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Abstract: We consider the covariant gauge field theory of fractons, which describes a new type
of quasiparticles exhibiting novel and non-trivial properties. In particular, we focus on the field
theoretical peculiarities which characterize this theory, starting from the fact that, if we accept the
paradigm that quantum field theories are defined by their symmetries, fractons unavoidably come
together with linearized gravity. The standard Faddeev–Popov procedure to gauge fix the theory
leads to a scalar gauge condition, which has two important drawbacks: it is frozen in the Landau
gauge and linearized gravity cannot be obtained as a limit. In this paper, we adopt a tensorially
alternative gauge fixing, which avoids both problems. In particular, this allows to show that important
physical features, such as counting of the degrees of freedom, do not depend on a particular gauge
choice, as expected. Moreover, the resulting gauge fixed theory contains both fractons and linearized
gravity as a limit, differently from the standard scalar choice.
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1. Introduction

In recent years there has been a surge of interest in a kind of exotic particles called
“fractons”, which have come to the forefront of modern condensed matter theory [1–20].
They represent a new class of quasiparticles, whose main property is that of being immobile
in isolation, but may move by forming bound states. Fractons are found in a variety
of physical settings, such as spin liquids [3] and elasticity theory [21,22], and exhibit
unusual phenomenology, such as gravitational physics and localization [23–26]. Fractonic
behaviours are to be connected with exotic global symmetries [7,10,19]. Systems with these
symmetries challenge the common lore by which the low-energy behaviour of every lattice
system can be described by a continuum quantum field theory: these lattice constructions
are usually not Lorentz invariant, and they present an unusual ground state degeneracy,
infinite in the continuum limit. Significant efforts have been made to better understand
their non-standard behaviours and to extend the known theoretical frameworks to include
them [4,6,7,19,20,27,28]. Our aim here is to study the theory of fractons from the field
theoretical point of view where, again, peculiar and unusual features appear. In our
approach, fractons are described by a gauge field theory involving a symmetric tensor field
hµν(x) transforming as

δhµν = ∂µ∂νΦ , (1)

where Φ(x) is a scalar local gauge parameter. The transformation (1) is a particular case of
the infinitesimal diffeomorphisms

δdi f f hµν = ∂µξν + ∂νξµ , (2)
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when the vector gauge parameter ξµ(x) is the derivative of a scalar field

ξµ =
1
2

∂µΦ . (3)

The most general action Sinv invariant under the fracton symmetry (1) is the sum of
two terms, one of which can be immediately identified as linearized gravity (LG) [29,30].
This term is to be expected since the infinitesimal diffeomorphisms (2), the defining symme-
try of LG, embeds the fracton symmetry (1) through (3). The other term describes a theory
with pure fractonic features [28]: from this term one can recover all the properties character-
izing the so called “scalar charge theory” of fractons [3], including Maxwell-like equations
of which the Gauss law is at the origin of the limited mobility property that defines frac-
tons [1–3,5,6]. This constraint on the motion is realized as a conservation equation, in the
same way as in the standard Maxwell theory the Gauss law implies charge conservation. In
fracton models, the conserved quantity is the dipole moment of the system, due to which,
single, isolated charges are to be immobile, and are thus identified as fractons. This inability
to move is the main property shared by all fracton models, and ultimately can be of physical
interest, for instance, in the development of quantum memories [13,14,31,32]. Since the
transformation (1) is a particular case of the more general infinitesimal diffeomorphism (2),
which is a gauge transformation [29,30,33,34], the theory of the symmetric tensor field
hµν(x) defined by the symmetry (1) is a gauge field theory as well. Evidence of this appears
when trying to compute the propagator from the quadratic action Sinv, which, similar to the
electromagnetic Maxwell theory, leads to a non-invertible matrix. Therefore, a gauge fixing
term must be added. For any other gauge field theory, this procedure progresses smoothly
thanks to the Faddeev–Popov procedure [35], which focuses on the gauge parameter, and
in particular on its tensorial character. In (1) the gauge parameter is a scalar, and this would
require a scalar gauge fixing condition. The most general covariant one is

∂µ∂νhµν + κ∂2h = 0 , (4)

where κ is a constant gauge fixing parameter. This is analogous to the covariant Lorentz
condition for the vector field Aµ(x)

∂µ Aµ = 0 . (5)

The standard situation in gauge field theory is that of having a gauge field, represented
by a p-tensor field, and a (p− 1)-tensorial gauge parameter. This is the case of all known
gauge theories. We already mentioned Maxwell theory, or its non-abelian counterpart, the
Yang–Mills theory, but this is also true for higher rank theories, such as the topological BF
theories in any dimensions [36,37]. Linearized gravity, described by a symmetric tensor
field and by the symmetry (2), does not escape this rule. In this case, the commonly used
gauge fixing condition is vectorial [30,38,39]

∂νhµν + κ∂µh = 0 . (6)

Due to the presence of the parameter κ, the gauge fixing conditions (4) and (6) represent
a class of covariant gauges. For instance, in (6) the particular case κ = − 1

2 corresponds to
the “harmonic” gauge fixing [29,34]. The theory we are considering here is, again, quite
peculiar. Not only because, as we shall see, it displays a “non-coupling” constant, but
also because it is defined by the gauge transformation (1), which associates a scalar gauge
parameter to a rank-2 symmetric tensor field. Concerning the gauge fixing procedure, one
might therefore look at both sides of (1), each of which opens a different path. Looking
at the right-hand side of (1), one sees a scalar gauge parameter and this leads to adopt
the scalar gauge condition (4). This standard way has been followed in [27], where the
propagators have been derived and the degrees of freedom have been studied. The scalar
gauge condition (4) has two important drawbacks. The first is that the Landau gauge ξ = 0
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turns out to be mandatory. The theory seems not to be defined outside this gauge. Now, it is
true that physical results should not depend on the gauge choice, but, still, being forced to a
unique choice is unpleasant, and it would be more preferable to find all the physical results
in a generic gauge and show that they do not, indeed, depend on a particular choice. The
second reason is that the scalar gauge condition (4) does not allow to reach the limit of pure
LG, which necessarily needs the vector gauge condition (2). This results in a singularity
both in the propagators of the theory and in the degrees of freedom, which indeed has been
found in [27]: the theory with the scalar gauge condition (4) is not defined in the limit of
pure LG. The alternative, which we consider in this paper, is to focus on the left-hand side
of (1), where the same symmetric rank-2 tensor field of LG appears, and decide to adopt the
same vectorial gauge condition (6) as LG. In doing so, two questions should be answered:

1. Is the vector gauge condition a good gauge fixing, or, equivalently, do the propa-
gators exist in the pure fractonic limit, possibly without being forced to choose a
particular gauge?

2. In gauge field theory the gauge fixing condition serves to eliminate the redundant de-
grees of freedom which render infinite the Green functions’ generating functional Z[J]

Z[J] =
∫
Dhµν eiSinv+

∫
Jµνhµν . (7)

Does the fact of imposing four (vector) gauge conditions instead of one (scalar) affect
the number of physical degrees of freedom of the whole theory Sinv?

The above are legitimate and well-posed questions and, naively, one might answer
positively to both. To the first simply because four conditions are more than one, and
one expects that they are more than enough to invert the gauge fixed action to find the
propagators; to the second for the same reason: four conditions are more than one, and
hence the degrees of freedom which are eliminated are too much and differ from those
“killed” by the scalar gauge choice (4). We shall see that the propagators are not singular in
the limits of pure fractons or pure LG and that the number of physical degrees of freedom is
the same for the two gauge fixing choices (4) and (6), which therefore are equivalent, with
the advantage that the vectorial choice (6) does not constrain us to the Landau gauge and
allows to easily recover LG. The paper is organized as follows. In Section 2, starting from
the symmetry (1), the action of the theory is derived, which consists of two terms: LG and
a fractonic term. The vector gauge condition (6) is realized by adding a gauge fixing term
to the action. In Section 3, the propagators are computed, and the singularities are studied,
which correspond to particular phases of the theory. In Section 4, we study the degrees
of freedom, and we verify that their counting coincides with the known one [27], without
the drawback of being confined to the Landau gauge, which reassures that the number of
degrees of freedom does not depend on a particular choice and that the alternative vectorial
gauge fixing condition (6) is, indeed, a good one. In Section 5, we discuss our results.

2. The Model

Let us consider the four-dimensional (4D) theory of a symmetric tensor field hµν(x)
which transforms as (1). The choice (3) is motivated by the fact that the theory defined
by the symmetry (1) describes the so-called “fractons”. The most general action invariant
under (1) is

Sinv(g1, g2) = g1SLG + g2S f ract , (8)

where

SLG =
∫

d4x
(
−h∂2h + hµν∂2hµν + 2h∂µ∂νhµν − 2hµν∂ρ∂µhνρ

)
(9)

S f ract =
∫

d4x
(

hµν∂ρ∂µhρν − hµν∂2hµν
)

, (10)
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and h(x) is the Minkowskian trace of hµν(x)

h = ηµνhµν . (11)

The action (8) appears to be the linear combination of two terms, which we recognize
to be the action SLG of linearized gravity (LG) [29,30] and the pure covariant fractonic
action described in [27,28]. The actions SLG and S f ract are separately invariant under (1)

δSLG = δS f ract = 0 , (12)

and g1,2 are constants, on which we will come back to shortly. Notice that while the 4D
local-integrated functional space is invariant under (1) is the linear combination (8) of
two elements, the infinitesimal diffeomorphism symmetry (2) uniquely determines one
functional only: the LG action SLG (9)

δdi f f SLG = 0 , (13)

under which the fractonic action S f ract (10) is not invariant

δdi f f S f ract = 2
∫

d4x ∂µξν
(

∂ρ∂µhνρ + ∂ρ∂νhρµ − 2∂2hµν

)
6= 0 . (14)

In other words, the “fractonic” symmetry (1) is less constraining than the diffeomor-
phism transformation (2), of which it is a particular case. The action (8) actually depends on
one constant only, because of the possibility of redefining the gauge field by a multiplicative
constant C without affecting the physical content of the theory: hµν → Chµν. Nevertheless,
we will keep both g1 and g2, in order to track the contributions of the gravitational (g2 → 0)
and the fractonic (g1 → 0) parts in the rest of the paper. The fact that a quadratic, Lorentz
and gauge invariant theory depends on one unavoidable constant is quite uncommon, if
not unique. It is not even clear how to call this constant, since it cannot be a “coupling”
constant, being theory Sinv-free and non-interacting, nor a mass, being dimensionless.
This peculiarity originates from the fact that the space of invariant functionals under the
transformation (1) has two dimensions, instead of one as it commonly happens. To our
knowledge, the only exception is given by the 3D Maxwell–Chern–Simons theory [40],
which depends on one “true” constant as well, but in that case the constant can be identified
as a mass. We might say that gravitons may exist alone, while fractons necessarily come
with gravitons, lacking, up to now, a symmetry which uniquely determines them. This
claim can be found in the fracton literature [23–26], but it is immediately apparent from the
field theoretical point of view. Concerning the gauge fixing, the standard way to realize the
condition (6) is to add to the invariant action (8) the gauge fixing term

Sg f (ξ, κ) = − 1
2ξ

∫
d4x
(
∂νhµν + κ∂µh

)2 , (15)

as it has been performed in [33,34,38,39] for LG alone. In a fully equivalent way, (15) can be
linearized by means of a Lagrange multiplier bµ(x), also known as the Nakanishi–Lautrup
field [41,42]:

Sg f (ξ, κ) =
∫

d4x
[

bµ
(
∂νhµν + κ∂µh

)
+

ξ

2
bµbµ

]
. (16)

In Sg f (ξ, κ) two gauge fixing parameters appear: ξ and κ. The first ξ governs the type
of gauge fixing. For instance, ξ = 0 and ξ = 1 are, respectively, the Landau and Feynman
gauges. The second κ tunes the type of gauge fixing picked up by ξ. For instance, the
Landau gauge in LG corresponds to a class of gauge choices, and it is realized by ξ = 0 and
generic κ (κ = 1

2 being the harmonic Landau gauge [29,34]).
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3. Propagators

To find the propagators of the theory, we write the gauge fixed action

S(g1, g2; ξ, κ) = Sinv(g1, g2) + Sg f (ξ, κ) (17)

in momentum space:

∫
d4 p
(
h̃µν(p) b̃γ(p)

)(Ω̃µν,αβ(p) Λ̃∗µν,λ(p)
Λ̃γ,αβ(p) H̃γλ(p)

)(
h̃αβ(−p)
b̃λ(−p)

)
, (18)

where Ω̃µν,αβ(p), Λ̃∗µν,λ(p) and H̃γλ(p) are p-dependent tensor operators. The propagators
of the theory are obtained by inverting the operator matrix appearing in (18). In order to
do this, it is useful to write Ω̃µν,αβ(p), Λ̃αβ,µ(p) and H̃µα(p) on the corresponding tensorial
basis, as follows

Ω̃µν,αβ = t̃Aµν,αβ + ũBµν,αβ + ṽCµν,αβ + z̃Dµν,αβ + w̃Eµν,αβ (19)

Λ̃αβ,µ = − i
2
[

f̃ (dαµ pβ + dβµ pα) + g̃dαβ pµ + l̃eαβ pµ

]
(20)

H̃µα = r̃dµα + s̃eµα , (21)

where eµν(p) and dµν(p) are transverse and longitudinal projectors, respectively,

eµν =
pµ pν

p2 ; dµν = ηµν − eµν , (22)

and the rank-4 tensor Ω̃µν,αβ(p) (19) is expanded on a basis of operators

Xµν,αβ ≡ (A, B, C, D, E)µν,αβ (23)

which can be found in Appendix A, together with their properties. The coefficients appear-
ing in (19)–(21) are found to be

t̃ = (2g1 + g2)p2 ũ = 0 ṽ = (g2 − g1)p2 z̃ =
1
2

g2 p2 w̃ = 0 (24)

f̃ =
1
2

g̃ = κ l̃ = 1 + κ r̃ =
ξ

2
s̃ =

ξ

2
. (25)

The propagators of the theory are organized in a matrix of tensor operators as well(
Ĝαβ,ρσ(p) Ĝαβ,τ(p)
Ĝ∗λ,ρσ(p) Ĝλτ(p)

)
, (26)

where

Ĝαβ,ρσ(p) =
〈

h̃αβ(p)h̃ρσ(−p)
〉
= t̂Aαβ,ρσ + ûBαβ,ρσ + v̂Cαβ,ρσ + ẑDαβ,ρσ + ŵEαβ,ρσ (27)

Ĝαβ,ρ(p) =
〈

h̃αβ(p)b̃ρ(−p)
〉
= i
[

f̂ (dαρ pβ + dβρ pα) + ĝdαβ pρ + l̂eαβ pρ

]
(28)

Ĝαρ(p) =
〈
b̃α(p)b̃ρ(−p)

〉
= r̂dαρ + ŝeαρ , (29)

and the set of coefficients {
t̂ , û , v̂ , ẑ , ŵ , f̂ , ĝ , l̂ , r̂ , ŝ

}
(30)
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are determined by the request that the matrix of propagators (26) satisfies(
Ω̃µν,αβ Λ̃∗µν,λ
Λ̃γ,αβ H̃γλ

)(
Ĝαβ,ρσ Ĝαβ,τ

Ĝ∗λ,ρσ Ĝλτ

)
=

(
I ρσ

µν 0
0 δ τ

γ

)
, (31)

where Iµν,αβ is the rank-4 tensor identity

Iµν,ρσ =
1
2
(ηµρηνσ + ηµσηνρ) . (32)

In Appendix B.1 we show that the four tensor Equation (31) is solved by

t̂ =
(4κ + 1)

(κ + 1)(2g1 + g2)p2 (33)

û =
κ(4κ + 1)− 2ξ(2g1 + g2)

(κ + 1)2(2g1 + g2)p2 (34)

v̂ =
1

(g2 − g1)p2 (35)

ẑ =
4ξ

(2ξg2 − 1)p2 (36)

ŵ =
−4κ

(κ + 1)(2g1 + g2)p2 (37)

f̂ =
−2

(2ξg2 − 1)p2 (38)

ĝ = 0 (39)

l̂ =
2

(κ + 1)p2 (40)

r̂ =
4g2

(2ξg2 − 1)
(41)

ŝ = 0 . (42)

Now we can answer the first of our questions, concerning the fractonic limit: the
vector gauge fixing condition (6) is a good one not only for LG (g2 = 0), but also for the
pure fractonic case (g1 = 0), as expected. On the other hand, we see that the propagators
are singular in four cases:

2g1 + g2 = 0 (43)

g1 − g2 = 0 (44)

2ξg2 − 1 = 0 (45)

κ + 1 = 0 . (46)

For what concerns the singularity (46), it simply implies that the “secondary” gauge
fixing parameter κ, which tunes the gauge fixing choice of the “primary” parameter ξ in
Sg f (16), should be

κ 6= −1 , (47)

as it happens also in LG [33,34,38,39]. The remaining singularities involve the action
parameters g1 and g2 and the gauge fixing parameter ξ. The poles in the propagators give
us information on the structure of the theory. For instance, they might signal the presence
of masses, possibly not standard, as in the topologically massive Maxwell–Chern–Simons
theory [40]. Or they might indicate the presence of phase transitions in the theory, such as in
QCD [43,44], or in the sigma model [45,46], or in the fracton theory itself [27]. Therefore, the
singularities appearing in the propagators of the theory Sinv should be treated separately
and with care.
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• g1 = g2
In this case, after a field redefinition, the invariant action (8) is

Sinv(g1, g2)|g1=g2
=
∫

d4 p (h̃p2h̃− 2h̃pµ pν h̃µν + h̃µν pρ pµ h̃νρ) . (48)

Notice that defining
H̃ρ ≡ pρ h̃− pν h̃ρν , (49)

the action (48) trivializes into

Sinv(g1, g2)|g1=g2
= −

∫
d4 p H̃ρH̃ρ , (50)

which does not contain any kinetic term. Hence, the singularity at g1 = g2 is explained
as a point where the theory trivializes and does not propagate, and this case will be
excluded from now on.

• 2g1 + g2 = 0
In this case the invariant action (8), after a field redefinition, reads

Sinv(g1, g2)|2g1+g2=0 =
∫

d4 p
(

h̃p2h̃− 3h̃µν p2h̃µν − 2h̃pµ pν h̃µν + 4h̃µν pρ pµ h̃νρ

)
. (51)

We see that with this choice the action does not depend on the trace h̃(p). In fact, defining

h̄µν(p) ≡ h̃µν(p)− 1
4

ηµν h̃(p) , (52)

with
h̄(p) = 0 , (53)

the action (51) can be written in terms of h̄µν(p) only:

Sinv(g1, g2)|2g1+g2=0 =
∫

d4 p
(
−3h̄µν p2h̄µν + 4h̄µν pρ pµ h̄νρ

)
. (54)

Hence, in this case the theory is traceless, and the singularity at the point 2g1 + g2 = 0
indicates a change in the counting of the degrees of freedom, as we shall explicitly
show. The gauge fixing term (16) does not depend on the trace h(x) anymore and,
hence, on the gauge fixing parameter κ. In momentum space it reads

Sg f (ξ) =
∫

d4 p
(
−ib̃µ pν h̄µν +

ξ

2
b̃µ b̃µ

)
. (55)

The propagators of the traceless theory are well-defined, and the coefficients, com-
puted in Appendix B.2, are

t̂ = − 1
3p2 û =

2ξ

(2ξ − 1)p2 (56)

v̂ = − 1
3p2 ẑ =

−4ξ

(4ξ + 1)p2 (57)

ŵ = 0 f̂ =
2

(4ξ + 1)p2 (58)

ĝ = 0 l̂ =
−2

(2ξ − 1)p2 (59)

r̂ =
8

(4ξ + 1)
ŝ =

4
(2ξ − 1)

. (60)

From the above coefficients we see that the particular values of the primary gauge
parameter ξ = −1/4 and ξ = 1/2 should be excluded.
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• 2ξg2 − 1 = 0
We first notice that this singularity is not present in the pure LG case g2 = 0, as
it is readily seen from the coefficients of the propagators (36), (38) and (41). Then,
we remark that g2 is a physical parameter, hence, cannot depend on ξ, which is a
gauge, unphysical parameter. This means that 2ξg2 − 1 = 0 should be interpreted as
a singularity in ξ as a function of g2, and not viceversa. In other words, we shall not
exclude values of g2 in order to admit a particular gauge, but, rather, the singularity
must be read as a condition on the gauge fixing parameter ξ:

ξ 6= 1
2g2

. (61)

We consider the gauge fixing term (15), before the introduction of the Lagrange
multiplier bµ(x). At 2ξg2 − 1 = 0 the gauge fixed action is

S(g1, g2; ξ, κ)|2ξg2−1=0 =
∫

d4 p
[
(g1 − g2κ2)h̃p2h̃− (g1 − g2)h̃µν p2h̃µν+

−2(g1 + g2κ)h̃pµ pν
˜hµν + 2(g1 − g2)h̃µν pµ pρ h̃νρ

]
. (62)

Using the general results of Appendix B.1 it is easy to verify that this theory does not
have propagators. As a remark, if we also choose κ + 1 = 0, we find a curious result

S(g1, g2; ξ, κ)|2ξg2−1=0,κ+1=0 = (g1 − g2)SLG . (63)

This means that with the particular gauge choice which involves both the singularities
in the two gauge parameters ξ and κ, the gauge fixing procedure fails in choosing
one representative for each gauge orbit, which is what the gauge fixing is supposed
to do. In fact, according to (63), in this particular gauge, the fracton contribution
disappears, and the gauge fixed action coincides with SLG alone, which still needs to
be gauge fixed. It also appears that for g1 = g2, which is the trivial, non-propagating
case already considered, the action vanishes. We thus showed that for ξ = 1/2g2 and
κ = −1 the gauge fixed action S(g1, g2; ξ, κ) coincides with the invariant, not gauge
fixed, action SLG.

4. Degrees of Freedom

The counting of the degrees of freedom of the theory described by the action Sinv (8)
is a crucial point. This is true in general, but for this paper it is even more true. What we
already know from [27] is that, if we adopt the standard scalar gauge choice (4), which is the
natural one when dealing with a gauge transformation depending on a scalar parameter,
the degrees of freedom turn out to be six, as in LG alone (five in the traceless case), as if
the fractonic contribution S f ract (10) was not present. However, in [27] the choice of the
Landau gauge appears to be mandatory, which is rather undesirable, although the physical
results should not depend on the gauge choice. Still, it would be preferable to avoid such a
restriction, which instead seems unavoidable in the scalar gauge. This, together with the
fact that LG cannot be reached as a limit, leads us to conclude that the scalar gauge choice
is not that natural, as the direct application of the Faddeev–Popov procedure suggests. The
aim of this paper is to see whether the alternative and, at first sight, exotic choice of the
vector gauge condition (6) is an acceptable, and possibly better, one. In the previous section
we passed the first test: we have seen that the vector gauge condition leads to well-defined
propagators, with a pole which corresponds to the traceless theory, in accordance to the
scalar case [27]. In this section we face the trickier point of counting the degrees of freedom.
Not only we should recover the known result, but, and more important, we should show
that the number of degrees of freedom does not depend on the gauge choice, which was
impossible with the scalar gauge condition (4) frozen in the Landau gauge. This fact is
not obvious, since the role of the gauge fixing is to eliminate the redundant degrees of
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freedom, in order to render finite the path integral Z[J] (7), and the justified fear is that
the four conditions represented by the vector choice (6) might lead to underestimate the
degrees of freedom with respect to the unique scalar condition (4). The usual way to count
the degrees of freedom is to look for the constraints deriving from the equations of motion
of the gauge fixed action

S(g1, g2; ξ, κ) = Sinv(g1, g2) + Sg f (ξ, κ) , (64)

where the invariant action Sinv(g1, g2) and the gauge fixing term Sg f (ξ, κ) are given
by (8) and (16), respectively. In momentum space, we obtain

δS
δh̃µν

= 2g1ηµν p2h̃ + 2(g2 − g1)p2h̃µν − 2g1ηµν pα pβ h̃αβ − 2g1 pµ pν h̃ + (2g1 − g2)pα(pµ h̃αν + pν h̃αµ)

+
i
2
(pν b̃µ + pµ b̃ν) + iκηµν pα b̃α = 0 (65)

δS
δb̃µ

= −ipα h̃αµ − iκpµ h̃ + ξ b̃µ = 0 . (66)

If our task was just to count the degrees of freedom, given that they must not depend
on the gauge choice, we would immediately find the result by choosing ξ = κ = 0 in
Sg f (16), which belongs to the class of Landau gauges. The b̃µ-equation of motion (66) gives

pα h̃αµ = 0 , (67)

which are the four constraints needed to recover the six degrees of freedom (five in the
traceless case) which we expect for the symmetric rank-2 tensor field hµν(x). However, we
want more, that is to show that this number does not depend on the gauge choice, which
would render the vector gauge condition a good one under any respect. Achieving this,
the vector choice would be preferable to the scalar one, since the Landau gauge would not
be the only possibility, and LG could be obtained as a limit. Hence, we proceed without
choosing a particular gauge, and we saturate (65) with ηµν, eµν(p) (22) and pµ:

ηµν δS
δh̃µν

= 2(2g1 + g2)
(

p2h̃− pα pβ h̃αβ
)
+ i(1 + 4κ)pα b̃α = 0 (68)

eµν δS
δh̃µν

= i(1 + κ)pα b̃α = 0 (69)

pν δS
δh̃µν

= 2g2 pα
(

p2h̃αµ − pµ pβ h̃αβ

)
+ ip2b̃µ + i(1 + 2κ)pµ pα b̃α = 0 . (70)

Multiplying (66) by pµ, we get

pµ δS
δb̃µ

= ipα pβ h̃αβ + iκp2h̃− ξ pα b̃α = 0 . (71)

We separately study the generic case 2g1 + g2 6= 0 and the traceless case 2g1 + g2 = 0.

4.1. Case 2g1 + g2 6= 0

From (69), remembering that κ + 1 6= 0, we obtain the condition

pα b̃α = 0 , (72)

which, plugged into (66), (68), (70) and (71), yields
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ξ b̃µ = i
(

pα h̃αµ + κpµ h̃
)

(73)

(2g1 + g2)
(

p2h̃− pα pβ h̃αβ
)
= 0 (74)

2g2 pα
(

p2h̃αµ − pµ pβ h̃αβ

)
+ ip2b̃µ = 0 (75)

ipα pβ h̃αβ + iκp2h̃ = 0 . (76)

Now, since we are outside the critical point 2g1 + g2 = 0 (43), from (74) and (76)
we have

p2h̃ = pα pβ h̃αβ (77)

−κp2h̃ = pα pβ h̃αβ , (78)

that is
(1 + κ)p2h̃ = 0⇒ p2h̃ = 0 , (79)

hence
pα pβ h̃αβ = 0 . (80)

Notice that the conditions (79) and (80) are the ones holding for LG alone
(g2 = 0) [38,39]. It appears, therefore, that the fracton contribution (g1 = 0) (10) to
the total invariant action (8) is irrelevant as far as the degrees of freedom are concerned,
which is an unexpected result. Nonetheless, we can directly check this result. Substituting
the conditions (79) and (80) into (75), we find

−ip2b̃µ = 2g2 p2 pα h̃αµ . (81)

Using (73) and (79), assuming ξ 6= 0, i.e., excluding for the moment the Landau gauge,
Equation (81) becomes

(2g2ξ − 1)p2 pα h̃αµ = 0 . (82)

We previously studied the case 2g2ξ − 1 = 0, which we now exclude. This means that

p2 pα h̃αµ = 0 (83)

and, from (81),
p2b̃µ = 0 . (84)

We now define
J̃α ≡ pβ h̃αβ , (85)

which, because of (80), is a conserved current

pα J̃α = 0 . (86)

The solution of (86) is
J̃α = εαµνρ pµ B̃νρ , (87)

where B̃νρ is a generic antisymmetric tensor. Plugging (85) in (83), we have

p2 J̃α = p2εαµνρ pµ B̃νρ = 0 , (88)

and therefore
p2B̃ρλ = pρ B̃λ − pλ B̃ρ . (89)

From (87) we then deduce that the current Jα vanishes

J̃α = pβ h̃αβ = 0 . (90)
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We now come back to the Landau gauge ξ = 0, which has been excluded in achieving
the above result. We now show that (90) holds also in this case. The b̃µ-equation of motion
in the Landau gauge is

pα h̃αµ = −κpµ h̃ . (91)

The degrees of freedom must not depend on the gauge choice. We therefore choose
κ = 0 and we obtain

pα h̃αµ = 0 , (92)

which represents four constraints on the 4D symmetric tensor field h̃µν(p). Hence, the
number of degrees of freedom are six, at least if 2g1 + g2 6= 0. This coincides with the
number of degrees of freedom of LG alone [38,39]. We have seen that 2g1 + g2 = 0
corresponds to the traceless case, which is interesting and will be treated separately.

4.2. Case 2g1 + g2 = 0

As we have seen in Section 3, this case corresponds to the traceless theory. The gauge
fixed action can be written in terms of the traceless field h̄µν(x) (52), with κ = 0, and, in
momentum space, it reads

S(g1, g2; ξ, κ)|2g1+g2=0,κ=0 =
∫

d4 p
(
−3h̄µν p2h̄µν + 4h̄µν pµ pρ h̄νρ − ib̃µ pν h̄µν +

ξ

2
b̃µ b̃µ

)
, (93)

whose equations of motion are

δS
δh̄µν

= −6p2h̄µν + 4pα
(

pµ h̄αν + pν h̄αµ

)
+

i
2
(

pν b̃µ + pµ b̃ν

)
= 0 (94)

δS
δb̃µ

= −ipν h̄µν + ξ b̃µ = 0 . (95)

Saturating (94) with ηµν, eµν(p) and pν, we obtain

ηµν δS
δh̄µν

= 8pα pβ h̄αβ + ipα b̃α = 0 (96)

eµν δS
δh̄µν

= 2pα pβ h̄αβ + ipα b̃α = 0 (97)

pν δS
δh̄µν

= −2p2 pα h̄αµ + 4pµ pα pβ h̄αβ +
i
2

p2b̃µ +
i
2

pµ pα b̃α = 0 . (98)

From (96) and (97) we have

pα pβ h̄αβ = 0 (99)

pα b̃α = 0 . (100)

If ξ 6= 0, the Lagrange multiplier b̃µ(p) can be obtained from (95) and, plugged in (98),
using (99), we obtain

(4ξ + 1)p2 pα h̄αµ = 0 . (101)

We have already excluded the gauge choice 4ξ + 1 = 0, which is the propagator
singularity 2ξg2 − 1 = 0 at 2g1 + g2 = 0, hence

p2 pα h̄αµ = 0 . (102)

Now, using the same argument of Section 4.1, involving J̃α(p) (85) and B̃νρ(p) (87),
Equations (99) and (102) imply the four constraints

pα h̄αµ = 0 . (103)
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On the other hand, when ξ = 0, i.e., in the Landau gauge, the equation of motion of
the Lagrange multiplier (95) directly gives the constraint (103). Hence, in all cases we have
four constraints on a traceless rank-2 symmetric tensor. Therefore, when 2g1 + g2 = 0, the
degrees of freedom are five.

The results for the different values of the action constants g1 and g2 and of the gauge
fixing parameters ξ and κ are summarized in Table 1.

Table 1. Summary of results and comparison with the scalar case.

g1, g2
Vectorial Gauge Fixing Scalar Gauge Fixing

Degrees of Freedom Forbidden Gauges Degrees of Freedom Forbidden Gauges

g1 6= g2 6= 0, 2g1 + g2 6= 0 6 ξ = 1
2g2

, κ = −1 6 ξ 6= 0

g2 = 0 (LG) 6 κ = −1 not defined

2g1 + g2 = 0 5 ξ =
{

1
2 ,− 1

4

}
5 ξ 6= 0

g1 = g2 trivial

5. Summary and Discussion

In this paper, we considered the theory of a symmetric rank-2 tensor hµν(x), invariant
under the symmetry (1), which is the covariant extension of the fractonic symmetry studied
in the literature. The main novelty of our approach, with respect to the existing literature
concerning fractons, is to give a covariant theory of this new type of quasiparticles, and this
is not a formal point. In fact the covariant extension (1) of the fractonic symmetry, which
usually involves only space and not time derivatives, leads immediately to the action (8),
which makes evident the relation between linearized gravity and fractons. Moreover,
as explained in [28], the main results concerning fractons, in particular the existence of
tensorial electric and magnetic fields, the Gauss constraint, the Maxwell-like Hamiltonian
and the dipole response to “electromagnetic” fields through a “Lorentz force”, to cite a few,
are indeed consequences of a covariant action for a symmetric rank-2 tensor field hµν(x),
invariant under the covariant extension of the fracton transformation (1), which therefore
plays, as usual in quantum field theory, a central role. This, in our opinion, is the main
physical motivation for studying the action (8). Without this strong physical motivation,
a theory defined by the transformation (1) suffers from several drawbacks from the field
theoretical point view. First, (1) is quadratic in the spacetime derivatives. This implies
that, in 4D, the gauge parameter Φ(x) must have negative mass dimensions. In fact, the
most general action invariant under (1) is given by Sinv (8), and power counting tells us
that [hµν] = 1, whence the unusual negative mass assignment for the gauge parameter.
Had we dealt with a field theory exercise, it would have been better to face the problem
in 6D, where [hµν] = 2 and, consequently, the gauge parameter would have been given
vanishing dimensions, as usual in gauge field theory. However, the most general invariant
action (8) consists of two terms: SLG (9) and S f ract (10) which are, respectively, the actions
for linearized gravity and for fractons, both physically relevant in 4D. Covariance makes
evident that gravitons and fractons are indeed described by a unique gauge field theory,
as already guessed in the non-covariant approach. Precisely for this reason, it would be
natural to have a unified theory where both contributions, gravitons and fractons, could
be reached as limits of the complete theory. This legitimate expectation is not so easy to
be satisfied, due, again, to the peculiarity of the defining symmetry (1). In fact, according
to the standard Faddeev–Popov procedure, the gauge fixing condition should keep the
same tensorial structure of the gauge parameter. In other words, a scalar gauge parameter
should correspond to a scalar gauge condition, which in our case is (4), which is the most
general covariant one. This was performed in [27], showing that the theory exists only in
the Landau gauge, since outside this particular gauge the quadratic gauge fixed action
cannot be inverted and, consequently, the propagators do not exist. Being forced to work
only in a specific gauge is not reassuring. First, because this does not happen in other more
standard gauge field theories. Second, because there might be the concern that the obtained
results are consequences of that gauge, hence unphysical and not really peculiar to the
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theory. Moreover, linearized gravity cannot be reached as a limit of the whole theory, for the
obvious reason that it is defined by the infinitesimal diffeomorphism transformation (2),
which is a gauge transformation depending on a vectorial gauge parameter, which by
any means cannot be fixed by a scalar gauge condition, simply because four is greater
than one. Evidence of this appears in the propagators, which display a singularity in the
limit of vanishing fractonic contribution, which in this paper means g2 → 0. The aim of
this paper was to find a well-defined gauge fixed theory, not constrained to a particular
gauge choice, and where both limiting cases, fractonic and linearized gravity, could be
reached smoothly. The idea is simply to look at the left-hand side of (1) and take the
vectorial gauge fixing choice (6), which, again, is the most general covariant one and is
the same of linearized gravity. It is not obvious that it could work. First, what does it
mean that “it works”? Besides the possibility of getting both fractons and gravitons as
a limit, we asked two minimal requirements: that propagators are defined in a generic
gauge, and that counting the degrees of freedom of the theory coincides with the one
found in [27], but without referring to a particular gauge choice. The result of this paper
is that both requests have been achieved. We have now a covariant gauge fixed theory
of fractons and linearized gravity, which has six degrees of freedom, or five, since for a
particular combination of fractons and gravitons the theory is traceless. All the results are
gauge-independent; therefore, the vector gauge fixing (6) seems to be a better choice than
the standard scalar one (4). We conclude this paper with a remark concerning the possible
quantization of the action (8). As it is well known, the quantization of LG is a long-standing
issue. As far as we know, a quantum field theory of fractons has not been achieved yet.
In view of this, the covariant formulation adopted in our paper should be quite suitable,
especially because the fractonic part (10) of the action (8) is impressively reminiscent the
electromagnetic Maxwell theory. Hence, one might think about a kind of “fracton QED”,
where matter is coupled to fractons. Under this, the vector gauge fixing studied in this
paper can be very useful, not being restricted to the Landau gauge.
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Appendix A. Basis for the Ω-Tensors

In the momentum space gauge fixed action S(g1, g2; ξ, κ) (17) the kinetic operator
Ω̃µν,αβ(p) displays the following symmetries

Ω̃µν,αβ(p) = Ω̃νµ,αβ(p) = Ω̃µν,βα(p) = Ω̃αβ,µν(p) . (A1)

It can be expanded on a basis formed by a set of five rank-4 tensors, collectively
denoted Xµν,αβ(p) [27,33,34,38,39,47]

Xµν,αβ ≡ (A, B, C, D, E)µν,αβ (A2)
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with the same symmetry properties (A1). Explicitly, the X-tensors read [27,33,34,38,39,48,49]

Aµν,αβ =
dµνdαβ

3
(A3)

Bµν,αβ = eµνeαβ (A4)

Cµν,αβ =
1
2

(
dµαdνβ + dµβdνα −

2
3

dµνdαβ

)
(A5)

Dµν,αβ =
1
2
(
dµαeνβ + dµβeνα + eµαdνβ + eµβdνα

)
(A6)

Eµν,αβ =
ηµνηαβ

4
, (A7)

and eµν(p) and dµν(p) are the transverse and longitudinal projectors (22), which are idem-
potent and orthogonal

eµλeλ
ν = eµν, dµλdλ

ν = dµν, eµλdλ
ν = 0 . (A8)

The X-tensors have the following properties:

• decomposition of the rank-4 tensor identity Iµν,αβ:

Aµν,αβ + Bµν,αβ + Cµν,αβ + Dµν,αβ = Iµν,αβ (A9)

Iµν,ρσ =
1
2
(ηµρηνσ + ηµσηνρ) (A10)

• idempotency:
X ρσ

µν Xρσ,αβ = Xµν,αβ; (A11)

• orthogonality of A, B, C and D:

Xµν,αβX′αβ
ρσ = 0 if (X, X′) 6= E and X 6= X′ ; (A12)

• contractions with E:

Aµν,αβEαβ
ρσ =

dµνηρσ

4
(A13)

Bµν,αβEαβ
ρσ =

eµνηρσ

4
(A14)

Cµν,αβEαβ
ρσ = Dµν,αβEαβ

ρσ = 0 . (A15)

Appendix B. Calculation of the Propagators

Appendix B.1. 2g1 + g2 6= 0

The matrix Equation (31) yields

Ω̃µν,αβĜαβ,ρσ + Λ̃∗µν,λĜ∗λ,ρσ = I ρσ
µν (A16)

Ω̃µν,αβĜαβ,τ + Λ̃∗µν,λĜλτ = 0 (A17)

Λ̃γ,αβĜαβ,ρσ + H̃γλĜ∗λ,ρσ = 0 (A18)

Λ̃γ,αβĜαβ,τ + H̃γλĜλτ = δτ
γ . (A19)
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The first Equation (A16), using the expansions (19), (20), (27) and the properties of the
X-basis listed in Appendix A, gives a system of six Equations (remember that our aim is to
find the set of coefficients of the propagators (30))

4t̃t̂ + 3t̃ŵ− 4ṽv̂ + 6p2 g̃ĝ = 0 (A20)

t̃ŵ + 2p2 g̃l̂ = 0 (A21)

p2 l̃ l̂ = 2 (A22)

p2 l̃ ĝ = 0 (A23)

ṽv̂ = 1 (A24)

z̃ẑ + p2 f̃ f̂ = 1 . (A25)

In the same way, from (A17)–(A19) we obtain three more sets of equations

2z̃ f̂ + f̃ r̂ = 0 (A26)

4t̃ĝ + 2g̃ŝ = 0 (A27)

l̃ ŝ = 0 , (A28)

f̃ ẑ + 2r̃ f̂ = 0 (A29)

4g̃t̂ + 3g̃ŵ + l̃ŵ + 8s̃ĝ = 0 (A30)

4l̃û + 3g̃ŵ + l̃ŵ + 8s̃l̂ = 0 , (A31)

and

p2 f̃ f̂ + r̃r̂ = 1 (A32)

3p2 g̃ĝ + p2 l̃ l̂ + 2s̃ŝ = 2 . (A33)

The above systems of equations are easily solved [50] and, using the coefficients of the
kinetic term (24) and (25), we finally obtain

t̂ =
(4κ + 1)

(κ + 1)(2g1 + g2)p2 (A34)

û =
κ(4κ + 1)− 2ξ(2g1 + g2)

(κ + 1)2(2g1 + g2)p2 (A35)

v̂ =
1

(g2 − g1)p2 (A36)

ẑ =
4ξ

(2ξg2 − 1)p2 (A37)

ŵ =
−4κ

(κ + 1)(2g1 + g2)p2 (A38)

f̂ =
−2

(2ξg2 − 1)p2 (A39)

ĝ = 0 (A40)

l̂ =
2

(κ + 1)p2 (A41)

r̂ =
4g2

(2ξg2 − 1)
(A42)

ŝ = 0 . (A43)
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Appendix B.2. 2g1 + g2 = 0

The action of the gauge fixed theory, after a field redefinition and setting κ = 0 because
this is the traceless case, is

S(g1, g2; ξ, κ)|2g1+g2=0;κ=0 = Sinv(g1, g2)|2g1+g2=0 + Sg f (ξ) , (A44)

where the invariant action Sinv(g1, g2)|2g1+g2=0 and the gauge fixing term Sg f (ξ) are given
by (51) and (55), respectively [51]. It can be written in the form (18), and the coefficients in
Ω̃µν,αβ (19), Λ̃αβ,µ (20) and H̃µα (21) are

t̃ = −3p2 ũ = p2 ṽ = −3p2 z̃ = −p2; w̃ = 0 (A45)

f̃ =
1
2

g̃ = 0 l̃ = 1 r̃ =
ξ

2
s̃ =

ξ

2
. (A46)

Following the same steps of the general case, we find the system of equations for the
coefficients of the propagators

ṽv̂ = 1 (A47)

z̃ẑ + p2 f̃ f̂ = 1 (A48)

p2 f̃ f̂ + r̃r̂ = 1 (A49)

2z̃ f̂ + f̃ r̂ = 0 (A50)

f̃ ẑ + 2r̃ f̂ = 0 (A51)

p2 l̂ + 2s̃ŝ = 2 (A52)

4t̃ĝ = 0 (A53)

4ũl̂ + 2ŝ = 0 (A54)

4t̃t̂ + 3t̃ŵ = 4 (A55)

ŵ + 8s̃ĝ = 0 (A56)

ũŵ + 2p2 ĝ = 0 (A57)

4ũû + ũŵ + 2p2 l̂ = 4 (A58)

t̃ŵ = 0 (A59)

4û + ŵ + 8s̃l̂ = 0 , (A60)

which is simpler than the general case. In particular, since t̃(p) 6= 0 in (A45),
from (A53) and (A55) we immediately obtain ĝ = ŵ = 0. The solutions are therefore
easily found

t̂ = − 1
3p2 û =

2ξ

(2ξ − 1)p2 v̂ = − 1
3p2 ẑ =

−4ξ

(4ξ + 1)p2 ŵ = 0 (A61)

f̂ =
2

(4ξ + 1)p2 ĝ = 0 l̂ =
−2

(2ξ − 1)p2 r̂ =
8

(4ξ + 1)
ŝ =

4
(2ξ − 1)

. (A62)
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