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Abstract: Studies of brain network organisation have swiftly adopted graph theory-based quantitative
analysis of complicated networks. Small-world topology, densely connected hubs, and modularity
characterise the brain’s structural and functional systems. Many measures quantify graph topology.
It has not yet been determined which measurements are most appropriate for brain network analysis.
This work introduces a new parameter applicable to brain network analysis. This parameter may
help in the identification of symmetry and the study of symmetry breakdown in the brain. This
is important because decreased symmetry in the brain is associated with a decreased chance of
developing neurodevelopmental and psychiatric disorders. This work is to study brain networks
using maximal independent set-based topological indices. These indices seem to depict significant
properties of brain networks, such as clustering, small-worldness, etc. One new parameter introduced
in this paper for brain network analysis depends on Zagreb topological indices and independence
degree. This parameter is useful for analyzing clusters, rich clubs, small-worldness, and connectivity
in modules.

Keywords: brain network; topological indices; independence degree; independent Zagreb indices;
connectedness; clustering coefficient; rich club; small-world property

1. Introduction

Graph theory is a branch of mathematics that deals with networks made up of points
(vertices) connected by lines (edges). In light of graph theory, brain networks are com-
posed of vertices and edges, where vertices represent neurons or brain regions, and edges
represent the physical or functional connections between vertices.

A brain network can be grouped into different communities or modules. A module is
a collection of nodes with intense interconnectivity within clusters but sparse (incomplete)
interconnectivity between clusters. A cluster is made up of a collection of nodes with
connected neighbours [1–3]. Let Gi be the subgraph of G that is induced by the neigh-
bours of each vertex i, and let G′i be the subgraph of G that is induced by both vertex i
and its neighbours. The clustering coefficient was defined by Watts and Strogatz to be
CC(G) = 1/n ∑i|E(Gi)|/(V(G′i )

2 ) where |V(Gi)| is the size of the vertex set of the graph Gi,
and |E(Gi)| is the size of the edge set of the graph Gi [4].

Some nodes within modules are referred to as provincial hubs if they are significant
within their module but not necessarily for the overall network (local hubs). Some nodes,
however, play a vital role in the transmission of information from one module to another,
despite their lesser relevance within their own module. These nodes are known as connector
hubs [5].

A node is determined to be a hub based on the following criteria: (1) degree and
strength (local), (2) global centrality (betweenness or closeness), (3) community structure
participation, and (4) vulnerability. Hubs and rich clubs serve crucial roles in global
communication by facilitating the integration of information across multiple brain systems
and providing the shortest, most efficient channels [6].
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The hubs that are tied together form rich clubs. In other words, it uses a very small
fraction of the brain’s volume and wire material to transport information very quickly
(nodes). Rich clubs allow you to connect many modules or find the shortest path inside a
module. Hence, damage to the rich club has a greater impact on the entire brain network
than damage to any other area. Rich club hub connections are topologically short but
physically lengthy, with only one or two intermediate nodes connecting any two nodes
together. Rich clubs’ primary advantage is that they enable quicker and less obtrusive
transmission between neurons.

Independent sets are an important topic in graph theory. An independent set I of
a graph G is a set of vertices that consists of non-adjacent vertices of G. A maximal
independent set is an independent set that is not a subset of any other independent set.
Let G = (V, E) be a graph. A complement G of a graph G is a graph with the same set
of vertices V and an edge between a pair if and only if there is no edge between them in
G [7]. There is work that has gained a lot of attention connecting independent numbers
and topological indices [8].

The topological indices of a graph are numbers that represent structural information
about the graph. Topological indices have received much attention and acceptance in the
fields of chemical graph theory, molecular topology, and mathematical chemistry. There are
a lot of topological indices based on degree, distance, eccentricity, etc. Numerous chemical
indices, such as Zagreb indices, Wiener index, etc., are invented in theoretical chemistry
and compute many degree-based topological indices of some derived networks, which
have valuable applications in drug storage and system administration [9].

The Wiener index W(G) is an old index and the first topological index used in chemistry [10].
It is a distance-based topological index introduced in 1947 by Chemist Wiener. It is defined
as the sum of distances between all the vertices of G; for further information, see [11].
Among all topological indices, degree-based topological indices have the greatest signif-
icance. A large number of degree-based graph invariants are studied in both the math-
ematical and chemistry literature [12–14], but among them, Zagreb indices are widely
used. The Zagreb indices, M1(G) and M2(G) were introduced more than forty years
ago [15,16] and are based on vertex degree. They are defined as, M1(G) = ∑v∈V(G) d2(v) =
∑uv∈E(G)[d(u) + d(v)], M2(G) = ∑uv∈E(G) d(u)d(v), where d(v) is the degree of the vertex
v in G. More information on Zagreb indices is provided in [17,18], and Zagreb co-indices
are defined in [19] as M1(G) = ∑[d(u) + d(v)] and M2(G) = ∑ d(u)d(v), where uv is not
an edge in E(G).

Random networks evolved from the Erdős–Rényi model have the property of a min-
imum average path length between every pair of nodes. This property is called small-
worldness. This concept is popularized by terms such as “six degrees of separation”
between any two individuals. Social networks, brain networks, the connectivity of the
Internet, and gene networks all exhibit small-world network characteristics [20].

Recent extensive neuroimaging studies suggest anatomical differences between the
left and right hemispheres of the human brain in most regions. Several studies have
found evidence of hemispheric structural asymmetry in both cortical and subcortical areas.
It is interesting to note that various neurodevelopmental and psychiatric illnesses have
been associated with altered functional hemisphere asymmetries [21]. In this light, the
fact that many neurodevelopmental and psychiatric disorders have been associated with
reduced brain asymmetries—such as increased brain symmetry—is very intriguing [21,22].
Complex biological structures, such as the brain, may not always benefit from symmetry
since it would lead to difficulties with multitasking, excessive energy use, and bilateral
action control. Since all brain systems must eventually evolve, the breakdown of symmetry
is a crucial step.
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Dementia is a level of cognitive decline that affects a person’s ability to think, remem-
ber, and reason in everyday activities. It is a symptom of Alzheimer’s disease. Some people
with dementia lose their control over emotions, and it leads to a personality change in that
individual. The diagnosis of this starts with the progressive decline in memory, where
memory is connected with connections in the brain network. Therefore, connections are of
much importance in the diagnosis and treatment of dementia.

The primary objective of this study is to offer new topological indices for brain network
analysis that are based on the maximal independent set. Since the strength of these indices
depends on the connections between the vertices inside each module, it is intended that
they be built in a way that allows one to learn about each module and how strong it is. This
study offers a new parameter based on the total number of maximum independent sets
T(G) and the new independent topological index IM1(G). The connectedness of this new
parameter, IM1(G)/T(G), is inversely correlated, and 1 ≤ IM1(G)/T(G) ≤ nT(G). If the
parameter value is close to its lower bound, this implies that the module is strongly related.

This study also introduces a brand-new parameter, ρ, where ρ = connectedness −
[IM1(G)/T(G)]. A module is strong in terms of connectivity if its value is higher than
zero. This parameter can be useful in the research of brain disease and brain analysis
since the loss of connections between vertices is a common cause of brain diseases, such
as Alzheimer’s.

Topological indices are mainly used in chemical graph theory. This work can help
researchers recognize the importance of topological indices for brain network analysis.
Since it is currently unknown which measurements are optimal for brain network analysis,
parameter studies are pertinent. This paper, therefore, sheds light on the fact that topolog-
ical indices can be effectively used on network structure rather than chemical structure.
Further, it is a simple, non-invasive, and cost-effective procedure. Topological indices are
invariant with respect to isomorphism. Therefore, the capturing of images will not affect
the detection of dementia much.

In this paper, the independence of each vertex of a graph and its basic properties are
defined in the first section. In the second section, independent Zagreb topological indices
are introduced, and the indices of some families of small-world graphs are calculated. The
third section discusses the join and corona products of graphs, and the final section contains
the results and discusses their application.

2. Independence Degree of a Vertex

In this chapter, the independence degree of the vertex, v, is defined, and the basic
properties of this degree are studied.

Definition 1. Let G be a connected graph and v ∈ G. The number of maximal independent sets of
G containing v is called the independence degree of v. It is denoted as dI(v).

Observation 1. 1 ≤ dI(v) ≤ T(G), where T(G) is the total number of maximal independent sets.

Proposition 1. Let G be a star graph Sn with n + 1 vertices, then dIG
(v) = dG(v) and T(G) = n.

Proof. Since G ∼= Sn, G is a disconnected graph with a complete graph Kn and an isolated
vertex. Therefore, T(G) = n. Further, every vertex in Kn has dI(v) = 1, and an isolated
vertex has dI(v) = n.

Corollary 1. If G ∼= K, then dIG (v) = dIG
(v) and T(G) = 1.

Observation 2. Let I1, I2, I3, ..., Im be the maximal independent sets of G, then mγ(G) ≤ ∑v∈V(G)

≤ mΓ(G), where γ(G), Γ(G) is the minimum and maximum cardinality of maximal independent
sets of G, respectively.
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Observation 3. Let G = ∪m
i=1Gi be the disjoint union of graphs G1, G2, ..., Gm. Then T(G) =

∏m
i=1 T(Gi) and for v ∈ V(Gi), dIG (v) = dIGi

(v)∏m
j=1 T(Gj), j 6= i.

Proposition 2. Let G ∼= Sr,s(double star graph) with r + s + 2 vertices then T(G) = 3 and

dI(v) =

{
1 ; if v is centre vertex
2 ; if v is pendant vertex

.

Proof. Let {v, v1, v2, ..., vr, w, w1, w2, ..., ws} ∈ V(G) with centre vertices {v, w}. There
are three maximal independent sets; {v1, v2, ..., vr, w1, w2, ..., ws}, {v, w1, w2, ..., ws},
{w, v1, v2, ..., vr}. Hence T(G) = 3. Hence

dI(v) =

{
1 ; if v is centre vertex
2 ; if v is pendant vertex

3. Independent Indices of a Graph

A network is an arrangement of elements made for the systematic sharing of informa-
tion. The small-world property is a property of networks in which short communication
paths can be found between vertices. Most of the complex networks have a small-world
topology. It is an attractive model for the organisation of brain structural and functional
networks because a small-world topology can support both disaggregated and integrated
information processing. Further, small-world networks are cost-effective, trying to reduce
wiring costs while supporting high dynamic complexity. Therefore, this section defines
independent indices and discusses independent indices for some families of graphs with
the small-world property.

Definition 2. The first independent, second independent, and modified first Zagreb indices of a
simple connected graph G are defined as,
IM1(G) = ∑v∈V(G) d2

I (v)
IM2(G) = ∑uv∈E(G) dI(u)dI(v)
IM∗1(G) = ∑uv∈E(G)[dI(u) + dI(v)].

Lemma 1. Let Sr be the star graph with r + 1 vertices and Kn be the complete graph with n vertices,
then T(Sr) = 2 and T(Kn) = n and dI(v) = 1∀v ∈ V(Sr) or v ∈ V(Kn).

Proposition 3. 1. For Sq with q+ 1 vertices, IM1(Sq) = q+ 1, IM2(Sq) = q and IM∗1(Sq) = 2q.
2. For Kn, IM1(Kn) = n, IM2(Kn) = n(n− 1)/2 and IM∗1(Kn) = n(n− 1).
3. For a double star graph Sp,q with p+ q+ 2 vertices, IM1(Sp,q) = 4(p+ q)+ 2, IM2(Sp,q) =

2(p + q) + 1 and IM∗1(Sp,q) = 3(p + q) + 2.

Definition 3 ([23]). Domination degree dd(v) is the number of minimal dominating sets (MDs)
of a graph G that contains a vertex v; v ∈ V(G). Tm(G) is the total number of MDs in G. The first
domination DM1(G), second domination DM2(G), and modified first Zagreb indices DM∗1(G) of
the graph are ∑v∈V(G) d2

d(v), ∑uv∈E(G) dd(u)× dd(v), ∑uv∈E(G)[dd(u) + dd(v)], respectively.

Proposition 4. Let G be Sr,s and DM1,DM2, DM∗1 are the first domination, second domina-
tion, and modified first Zagreb indices of G, respectively. Then, IM1(Sr,s) = DM1(Sr,s) − 6,
IM2(Sr,s) = (DM2(Sr,s)− 2)/2, IM∗1(Sr,s) = (3DM∗1(Sr,s)− 4)/4.

Proof. From [23], DM1(G) = 4(r + s + 2), DM2(G) = 4(r + s + 1), and DM∗1(G) =
4(r + s + 1). Therefore, by substitution of these values, the results are obtained.
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Lemma 2. Let G ∼= Kr,s, then T(G) = 2 and dI(v) = 1∀v ∈ V(G) and Tm(G)− Tm(G) =
T(G); Tm(G) is the total number of MDs.

Proof. Let {u1, u2, ..., ur, v1, v2, ..., vs} be the set of all vertices of G, then there are two
maximal independent sets in G. They are {u1, u2, ..., ur}, {v1, v2, ..., vs}. Therefore, dI(v) =
1, since these sets are disjointed. However, Tm(G) = rs + 2 and

dd(v) =

{
r + 1 ; if v ∈ {v1, v2, ..., vs}
s + 1 ; if v ∈ {u1, u2, ..., ur}

.

Further, G is a disconnected graph with Kr and Ks as its components. Therefore,
Tm(G) = rs. Therefore, Tm(G)− Tm(G) = rs + 2− rs = 2 = T(G).

Theorem 1. If G ∼= Kr,s, then IM1(G) = r + s, IM2(G) = rs, IM∗1(G) = 2rs.

Proof. Using the definitions and Lemma 4, the result is obtained.

Corollary 2. Let G ∼= Kr,s then IM1(G) = M1(G) = DM1(G) = sr× IM1(G),
IM2(G) = DM2(G) = M2(G)− (M1(G))/2 = M2(G),
IM∗1(G) = IM1(G)− IM∗1(G),
IM∗1(G) = 2M1(G)/IM1(G) = DM∗1(G)−M1(G).

Proof. IM1(G) = sr(r + s) = rs× IM1(G) (By Theorem 1 ).
M1(G) = rs2 + sr2 = rs(s + r) = IM1(G).
IM1(G) = DM1(G)(sincedIG

(v) = ddG
(v)).

Since G is a disconnected graph with Kr and Ks as its components,
IM2(G) = r(r− 1)/2s2 + s(s− 1)/2r2

= rs((r− s)s/2 + (s− 1)r/2)
= rs(2rs− (r + s))/2
= r2s2 − rs(r + s)/2
= M2(G)− (M1(G))/2

IM∗1(G) = r(r− 1)/2× 2s+ s(s− 1)/2× 2r = rs(r+ s− 2) = rs(r+ s)− 2rs = IM1(G)−
IM∗1(G).
2M1(G)/IM1(G) = 2rs(r + s)/(r + s) = 2rs = IM∗1(G).
DM∗1(G) = rs(r + s + 2) = rs(r + s) + 2rs = M1(G) + IM∗1(G).

Definition 4. An undirected graph called the windmill graph Wq
p is created for the p(> 2) and

q(> 2) by combining q copies of the complete graph Kp at a common universal vertex.

Lemma 3. Let G ∼= Wq
p (Windmill graph) then T(G) = (p− 1)q + 1 and

dI(v) =

{
1 ; if v is the centre vertex
(p− 1)q−1 ; o.w

.

Proof. Two types of the maximal independent sets are only possible for the Windmill
graph. The first type is the set that contains only the centre. The second type is one vertex
from each complete graph Kp−1 (the complete graph that exists in Wq

p after its centre vertex
is removed) that is contained in Wq

p . There are (p − 1)q maximal independent sets of
type 2.

Theorem 2. If G ∼= Wq
p then

IM1(G) = 1 + q(p− 1)2q−1

IM2(G) = q((p− q)q + (p− 1)2q−1(p− 2)/2)
IM∗1(G) = q(p− 1)(1 + (p− 1)q)
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Proof.
IM1(G) = ∑v∈V(G) d2

I (v)
= 1× 12 + (p− 1)q((p− 1)q−1)2

= 1 + q(p− 1)2q−1

There are two types of edges in G. The first type E1 is the collection of all edges that
intersect with the centre vertex, and the second type E2 is the set of all edges of the complete
graph Kp−1,

IM2(G) = ∑uv∈E1
(1× (p− 1)q−1) + ∑uv∈E2

((p− 1)q−1 × (p− 1)q−1)
= q(p− 1)(1× (p− 1)q−1) + q(p− 1)(p− 2)/2((p− 1)q−1)2

= q(p− 1)q + (q(p− 2)(p− 1)2q−1)/2
= q((p− q)q + (p− 1)2q−1(p− 2)/2)

IM∗1(G) = ∑uv∈E1
(1 + (p− 1)q−1) + ∑uv∈E2

((p− 1)q−1 + (p− 1)q−1)
= q(p− 1)(1 + (p− 1)q−1) + q(p− 1)(p− 2)/2× 2(p− 1)q−1

= q(p− 1) + q(p− 1)q + q(p− 1)q(p− 2)
= q(p− 1)[1 + (p− 1)q−1(1 + p− 2)]
= q(p− 1)(1 + (p− 1)q)

Definition 5 ([24]). Let G1 and G2 be any two graphs, and the Cartesian product G1 × G2 is
defined as the graph has vertex set V(G1)×V(G2) such that any two vertices u = (u1, u2) and
v = (v1, v2) are adjacent if and only if either u1 = v1 and u2, v2 ∈ E(G2) or u2 = v2 and
u1, v1 ∈ E(G1).

• Book graph Br is Sr × P2, where Sr is the star graph with r + 1 vertices.

Lemma 4. If G ∼= Br then T(G) = 2r and dI(v) =

{
1 ; if v is the centre
2r−1 ;o.w

Proof. Let uv be the centre edge, and u, v be the set of centre vertices in the book graph. Let
{v1, v2, ..., vr} be the collection of neighbours of centre vertex v. Similarly, {u1, u2, ..., ur}
is the collection of neighbours of centre vertex u. There are two different kinds of maxi-
mal independent sets. The first type is {v, u1, u2, ..., ur} and {u, v1, v2, ..., vr}. Only those
maximal independent sets other than u and v that are created by selecting one vertex from
each section fall under the second type. Therefore, there exist 2r − 2 maximal independent

sets of the second type. Thus T(G) = 2r and dI(v) =

{
1 ; if v is the centre
2r−1 ; otherwise

, for all

v ∈ V(Br)

Theorem 3. For G ∼= Br where r ≥ 3,
IM1(G) = r22r−1 + 2.
IM2(G) = r22r[1/4 + 1/2r] + 1.
IM∗1(G) = 2r(2r + 1) + 2.

Proof.
IM1(G) = 2r× (2r−1)2 + 2× 12

= r22r−1 + 2

There are three types of edges E1, E2, and E3 in Br. Consider E1 to be the set of r edges
whose end vertices have the same independence degree 2r−1, E2 to be the edge set that
contains only the edge uv whose end vertices have the same independence degree 1, and
E3 to be the set of 2r edges with one vertex of independent degree 1 and the other vertex of
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independence degree 2r−1. Hence,
IM2(G) = ∑uv∈E1

(2r−1)2 + ∑uv∈E2
12 + ∑uv∈E3

1(2r−1).
= r22r−2 + 1 + 2r2r−1

= r22r−2 + r2r + 1
= r22r[1/4 + 1/2r] + 1

IM∗1(G) = ∑uv∈E1
(2r−1 + 2r−1) + ∑uv∈E2

(1 + 1) + ∑uv∈E3
(1 + 2r−1)

= r2r + 2 + 2r(1 + 2r−1)
= r2r + 2 + 2r + r2r

= r2r+1 + 2r + 2
= 2r(2r + 1) + 2

Corollary 3.
IM2(Br) = [DM1(Br)− (2r + 16)]/2

= 1/2IM1(Br) + r2r

Proof.
1/2IM1(Br) + r2r = 1/2[r22r−1 + 2] + r2r

= r22r−2 + r2r + 1
= r22r[1/4 + 1/2r] + 1
= IM2(Br)

From [23],
[DM1(Br)− (2r + 16)]/2 = [2r(2r−1 + 1)2 + 18− (2r + 16)]/2

= r(22r−2 + 1 + 2× 2r−1) + 9− (r + 8)
= r22r−2 + r + r2r + 1− r
= r22r−2 + r2r + 1
= IM2(Br)

Lemma 5. Let G ∼= Kn1,n2,...,nk then T(G) = k and dI(v) = 1∀v ∈ V(G).

Theorem 4. If G ∼= Kn1,n2,...,nk then
IM1(G) = k
IM2(G) = ∑k

i=2 n1ni + ∑k
i=3 n2ni + ... + nk−1nk.

IM∗1(G) = 2[∑k
i=2 n1ni + ∑k

i=3 n2n1 + ... + nk−1nk]

Proof. The number of edges in G = ∑k
i=2 n1ni + ∑k

i=3 n2ni + ... + nk−1nk and from the
definition of the independence indices, the result is obtained.

Definition 6. A graph consisting of r triangles, t pendant paths of length 2, and s pendant edges
sharing a common vertex is known as a firefly graph, Fr,s,t.

Lemma 6. Let G ∼= Fr,s,t with r, s ≥ 0 and t ≥ 1, then T(G) = 2r+t + 1 and

dI(v) =


1 ; if v is the centre vertex
2r+t−1 ; if v ∈ triangles or middle points of pendant paths
2r+t ; if v is a pendant vertex of pendant edges
2r+t−1 + 1 ; if v ∈ endpoints of pendant paths

, for any vertex

v ∈ V(G).

Proof. There are two types of maximal independent sets. The first type is the set containing
the centre and all endpoints of pendant paths of length 2. The second type is the set
containing all endpoints of pendant edges, one vertex (except the centre) of each triangle,
and at most t middle points of pendant paths of length 2 (the absence of each middle point
of pendant paths is replaced by the corresponding endpoints of pendant paths), and its
cardinality is 2r+t.
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Theorem 5. If G ∼= Fr,s,t with r, s ≥ 0 and t ≥ 1, then
IM1(G) = 1 + 22r+2t−1(r + t + 2s) + t(1 + 2r+t)
IM2(G) = 2r+t(r + t + s) + 22r+2t−2(r + t)
IM∗1(G) = (1 + 2r+t)(2r + s + t) + t(1 + 2r+t−1)

Proof. Let G be a firefly graph Fr,s,t with order 2r + s + 2t + 1 where r is the number of tri-
angles, t is the number of pendant paths of length 2, and s is the number of pendant edges.

IM1(G) = 1(12) + (2r + t)(2r+t−1)2 + t(2r+t−1 + 1)2 + s(2r+t)2

= 1 + (2r + t)(22t+2r−2) + t(22t+2r−2 + 1 + 2t+r) + s(22r+2t)
= 1 + r22t+2r−1 + t22t+2r−2 + t22t+2r−2 + t + t2t+r + s22r+2t

= 1 + 22r+2t−1(r + t + 2s) + t(1 + 2r+t)

There are four types of edges E1, E2, E3, and E4 in G. E1 is the collection of edges
containing edges between vertices (except the centre) of a triangle, and its cardinality is
r; E2 is the collection of edges whose one vertex is the centre, and the other vertex is the
vertex of the triangle or the middle point of pendant paths of length 2, and its cardinality is
(2r + t); E3 is the set containing edges with one vertex being the centre and the other vertex
is the pendant vertex, and its cardinality is s; and E4 is the collection of edges whose one
vertex is the middle point, and the other vertex is the endpoint of a pendant path of length
2, and its cardinality is t.

IM2(G) = ∑uv∈E1
(2t+r−1)(2t+r−1) + ∑uv∈E2

1(2r+t−1) + ∑uv∈E3
1(2r+t) + ∑uv∈E4

2r+t−1(1 + 2r+t−1)
= r22r+2t−2 + (2r + t)2r+t−1 + s2r+t + t(2r+t−1 + 22r+2t−2)
= r22r+2t−2 + r2r+t + t2r+t−1 + s2r+t + t2r+t−1 + t22r+2t−2

= 2r+t(r + t + s) + 22r+2t−2(r + t)

IM∗1(G) = ∑uv∈E1
(2r+t−1 + 2r+t−1) + ∑uv∈E2

(1 + 2r+t−1) + ∑uv∈E3
(1 + 2r+t)

+∑uv∈E4
(2r+t−1 + (1 + 2r+t−1))

= r2r+t + (2r + t)(1 + 2r+t−1) + s(1 + 2r+t) + t(1 + 2r+t)
= r2r+t + 2r + r2r+t + t + t2r+t−1 + s + s2r+t + t + t2r+t

= 2r+t(2r + s + t) + (2r + t + s) + t(1 + 2r+t−1)
= (1 + 2r+t)(2r + s + t) + t(1 + 2r+t−1)

Corollary 4. Let G be a stretched graph F0,s,t with s, t ≥ 1 then
IM1(G) = 1 + 22t−1(t + 2s) + t(1 + 2t)
IM2(G) = 2t(t + s) + t22t−2

IM∗1(G) = (1 + 2t)(t + s) + t(1 + 2t−1)

Corollary 5. Suppose G ∼= Fr,0,t with r, t ≥ 1. Then
IM1(G) = 1 + 22r+2t−1(r + t) + t(1 + 2r+t)
IM2(G) = (2r+t + 22r+2t−2)(r + t)
IM∗1(G) = (1 + 2r+t)(2r + t) + t(1 + 2r+t−1)

Lemma 7. The total number of maximal independent sets in G ∼= Fr,s,0 with r, s ≥ 1 is

T(G) = 1 + 2r. For any vertex v ∈ V(G), dI(v) =


1 ; if v is the centre vertex
2r ; if v is the pendant vertex
2r−1 ; if v ∈ triangles

Proof. A set contains only a centre, and a set contains one vertex (other than the centre) from
each triangle, and all pendent vertices are the two possible maximal independent sets.

Theorem 6. If G ∼= Fr,s,0 with r ≥ 1 and s ≥ 1, then
IM1(G) = 22r−1(2s + r) + 1
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IM2(G) = r22r−2 + 2r(r + s)
IM∗1(G) = (1 + 2r)(2r + s)

Proof.
IM1(G) = 1(12) + s(2r)2 + 2r(2r−1)2

= 1 + s22r + r22r−1

= 22r−1(2s + r) + 1

There are three edge sets E1, E2, and E3, where E1 is the set of edges whose both end
vertices are vertices of triangles (other than the centre), E2 is the collection of edges whose
one vertex is the centre and the other vertex is a vertex of triangles, and E3 is the collection
of edges whose one vertex is the centre and the other vertex is a pendant vertex.

IM2(G) = ∑E1
(2r−1)(2r−1) + ∑E2

(1(2r−1)) + ∑E3
1(2r)

= r(2r−1)(2r−1) + 2r(1(2r−1)) + s(1(2r))
= r22r−2 + r2r + s2r

= r22r−2 + 2r(r + s)

IM∗1(G) = ∑E1
(2r−1 + 2r−1) + ∑E2

(1 + 2r−1) + ∑E3
(1 + 2r)

= r(2r−1 + 2r−1) + 2r(1 + 2r−1) + s(1 + 2r)
= r2r + 2r + r2r + s + s2r

= 2r(2r + s) + (2r + s)
= (1 + 2r)(2r + s)

Definition 7. A planar, undirected graph with 2n + 1 vertices and 3n edges is the friendship graph
Fn. The n copies of the cycle graph C3 can be joined at a common vertex to create the friendship
graph Fn, which has this vertex as its universal vertex.

Corollary 6. Let G ∼= Fr,0,0 be the friendship graph, then
IM1(G) = r22r−1 + 1
IM2(G) = r(22r−2 + 2r)
IM∗1(G) = 2r(1 + 2r)

Proposition 5. If G ∼= F0,0,t, then
IM1(G) = 1 + t(22t−1)
IM2(G) = t(2t−1 + 22t−2)
IM∗1(G) = (1 + 2t−1 + 2t)t.

Proof. If G ∼= F0,0,t, then T(G) = 2t and dI(v) =

{
1 ; if v is the root
2t−1 ; if v is the middle point or endpoint

.

Therefore, according to the definition of indices, the results are obtained.

4. Graph Operations and Independent Indices

From given small communities, using graph operations, such as the join and corona
products, a large community or whole brain network can be obtained, and vice versa.

• A join of two graphs G1 and G2 is denoted by G1 + G2 and it is the graph on the vertex
set V1 ∪V2 and the edge set E1 ∪ E2 ∪ {u1u2; u1 ∈ V1, u2 ∈ V2}, where G1 and G2 are
graphs with disjoint vertex sets V1 and V2 [25].

Lemma 8. Let G1 and G2 be any graphs of n1 and n2 vertices, respectively. Then T(G1 + G2) =

T(G1) + T(G2) and dIG1+G2
(v) =

{
dIG1

(v) ; if v ∈ V(G1)

dIG2
(v) ; if v ∈ V(G2)
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Proof. Only two types of maximal independent sets are in G1 + G2. They are the maximal
independent sets of G1 and the maximal independent sets of G2. Hence the result.

Theorem 7. Let G1 and G2 be any connected graphs with n1 and n2 vertices and m1 and m2 edges,
respectively. Then
IM1(G1 + G2) = IM1(G1) + IM2(G2)
IM2(G1 + G2) = IM2(G1) + IM2(G2) + σ(G1)σ(G2)
IM∗1(G1 + G2) = IM∗1(G1) + IM∗1(G2) + n2σ(G1) + n1σ(G2)
where σ(G) = ∑v∈V(G)) dI(v).

Proof.
IM1(G1 + G2) = ∑u∈V(G1+G2)

dI
2
G1+G2

(u)
= ∑u∈V(G1)

dI
2
G1+G2

(u) + ∑u∈V(G2)
dI

2
G1+G2

(u)
= ∑u∈V(G1)

dI
2
G1
(u) + ∑u∈V(G2)

dI
2
G2
(u)

= IM1(G1) + IM1(G2)

There are three edge sets E1, E2, and E3 in G1 + G2. E1 is the set containing edges in
G1, E2 is the set containing edges in G2, and E3 is the collection of edges whose one vertex
is from V(G1) and the other vertex is from V(G2). Therefore, E(G1 +G2) = m1 +m2 + n1n2.

IM2(G1 + G2) = ∑uv∈E(G1+G2)
dIG1+G2

(u)dIG1+G2
(v)

= ∑uv∈E(G1)
dIG1+G2

(u)dIG1+G2
(v) + ∑uv∈E(G2)

dIG1+G2
(u)dIG1+G2

(v)
+∑u∈V(G1),v∈V(G2)

dIG1+G2
(u)dIG1+G2

(v)

Now, we compute every part independently and then combine all three parts,

∑
uv∈E(G1)

dIG1+G2
(u)dIG1+G2

(v) = ∑
uv∈E(G1)

dIG1
(u)dIG2

(v) = IM2(G1). (1)

∑
uv∈E(G2)

dIG1+G2
(u)dIG1+G2

(v) = ∑
uv∈E(G2)

dIG1
(u)dIG2

(v) = IM2(G2). (2)

∑
u∈V(G1),v∈V(G2)

dIG1+G2
(u)dIG1+G2

(v) = dIG1
(u1)dIG2

(v1) + dIG1
(u1)dIG2

(v2) + ... + dIG1
(u1)dIG2

(vn2)

+dIG1
(u2)dIG2

(v1) + ... + dIG1
(u2)dIG2

(vn2) + ... + dIG1
(un1)dIG2

(v1) + ... + dIG1
(un1)dIG2

(vn2)

= dIG1
(u1) ∑

v∈V(G2)

dIG2
(v) + ... + dIG1

(un1) ∑
v∈V(G2)

dIG2
(v)

= ∑
u∈V(G1)

dIG1
(u) ∑

v∈V(G2)

dIG2
(v)

= σ(G1)σ(G2).

(3)

From (1)–(3), IM2(G1 + G2) = IM2(G1) + IM2(G2) + σ(G1)σ(G2).

IM∗1(G1 + G2) = ∑uv∈E(G1+G2)
[dIG1+G2

(u) + dIG1+G2
](v)]

= ∑uv∈E(G1)
[dIG1+G2

(u) + dIG1+G2
(v)] + ∑uv∈E(G2)

[dIG1+G2
(u) + dIG1+G2

(v)]
+∑u∈V(G1),v∈V(G2)

[dIG1+G2
(u) + dIG1+G2

(v)]

Now, we compute every part independently and then combine all three parts,

∑
uv∈E(G1)

[dIG1+G2
(u) + dIG1+G2

(v)] = ∑
uv∈E(G1)

[dIG1
(u) + dIG1

(v)] = IM∗1(G1). (4)
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∑
uv∈E(G2)

[dIG1+G2
(u) + dIG1+G2

(v)] = ∑
uv∈E(G2)

[dIG2
(u) + dIG2

(v)] = IM∗1(G2). (5)

∑
u∈V(G1),v∈V(G2)

[dIG1+G2
(u) + dIG1+G2

(v)] = dIG1
(u1) + dIG2

(v1) + dIG1
(u1) + dIG2

(v2) + ... + dIG1
(u1)+

dIG2
(vn2) + dIG1

(u2) + dIG2
(v1) + ... + dIG1

(u2) + dIG2
(vn2) + ... + dIG1

(un1)+

dIG2
(v1) + ... + dIG1

(un1) + dIG2
(vn2)

= n2dIG1
(u1) + n2dIG1

(u2) + ... + n2dIG1
(un1) + n1dIG2

(v1) + n1dIG2
(v2) + ... + n1dIG2

(vn2)

= n2 ∑
u∈V(G1)

dIG1
(u) + n1 ∑

v∈V(G2)

dIG2
(v)

= n2σ(G1) + n1σ(G2).

(6)

From (4)–(6), IM∗1(G1 + G2) = IM∗1(G1) + IM∗1(G2) + n2σ(G1) + n1σ(G2).

• The corona product G ◦ H is defined as the graph obtained from G and H by taking
one copy of H with the ith vertex of G.

Lemma 9. Let G ∼= Sm ◦Kp where Sm is the star graph with m + 1 vertices and Kp is the complete
graph with p vertices. Then T(G) = p(p + 1)m + pm and

dI(v) =


pm ; if v is the centre of Sm

p(p + 1)m−1 ; if v is a pendant vertex of Sm

(p + 1)m ; if v is a vertex of K′p
(p + 1)m + pm−1 − (p + 1)m−1 ; if v is a vertex of any Kp except K′p

,

where K′p is the complete graph that is connected to the centre of Sm.

Proof. Let G ∼= Sm ◦ Kp. It consists of a star graph with m + 1 vertices and m complete
graphs, Kp, joined to pendant vertices of Sm, and one complete graph Kp named K′p joined
to the centre of Sm. G has two types of maximal independent sets. The first type is the set,
which contains the centre of Sm and one vertex from Kp except for K′p. The second type is
the set that contains one vertex from K′p and almost n pendant vertices of Sm (the absence
of pendant vertices implies the presence of one vertex of the corresponding K′p). There are
pm sets of the first type and p(p + 1)m sets of the second type.

Theorem 8. For any star graph with m + 1 vertices and complete graph with p vertices,

IM1(Sm ◦ Kp) = p2m−1(m + p) + mp2[(p + 1)2m−1 + 2pm−1(p + 1)m−1] + p(p + 1)2m.
IM2(Sm ◦ Kp) = (m + 1)pm+1(p + 1)m + p/2(p + 1)2m−1((m + 1)p2 − 1) + m/2(p− 1)p2m−1.
IM∗1(Sm ◦ Kp) = mp(p + 1)m−1(p2 + 3p− 1) + pm(m + (m + 1)p) + p2(p + 1)m.

Proof.
IM1(Sm ◦ Kp) = 1(pm)2 + m(p(p + 1)m−1)2 + mp((p + 1)m + pm−1 − (p + 1)m−1)2 + p(p + 1)2m

= p2m + mp[p(p + 1)2m−2 + ((p + 1)m + pm−1 − (p + 1)m−1)2] + p(p + 1)2m

= p2m + mp[p(p + 1)2m−2 + p2(p + 1)2m−2 + p2m−2 + 2pm(p + 1)m−1] + p(p + 1)2m

= p2m + mp2(p + 1)2m−2(p + 1) + mp2m−1 + 2mpm+1(p + 1)m−1 + p(p + 1)2m

= p2m−1(m + p) + mp2[(p + 1)2m−1 + 2pm−1(p + 1)m−1] + p(p + 1)2m

Graph G contains m + 1 complete graphs with p vertices. The complete graph joined
to the centre of the star graph Sm is named K′r. Therefore, there are five types of edges E1,
E2, E3, E4, and E5, where E1 is the edges in Sn, E2 is the edges that connect the vertex from
Sn (except the centre) and the vertices from Kr, E3 is the collection of edges that connect the
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centre of Sn and vertices from K′r, E4 is the edges in K′r, and E5 is the edges in Kr except K′r.
Therefore,

IM2(Sm ◦ Kp) = ∑uv∈E1
(pm × p(p + 1)m−1) + ∑uv∈E2

(p(p + 1)m−1 × ((p + 1)m + pm−1 − (p + 1)m−1)
+∑uv∈E3

(pm × (p + 1)m) + ∑uv∈E4
((p + 1)m × (p + 1)m)

+∑uv∈E5
((p + 1)m + pm−1 − (p + 1)m−1)2

= m(pm+1(p + 1)m−1) + mp(p(p + 1)2m−1 + pm(p + 1)m−1 − p(p + 1)2m−2) + p(pm(p + 1)m)
+p(p− 1)/2(p + 1)2m + mp(p− 1)/2(p2(p + 1)2m−2 + p2m−2 + 2pm(p + 1)m−1)
= mpm+1(p + 1)m−1 + mp2(p + 1)2m−1 + mpm+1(p + 1)m−1 −mp2(p + 1)2m−2

+pm+1(p + 1)m + (p(p− 1)(p + 1)2m)/2 + m/2(p− 1)p3(p + 1)2m−2 + m/2(p− 1)p2m−1

+m(p− 1)pm+1(p + 1)m−1

= pm+1(p + 1)m−1(m + m + (p + 1) + m(p− 1)) + p(p + 1)2m−2[mp((p + 1)− 1)
+mp2(p− 1)/2 + (p− 1)/2(p + 1)2] + m/2(p− 1)p2m−1

= (m + 1)pm+1(p + 1)m + p/2(p + 1)2m−2(mp2(p + 1) + (p2 − 12)(p + 1)) + m/2(p− 1)p2m−1

= (m + 1)pm+1(p + 1)m + p/2(p + 1)2m−1((m + 1)p2 − 1) + m/2(p− 1)p2m−1

IM∗1(Sm ◦ Kp) = ∑uv∈E1
(pm + p(p + 1)m−1) + ∑uv∈E2

(p(p + 1)m−1 + ((p + 1)m + pm−1 − (p + 1)m−1)
+∑uv∈E3

(pm + (p + 1)m) + ∑uv∈E4
((p + 1)m + (p + 1)m)

+∑uv∈E5
2((p + 1)m + pm−1 − (p + 1)m−1)

= m(pm + p(p + 1)m−1) + mp(p(p + 1)m−1 + (p + 1)m + pm−1 − (p + 1)m−1)
+p(pm + (p + 1)m) + p(p− 1)/2× 2(p + 1)m

+mp(p− 1)/2× 2((p + 1)m + pm−1 + (p + 1)m−1)
= mpm + mp(p + 1)m−1 + mp2(p + 1)m−1

+mp(p + 1)m + mpm −mp(p + 1)m−1 + pm+1 + p(p + 1)m

+p(p− 1)(p + 1)m + mp2(p + 1)m −mp(p + 1)m + mpm+1

−mpm + mp2(p + 1)m−1 −mp(p + 1)m−1

= mp(p + 1)m−1(p2 + 3p− 1) + pm(m + (m + 1)p) + p2(p + 1)m

Lemma 10. Let G ∼= Kn ◦ Km, where Kn and Km are complete graphs with n and m vertices,
respectively. Then T(G) = nmn−1 + mn and

dI(v) =

{
mn−1 ; if v ∈ V(Kn)

(n− 1)mn−2 + mn−1 ; if v ∈ V(Km)
.

Proof. A set containing, at most, 1 vertex of Kn where the absence of vertex of Kn is replaced
by any one vertex of Km is the only possible type of maximal independent set. There are mn

numbers of sets with no vertex of Kn and nmn−1 numbers of sets with one vertex of Kn.

Theorem 9. For any complete graphs with n and m vertices,
IM1(Kn ◦ Km) = m2n−1 + (3n− 2)m2n−2 + (n− 1)2m2n−3

IM2(Kn ◦Km) = 3/2n(n− 1)m2n−2 +(n− 1)(m− 1)((n− 1)/2+m)m2n−3 +((m− 1)/2+
n)m2n−1

IM∗1(Kn ◦ Km) = (2n + m− 1)(n + m− 1)mn−1

Proof.
IM1(Kn ◦ Km) = n(mn−1)2 + m((n− 1)mn−2 + mn−1)2

= nm2n−2 + m((n− 1)2m2n−4 + m2n−2 + 2(n− 1)mn−2mn−1)
= nm2n−2 + (n− 1)2m2n−3 + m2n−1 + 2(n− 1)m2n−2

= m2n−1 + (3n− 2)m2n−2 + (n− 1)2m2n−3

There are three types of edges E1, E2, and E3 in G, where E1 is the collection of edges
in Kn, E2 is the edges in Km, and E3 is the edges connecting Kn and Km. Further, there are
nm edges in E3. Therefore,
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IM2(Kn ◦ Km) = ∑uv∈E1
mn−1mn−1 + ∑uv∈E2

((n− 1)mn−2 + mn−1)2

+∑uv∈E3
mn−1[(n− 1)mn−2 + mn−1]

= n(n− 1)/2m2n−2 + m(m− 1)/2((n− 1)2m2n−4 + m2n−2 + 2(n− 1)m2n−3)
+nm[(n− 1)m2n−3 + m2n−2]
= n(n− 1)/2m2n−2 + (n− 1)2(m− 1)/2m2n−3 + (m− 1)/2m2n−1 + (n− 1)(m− 1)m2n−2

+n(n− 1)m2n−2 + nm2n−1

= 3/2n(n− 1)m2n−2 + (n− 1)(m− 1)((n− 1)/2 + m)m2n−3 + ((m− 1)/2 + n)m2n−1

IM∗1(Kn ◦ Km) = ∑uv∈E1
[mn−1 + mn−1] + ∑uv∈E2

2((n− 1)mn−2 + mn−1)
+∑uv∈E3

[mn−1 + ((n− 1)mn−2 + mn−1)]
= n(n− 1)/2× 2mn−1 + m(m− 1)/2× 2((n− 1)mn−2 + mn−1)
+nm(2mn−1 + (n− 1)mn−2)
= (n− 1)mn−1(n + (m− 1) + n) + mn((m− 1) + 2n)
= (2n + m− 1)((n− 1)mn−1 + mn)
= (2n + m− 1)(n + m− 1)mn−1

5. Results and Applications

In the formal framework of graph theory, a graph or network is made up of a collection
of nodes (neural components) and edges (their mutual connections). The definition of the
network’s nodes and edges is the first stage in processing structural and/or functional
brain connection data obtained from the human brain into network form. Deriving concise
and meaningful descriptions of brain networks requires the completion of this initial stage.
Brain measurements and recordings are used to extract brain networks. The fundamental
workflow consists of four essential phases: (1) define network nodes by segmenting the
brain into structurally or functionally coherent regions or on the basis of the placement of
sensors and/or recording sites; (2) define network edges by inferring structural connections
from structural or diffusion imaging data, or by processing time series data into functional
edges that express statistical dependencies; (3) creating a structural or functional network
by combining nodes and edges into a connection matrix; and (4) network analysis [26].
Brain networks contain modules that are connected to each other by spare connections.
Each module is formed due to some structural or functional properties.

A specific brain network is taken up in this section. The connectedness of each module
of this network is compared with the new parameter IM1(G)/T(G) and calculated ρ values.
If ρ ≥ 0, it indicates that the corresponding module is strong in terms of connectivity. The
modular structure of the brain network is illustrated in Figure 1.

Figure 1. Modular structure of brain network.
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Example

Connectedness of M1 = (4 + 3 + 3 + 3 + 3)/5 = 16/5 = 3.2.
IM1(M1)/T(M1) = (12 + 12 + 12 + 12 + 12)/3 = 5/3 = 1.667.
ρ = 1.533.

Connectedness of M2 = (4 + 2 + 3 + 3 + 2)/5 = 14/5 = 2.8.
IM1(M2)/T(M2) = (12 + 22 + 22 + 12 + 12)/4 = 11/4 = 2.75.
ρ = 0.05.

Connectedness of M3 = (1 + 3 + 2 + 2)/4 = 8/4 = 2.
IM1(M3)/T(M3) = (12 + 22 + 12 + 12)/3 = 7/3 = 2.33.
ρ = −0.33.

Connectedness of M4 = (4 + 3 + 4 + 4 + 3 + 2)/6 = 20/6 = 3.334.
IM1(M4)/T(M4) = (22 + 12 + 12 + 12 + 12 + 12)/3 = 9/3 = 3.
ρ = 0.334.

This parameter value can be used to compare networks and analyse the network, as it
provides information on how efficiently vertices are connected in a network. If the number
of edges and vertices is the same, the connectedness of the two graphs is the same, and it
does not matter which vertices are connected. However, this parameter will give different
values in most cases, so the importance of edge connections is obvious. This highlights the
connection between the clustering coefficient and this parameter. The clustering coefficient
of a network with fixed n and e (where n is the number of vertices and e is the number of
edges) is also proportional to this value.

It can also be used for the detection of rich club formation. In this instance, it is
possible to extract a graph in which each node is a hub. If located within a module, these
hubs are known as local hubs (high degree of centrality and low participation). For this
graph, topological indices were generated from the connections between these hubs. If
1 ≤ IM1(G)/T(G) < n/2, this indicates the existence of a rich club. This will be more
beneficial for connector hubs (high degree of centrality and high participation). These hubs
are the connecting nodes between modules. The networks are capable of being organised
into modules and rich clubs. Consider the subgraphs of graph G to be G1, G2, G3, G4, and
G5. Figure 1’s subgraphs G1, G2, G3, and G4 correspond to modules M1, M2, and M3,
whereas subgraph G5 depicts connector hubs and their interconnections. The existence
of the rich club is indicated if 1 ≤ IM1(G5)/T(G5) < n/2, where n is the total number of
connection hubs.

These indices can be used to find the strength of each module based on its edge
connections. If ρ ≥ 0, the module is well-connected and robust (more efficient). Since
the lower bound of IM1(G)/T(G) is one, how close it is to one gives information about
how strongly connected it is. Therefore, this property helps to get an idea of how strongly
connected each vertex in the modules is, and these parameters, ρ and IM1(G)/T(G), can
be used to analyse different brain graphs. Since brain disorders are closely related to the
relationships between each node, they can be used to diagnose and treat brain diseases and
dementia-like symptoms. These parameters are useful not only in the medical field but
wherever effective connections play an important role.

However, this parameter has a drawback because finding maximal independent sets is
Np-hard. Yet, this work can call attention to the relevance of topological indices for network
analysis among researchers. Moreover, there are a few brute-force algorithms to identify
the maximal independent set with complexity O(n22n). Although there are approximately
3000 identified topological indices, certain indices may have better relationships with exist-
ing brain network study parameters. Finding the right topological indices and evaluating
brain networks based on topological indices will be the future focus of this work. This type
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of parameter may also aid in the identification of symmetry and the study of symmetry
breaking in the brain. Since many neurodevelopmental and psychiatric diseases have been
associated with reduced brain asymmetries, such as improved brain symmetry, this sort of
parameter investigation will receive considerable attention in the future.

6. Conclusions

Topological indices and independent sets are very important topics in graph theory.
In this paper, independence degree and independent Zagreb indices are defined, and
their properties are discussed. Brain networks are small-world networks that attempt to
minimise wiring costs. Therefore, some indices of family graphs that satisfy the small-world
property are discussed. Some graph operations that can derive a whole brain network (a
large community) from small communities are also discussed.

This is the first study to apply topological indices to the analysis of brain networks.
This paper demonstrates that topological indices can be effectively applied to the network
structure as compared to the chemical structure. This study theoretically investigated brain
networks using topological indices.

The topics, topological index, and independent set were used to create a new parameter.
It was discovered that this parameter had an inverse relationship with connectivity and
a direct relationship with the clustering coefficient. The rich club is part of the brain that
promotes quicker and less noisy neural communication. Therefore, the damage to this
region has the largest influence on the entire network. This new parameter can also be used
to confirm the existence of rich clubs.

To analyse brain networks, topological indices based on the maximal independent
set can be used. These indices are an excellent way to assess the strength of each module
because its strength depends on how well its vertices are connected. This parameter
may have a significant impact on research into and analysis of brain disorders, such as
Alzheimer’s, which are brought on by the destruction of vertex connections.

Future research will benefit more from the establishment of these new parameters
because complex brain network analysis is crucial to the study of many degenerative brain
illnesses. The restriction of this parameter is that it is an NP issue to find the maximal
independence set. Yet, since it marks the beginning of the transition from topological
indices to brain network research, it may also pave the way for significant future advances
in this field. Further, parameter investigations are important since brain network analysis
measurements have not yet been specified.
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