi(k, w1, v1) = Fi(k, u2,v2)| < Lgllw — ol + L llve — v,

| Hi(x, w1, v1) — Hi(k, 12, v2)| < Ly, lug — wa | 4 Ly, [[ve — v2l|,
1Gi(k, u1,v1) = Gi(k, 12, v2)| < Lg, |lu — wa|| +Lg, [|[vi — v2l|,

1 1 - 1 - 1 1 1 - 1 - 1
Where L]:l == WIL]_—Z - E,L]_'l - E,L}'z - 5, L'Hl - %,L’Hz = E,L’Hl - §,L’H2 = g,
1 - 1 - 1
Lgl ,Lg2 - g,Lgl ,Lg2 E

Additionally, (HP; ) is satisfied for

14849 19 7 5
= —, = —, M = —, M = -,
P17 4900 2 T 90" T T 127 T g

and we can calculate that
Ap = 2.12769, A, = 1.75842, B, = 0.0246914, B, = 0.125.
Thus, we obtain
Ay = [A1Ly, +B1(Lg,Mp, +LrMg, )] < 0.125235,

Ay = [AgLy, + By (Lg,M£, + Lr,Mg,)] < 0.312283,
By = [A1Ly, + By (Lg, Mz, +LrMg, )] < 0261646,
]BZ = [AZEHZ =+ Bz (]:,gzM]:Z + I:]:ZMQZ)] < 0.0951053.

Hence, all of the conditions of Theorem 4 are satisfied. Therefore, the coupled fully
hybrid system of (k, ®)-Hilfer BVPs (24)—(25) has one and only one solution. Consequently,
by referring to Theorem 6, we easily conclude that the solution is /H-stable.

5. Conclusions

This research paper was devoted to studying a coupled fully hybrid system of
quadratic differential equations in the sense of the (k, ®)-Hilfer fractional derivative
with subject to the (k, ®)-R L fractional integral conditions. The existence and uniqueness
of solutions for such a system were established by utilizing the Perov and Krasnoselskii
fixed-point theorems in GBS. Moreover, UH stability was proved by Urs’s technique.
Finally, an example was provided for checking the validity of our results. For the next
research projects, we would like to extend our methods and techniques in the context of
post-quantum calculus. One can combine these methods with numerical techniques for
studying the dynamics of the solutions based on (p, g)-operators.
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