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Abstract: Hermite–Hadamard inequalities and their refinements have been investigated for a long
period of time. In this paper, we obtained refinements of the Hermite–Hadamard inequality of
tensorial type for the convex functions of self-adjoint operators in Hilbert spaces. The obtained
inequalities generalize the previously obtained inequalities by Dragomir. We also provide useful
Lemmas which enabled us to obtain the results. The examples of the obtained inequalities for specific
convex functions have been given in the example and consequences section. Symmetry in the upper
and lower bounds can be seen in the last Theorem of the paper given, as the upper and lower bounds
differ by a constant.
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1. Introduction

The notion of a tensor has its origin in the 19th century, where it was formulated by
Gibbs, although he did not formally use the word ’tensor’ but ’dyadic’. In modern language,
it can be seen as the origin of the tensor definition and its introduction to mathematics. The
interplay of inequalities in mathematics is vast, and as such, it has applications in tensors
as well. Mathematics and other fields of science are strongly affected by inequalities. There
are many types of inequality, but those that involve Jensen, Ostrowski, Hermite–Hadamard
and Minkowski inequalities are of particular importance. More about inequalities and
their history can be found in the books [1,2]. One of the most celebrated inequalities is the
Hermite–Hadamard (HH) inequality, which states the following: If f ? : I→ R is a convex
function on an interval I ⊂ R and r1, r2 ∈ I are such that r1 < r2, then

f ?
(

r1 + r2

2

)
6

1
r2 − r1

∫ r2

r1

f ?(λ)dλ 6
f ?(r1) + f ?(r2)

2
.

Concerning the generalization of this inequality, see the following and references
therein for more information [3–14]. Inequalities in Hilbert space were intensively worked
on in the 20th century, but a special expansion occurred with the proof of Jensen-type
inequality in Hilbert space, the so-called Mond–Pecaric inequality [15]. Let f : [m, M]→ R
be a continuous convex function. If x ∈ H, (x, x) = 1, then for every operator C such that
mI 6 C 6 MI, where I is identity operator and C is self-adjoint, holds,

f ((Cx, x)) 6 ( f (C)x, x).
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After its introduction, there followed an expansion of a special type of inequalities of
the MD (Mond–Pecaric) type in the Hilbert space [16,17]. The recent further development of
inequalities in Hilbert space was followed by the definition of an operator convex function
by Dragomir in 2011 [18], which is given by the following.

A real valued continuous function f on an interval I is said to be operator convex (resp.
operator concave) if

f ((1− λ)A + λB) 6 (resp. ≥)(1− λ) f (A) + λ f (B)

in the operator order, for all λ ∈ [0, 1] and for every self-adjoint operator A and B on a
Hilbert space H whose spectra are contained in I. By introducing the given definition of
operator convexity the expansion of another branch of Hilbert inequalities began. You can
find more about the class of operator convex functions in the following references [19,20].
For more information on inequalities in Hilbert spaces, see the references [21,22]. Recent ad-
vances concerning the theory of inequalities in Hilbert spaces will be shown to supplement
the presentation of this work. Alomari [23] gave the following numerical radius inequality.

Let A, B, C, D ∈ B(H). Let f be a positive, increasing and convex function on R. If f is
twice differentiable such that f ′′ > λ > 0, then

f (w(DCBA)) 6
1
2

∣∣∣∣ f (A∗|B|2 A) + f (D|C∗|2D∗)
∣∣∣∣− inf

||x||=1
η(x),

where η(x) := 1
8 λ〈
[
A∗|B|2 A− D|C∗|2D∗

]
x, x〉2.

The recent generalization of the Cauchy–Schwartz inequality and related inequalities
has been given by Altwaijry et al. [24], one of the results given is the following.

If T, S ∈ B(H), r > 1 and λ ∈ [0, 1], then the inequality

w2r(S∗T) 6
1
2

∣∣∣∣|T|4r + |S|4r∣∣∣∣− λ(1− λ)

1 + λ− λ2

(∣∣∣∣|T|4r + |S|4r∣∣∣∣− w(S∗T)
∣∣∣∣|T|2r + |S|2r∣∣∣∣)

holds.
Recent research on the tensorial inequalities was carried out by Wang et al. [25], who

gave the following inequality.
Let A = (ai1i2 ...im) ∈ C[m,n]. If

(i) |ai...i| > r[i]i (A), f or all i ∈ 〈n〉,

(ii)
(
|ai...i| − r[i]i (A)

)(
|aj...j| − r[i]j (A)

)
> r[i]i (A)r[i]j (A), f or all i, j ∈ 〈n〉, i 6= j,

then A is nonsingular; that is, 0 /∈ σ(A). In this paper, various inequalities of tensorial
type will be obtained. The concept of symmetry can be seen in Theorem 4, which gives a
generalization of the inequality obtained by Dragomir. Now, we begin with the introduction
related to the tensorial product and Hilbert space topic of the paper.

Let I?1 , . . . , I?k be intervals from R and let f ? : I?1 × . . . × I?k → R be an essentially
bounded real function defined on the product of the intervals. Let Q? = (Q1?, . . . , Qk?)
be a k-tuple of bounded self-adjoint operators on Hilbert spaces H?

1 , . . . , H?
k such that the

spectrum of Qi? is contained in I?i for i = 1, . . . , k. We say that such a k-tuple is in the
domain of f ?. If

Qi? =
∫

Ii

λidEi(λi)

is the spectral resolution of Qi? for i = 1, . . . , k by following [26], we define

f ?(Q1?, . . . , Qk?) :=
∫

I?1
. . .
∫

I?k
f ?(λ1, . . . , λk)dE1(λ1)⊗?̃ . . .⊗?̃ dEk(λk)
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as a bounded self-adjoint operator on the tensorial product H?
1 ⊗?̃ . . .⊗?̃ H?

k .
If the Hilbert spaces are of finite dimension, then the above integrals become finite

sums, and we may consider the functional calculus for arbitrary real functions. Construction
of this type extends the definition of Kornyi [27] for functions of two variables and has the
property that

f ?(Q1?, . . . , Qk?) = f ?1 (Q1?)⊗?̃ . . .⊗?̃ f ?k (Qk?),

whenever f ? can be separated as a product f ?(t?1 , . . . , t?k ) = f ?1 (t
?
1) . . . f ?k (t

?
k ) of k functions

each depending on only one variable.

2. Preliminaries

We begin this section with certain basic concepts and lemmas, which will be needed
in the sequel.

Since we will be using tensorial products, we will define in the following what tensors
and tensorial products are in short; for more, consult the following book [28].

Definition 1. Let Ũ, Ṽ and W̃ be vector spaces over the same field F̃. A mapping Φ : Ũ× Ṽ → W̃
is called a bilinear mapping if it is linear in each variable separately. Namely, for all u, u1, u2 ∈ Ũ,
v, v1, v2 ∈ Ṽ and a, b ∈ F̃,

Φ(au1 + bu2, v) = aΦ(u1, v) + bΦ(u2, v),
Φ(u, av1 + bv2) = aΦ(u, v1) + bΦ(u, v2). If W̃ = F̃, a bilinear mapping Φ : Ũ × Ṽ → F̃ is
called a bilinear function.

Definition 2. Let ⊗?̃ : Ũ × Ṽ → W̃ be a bilinear mapping. The pair (W̃,⊗?̃) is called a tensor
product space of Ũ and Ṽ if it satisfies the following conditions:

1. < Im⊗?̃ >= W̃ (Generating property);
2. dim < Im⊗?̃ >= dimŨ · dimṼ (Maximal span property). If W̃ = F̃, a bilinear mapping

Φ : Ũ × Ṽ → F̃ is called a bilinear function.

The member w ∈ W̃ is called a tensor, but not all tensors in W̃ are products of two vectors of
the form u⊗?̃ v. The notation < Im⊗?̃ > denotes the span.

Example 1. Let u = (x1, . . . , xm) ∈ Rm and v = (y1, . . . , yn) ∈ Rn. We can view u and v as
column vectors. Namely,

u =

 x1
...

xm

, v =

y1
...

yn


are m× 1 and n× 1 matrices, respectively.
We define ⊗?̃ : Rm ×Rn → Mm,n,

u⊗?̃ v = uvt =

 x1y1 · · · x1yn
...

xmy1 · · · xmyn

,

an m× n matrix with entries Aij = xiyj. (Mm,n,⊗?̃) is a tensor product space of Rm and Rn.

Tensors do not need to be matrices. This is just one model given. For more, consult
the following book [28].

Remember the following properties of the tensorial product:

(Q?L?)⊗?̃ (W?R?) = (Q? ⊗?̃ W?)(L? ⊗?̃ R?)

that holds for any Q?, W?, L?, R? ∈ B(H).
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From the property, we can easily deduce the following consequences:

Qn
? ⊗?̃ Wn

? = (Q? ⊗?̃ W?)
n, n > 0,

(Q? ⊗?̃ 1)(1⊗?̃ W?) = (1⊗?̃ W?)(Q? ⊗?̃ 1) = Q? ⊗?̃ W?,

which can be extended; for two natural numbers r, s, we have

(Q? ⊗?̃ 1)s(1⊗?̃ W?)
r = (1⊗?̃ W?)

r(Q? ⊗?̃ 1)s = Qs
? ⊗?̃ Wr

?.

The current research concerning tensorial inequalities in Hilbert space can be seen in
the following papers [29–33].

Lemma 1 ([34], p. 4). Assume that Q? and W? are self-adjoint operators with Sp(Q?) ⊂ I and
Sp(W?) ⊂ J. Let f , h be continuous on I, g, k continuous on J and ψ continuous on an interval K
that contains the sum of the intervals h(I) + k(J); then

( f ?(Q?)⊗?̃ 1 + 1⊗?̃ g?(W?))ψ(h(Q?)⊗?̃ 1 + 1⊗?̃ k(W?))

=
∫

I

∫
J
( f (t) + g(s))ψ(h(t) + k(s))dEt ⊗?̃ dF(s),

where Q? and W? have the spectral resolutions,

Q? =
∫

I
tdEt and W? =

∫
J

sdFs.

Theorem 1 ([35], p. 4). Assume that Q? and W? are self-adjoint operators with Sp(Q?) ⊂ I and
Sp(W?) ⊂ J. Let f be continuous on I; g continuous on J and continuous on an interval K that
contains the product of the intervals f (I)g(J), then

ψ( f ?(Q?)⊗?̃ g?(W?)) =
∫

I

∫
J

ψ( f (t)g(s))dEt ⊗?̃ dF(s),

where Q? and W? have the spectral resolutions

Q? =
∫

I
tdEt, W? =

∫
J

sdFs.

Theorem 2 ([35], p. 4). Assume that Q? and W? are self-adjoint operators with Sp(Q?) ⊂ I and
Sp(W?) ⊂ J. Let h be continuous on I, k continuous on J and ψ modulus on an interval U that
contains the sum of the intervals h(I) + k(J), then

ψ(h(Q?)⊗?̃ 1 + 1⊗?̃ k(W?)) =
∫

I

∫
J

ψ(h(t) + k(s))dEt ⊗?̃ dF(s),

where Q? and W? have the spectral resolutions

Q? =
∫

I
tdEt, W? =

∫
J

sdFs.

In the following, we will obtain theorems that generalize the ones from Dragomir’s
paper [35]. In recent times, emphasis has been placed on inequalities in Hilbert space,
which can be seen from the references to books on inequalities in Hilbert spaces given
in the introduction. Motivation for this paper stems from the cited references and from
the fact that the Hilbert space inequalities have many applications as indicated in the
conclusion section.

Now we begin with the main results of this paper.
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3. Main Results

The following Lemma generalizes the Lemma given by Dragomir in the paper ([35],
p. 7) which will be instrumental in the obtained results.

Lemma 2. Let ψ : I → R be a convex function on the interval I, q, w ∈ I0, the interior of I, with
q < w, 0 < τ 6 1 and ξ ∈ [0, 1]. Then,(

ψ′+

(
(1− ξ)

q
τ
+ ξw

)
− ψ′−

(
(1− ξ)

q
τ
+ ξw

))
ξ

(
w
(

1
τ
− ξ

)
− q

τ
(1− ξ)

)

6 (1− ξ)ψ
( q

τ

)
+ ξψ

(w
τ

)
− ψ

(
(1− ξ)

q
τ
+ ξw

)
+wξ

(
1− 1

τ

) ∫ 1

0
ψ′
(
(1− t)

q
τ
+ t((1− ξ)

q
τ
+ ξw)

)
dt

6
(

ψ′−

(w
τ

)
− ψ′+

( q
τ

))
ξ

(
w
(

1
τ
− ξ

)
− q

τ
(1− ξ)

)
.

Proof. Since ψ is convex on I, it follows that the function is differentiable on I0 except at a
countable number of points; the lateral derivatives ψ′ exist in each point of I0—they are
increasing on I0 and ψ′− 6 ψ′+ on I0. For any x, y ∈ I0, we have the following relation:

ψ(x) = ψ
( y

τ

)
+
∫ x

y
τ

ψ′(s)ds = ψ
( y

τ

)
+
(

x− y
τ

) ∫ 1

0
ψ′
(
(1− t)

y
τ
+ tx

)
dt

Assume that q < w and ξ ∈ [0, 1]. Then we have

ψ
(
(1− ξ)

q
τ
+ ξw

)
= ψ

( q
τ

)
+ ξ
(

w− q
τ

) ∫ 1

0
ψ′
(
(1− t)

q
τ
+ t((1− ξ)

q
τ
+ ξw

)
dt

and
ψ
(
(1− ξ)

q
τ
+ ξw

)
= ψ

(w
τ

)
+

(
q
τ
(1− ξ)− w

(
1
τ
− 1
)) ∫ 1

0
ψ′
(
(1− t)

w
τ
+ t((1− ξ)

q
τ
+ ξw

)
dt.

If we multiply the first top inequality with (1− ξ) and the second by ξ, and add the
resulting equalities, we get

ψ
(
(1− ξ)

q
τ
+ ξw

)
= ψ(1− ξ)

( q
τ

)
+ ξψ

(w
τ

)
+ξ(1− ξ)

(
w− q

τ

) ∫ 1

0
ψ′
(
(1− t)

q
τ
+ t((1− ξ)

q
τ
+ ξw

)
dt

+ξ

(
q
τ
(1− ξ)− w

(
1
τ
− 1
)) ∫ 1

0
ψ′
(
(1− t)

w
τ
+ t((1− ξ)

q
τ
+ ξw

)
dt.

From which we get

ψ(1− ξ)
( q

τ

)
+ ξψ

(w
τ

)
− ψ

(
(1− ξ)

q
τ
+ ξw

)
+wξ

(
1− 1

τ

) ∫ 1

0
ψ′
(
(1− t)

q
τ
+ t((1− ξ)

q
τ
+ ξw

)
dt

= ξ

(
− q

τ
(1− ξ) + w

(
1
τ
− 1
)) ∫ 1

0
ψ′
(
(1− t)

w
τ
+ t((1− ξ)

q
τ
+ ξw

)
dt
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−ξ

(
− q

τ
(1− ξ) + w

(
1
τ
− 1
)) ∫ 1

0
ψ′
(
(1− t)

q
τ
+ t((1− ξ)

q
τ
+ ξw

)
dt;

an interesting equality in and of itself.
Since q < w and ξ ∈ [0, 1], then (1− ξ) q

τ + ξw ∈ ( q
τ , w) and

(1− t)
q
τ
+ t
(
(1− ξ)

q
τ
+ ξw

)
∈
[

q
τ

, (1− ξ)
q
τ
+ ξw

]
,

(1− t)
w
τ
+ t
(
(1− ξ)

q
τ
+ ξw

)
∈
[
(1− ξ)

q
τ
+ ξw,

w
τ

]
.

By the monotonicity of the derivative we have

ψ′+

(
(1− ξ)

q
τ
+ ξw

)
6 ψ′

(
(1− t)

w
τ
+ t((1− ξ)

q
τ
+ ξw)

)
6 ψ′−

(w
τ

)
,

ψ′+

( q
τ

)
6 ψ′

(
(1− t)

q
τ
+ t((1− ξ)

q
τ
+ ξw)

)
6 ψ′−

(
(1− ξ)

q
τ
+ ξw

)
for any t ∈ [0, 1].

By integrating the inequalities and subtracting them and making use of the identity
developed before, we obtain the following inequality:(

ψ′+

(
(1− ξ)

q
τ
+ ξw

)
− ψ′−

(
(1− ξ)

q
τ
+ ξw

))
ξ

(
w
(

1
τ
− ξ

)
− q

τ
(1− ξ)

)

6 (1− ξ)ψ
( q

τ

)
+ ξψ

(w
τ

)
− ψ

(
(1− ξ)

q
τ
+ ξw

)
+wξ

(
1− 1

τ

) ∫ 1

0
ψ′
(
(1− t)

q
τ
+ t((1− ξ)

q
τ
+ ξw

)
dt

6
(

ψ′−

(w
τ

)
− ψ′+

( q
τ

))
ξ

(
w
(

1
τ
− ξ

)
− q

τ
(1− ξ)

)
.

Corollary 1. Letting τ → 1 in the obtained Lemma, we obtain Lemma 1 given by Dragomir ([35], p. 7).(
ψ′+((1− ξ)q + ξw)− ψ′−((1− ξ)q + ξw)

)
ξ(w− q)(1− ξ)

6 (1− ξ)ψ(q) + ξψ(w)− ψ((1− ξ)q + ξw)

6
(
ψ′−(w)− ψ′+(q)

)
ξ(w− q)(1− ξ).

Corollary 2. Considering the convex function ψ : R→ (0,+∞), ψ(x) = ex, then we have

(1− ξ)e
q
τ + ξe

w
τ − e(1−ξ)

q
τ +ξw + ξw

(
1− 1

τ

) ∫ 1

0
e(1−t) q

τ +t((1−ξ)
q
τ +ξw)dt

6 (e
w
τ − e

q
τ )ξ

(
w
(

1
τ
− ξ

)
− q

τ
(1− ξ)

)
.

Corollary 3. From Lemma 2, we can observe that the term in the beginning of the chain of
inequalities is positive if we assume ψ to be differentiable; therefore, we can observe the following:

0 6 (1− ξ)ψ
( q

τ

)
+ ξψ

(w
τ

)
− ψ

(
(1− ξ)

q
τ
+ ξw

)
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+wξ

(
1− 1

τ

) ∫ 1

0
ψ′
(
(1− t)

q
τ
+ t((1− ξ)

q
τ
+ ξw)

)
dt

6
(

ψ′
(w

τ

)
− ψ′

( q
τ

))
ξ

(
w
(

1
τ
− ξ

)
− q

τ
(1− ξ)

)
.

In the following theorem, we generalize the result given by Dragomir.

Theorem 3. Assume that ψ is a differentiable convex function on the interval I, and Q? and W?

are self-adjoint operators with Sp(Q?), Sp(W?) ⊂ I; then, for all τ ∈ (0, 1], we have

0 6 (1− ξ)ψ

(
Q?

τ

)
⊗?̃ 1 + ξ1⊗?̃ ψ

(
W?

τ

)
− ψ

(
1− ξ

τ
Q? ⊗?̃ 1 + ξ1⊗?̃ W?

)

+ξ

(
1− 1

τ

) ∫ 1

0
(1⊗?̃ W?)ψ

′
(

1− ξu
τ

Q? ⊗?̃ 1 + uξ1⊗?̃ W?

)
du

6
(

ξ(1− ξ)

τ
Q? ⊗?̃ 1− ξ ·

(
1
τ
− ξ

)
1⊗?̃ W?

)(
ψ′(Q?)⊗?̃ 1− 1⊗?̃ ψ′(W?)

)
.

In particular,

0 6
ψ(2Q?)⊗?̃ 1 + 1⊗?̃ ψ(2W?)

2
− ψ

(
Q? ⊗?̃ 1 +

1⊗?̃ W?

2

)

−1
2

∫ 1

0
(1⊗?̃ W?)ψ

′
(
(2− t)Q? ⊗?̃ 1 +

t
2

1⊗?̃ W?

)
dt

6
(

Q? ⊗?̃ 1
2

− 3
4

1⊗?̃ W?

)(
ψ′(Q?)⊗?̃ 1− 1⊗?̃ ψ′(W?)

)
.

Proof. Assume that Q? and W? have the spectral resolutions

Q? =
∫

I
tdEt and W? =

∫
J

sdFs.

If we take the double integral
∫

I

∫
I over dEt ⊗?̃ dF(s) in the inequality we obtained in

Corollary 3 , then we get

0 6
∫

I

∫
I

(
(1− ξ)ψ

(
t
τ

)
+ ξψ

( s
τ

)
− ψ

(
(1− ξ)

t
τ
+ ξs

))
dE(t)⊗?̃ dF(s)

+
∫

I

∫
I

(
sξ

(
1− 1

τ

) ∫ 1

0
ψ′
(
(1− u)

t
τ
+ u((1− ξ)

t
τ
+ ξs)

)
du
)

dE(t)⊗?̃ dF(s)

6
∫

I

∫
I

(
(ψ′(s)− ψ′(t))ξ

(
s
(

1
τ
− ξ

)
− t

τ
(1− ξ)

))
dE(t)⊗?̃ dF(s).

Using the properties given in preliminaries, we obtain the following, where for the part
that has the composite function we use Theorem 2, setting h(t) = (1− ξ)t, and k(s) = ξs.
We apply the Fubini’s Theorem to the second term on the left hand side, and therefore all
together we obtain∫

I

∫
I

ψ

(
(1− ξ)

t
τ
+ ξs

)
dE(t)⊗?̃ dF(s) = ψ

(
1− ξ

τ
Q? ⊗?̃ 1 + ξ1⊗?̃ W?

)

0 6 (1− ξ)ψ

(
Q?

τ

)
⊗?̃ 1 + ξ1⊗?̃ ψ

(
W?

τ

)
− ψ

(
1− ξ

τ
Q? ⊗?̃ 1 + ξ1⊗?̃ W?

)
+ξ

(
1− 1

τ

) ∫ 1

0
(1⊗?̃ W?)ψ

′
[

1− uξ

τ
Q? ⊗?̃ 1 + uξ1⊗?̃ W?

]
du.
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6 ξ

(
1
τ
− ξ

)
1⊗?̃ ψ′(W?)B− ξ

(
1
τ
− ξ

)
ψ′(Q?)⊗?̃ W?

− ξ(1− ξ)

τ
Q? ⊗?̃ ψ′(W?) +

ξ(1− ξ)

τ
ψ′(Q?)Q? ⊗?̃ 1.

By rewriting the terms using the tensorial properties in the following way,

(1⊗?̃ W?)(1⊗?̃ ψ′(W?)) = 1⊗?̃ ψ′(W?)W?, ψ′(Q?)⊗?̃ W? = (ψ′(Q?)⊗?̃ 1)(1⊗?̃ W?),

and regrouping, we obtain the original inequality,

0 6 (1− ξ)ψ

(
Q?

τ

)
⊗?̃ 1 + ξ1⊗?̃ ψ

(
W?

τ

)
− ψ

(
1− ξ

τ
Q? ⊗?̃ 1 + ξ1⊗?̃ W?

)

+ξ

(
1− 1

τ

) ∫ 1

0
(1⊗?̃ W?)ψ

′
(

1− ξu
τ

Q? ⊗?̃ 1 + uξ1⊗?̃ W?

)
du

6
(

ξ(1− ξ)

τ
Q? ⊗?̃ 1− ξ ·

(
1
τ
− ξ

)
1⊗?̃ W?

)(
ψ′(Q?)⊗?̃ 1− 1⊗?̃ ψ′(W?)

)
.

For the particular value, let τ, ξ = 1
2 .

Corollary 4. Setting τ = 1, we obtain the inequality given by Dragomir ([35], p. 9):

0 6 (1− ξ)ψ(Q?)⊗?̃ 1 + ξ1⊗?̃ ψ(W?)− ψ
(
(1− ξ)Q? ⊗?̃ 1 + ξ1⊗?̃ W?

)
6 ξ(1− ξ)(Q? ⊗?̃ 1− 1⊗?̃ W?)

(
ψ′(Q?)⊗?̃ 1− 1⊗?̃ ψ′(W?)

)
.

Lemma 3. Let ψ : I ⊂ R→ R be a twice-differentiable function on the interval I0 the interior of
I. If there exist the constants c, C such that

c 6 ψ′′(t) 6 C f or any t ∈ I0,

then

1
2

cξ(1− ξ)
(

w− q
τ

)2
6 (1− ξ)ψ

( q
τ

)
+ ξψ

(w
τ

)
− ψ

(
(1− ξ)

q
τ
+ ξw

)
−wξ

(
1− 1

τ

) ∫ 1

0

(
c
(
(1− t)

q
τ
+ t((1− ξ)

q
τ
+ ξw)

)
− ψ′

(
(1− t)

q
τ
+ t((1− ξ)

q
τ
+ ξw)

))
dt

6 (1− ξ)ψ
( q

τ

)
+ ξψ

(w
τ

)
− ψ

(
(1− ξ)

q
τ
+ ξw

)
−wξ

(
1− 1

τ

) ∫ 1

0

(
C
(
(1− t)

q
τ
+ t((1− ξ)

q
τ
+ ξw)

)
− ψ′

(
(1− t)

q
τ
+ t((1− ξ)

q
τ
+ ξw)

))
dt

6
1
2

Cξ(1− ξ)
(

w− q
τ

)2
.

Proof. We consider the auxiliary function ψC : I ⊂ R → R defined by ψC(x) = 1
2 x2C−

ψ(x). The function ψC is differentiable on I0 and ψ′′C(x) = C − ψ′′(x) > 0, showing
that ψC is a convex function on I0. By the convexity of ψC, we have for any q, w ∈ I0

and ξ ∈ [0, 1] that

0 6 (1− ξ)ψC

( q
τ

)
+ ξψC

(w
τ

)
− ψC

(
(1− ξ)

q
τ
+ ξw

)
+wξ

(
1− 1

τ

) ∫ 1

0
ψ′C

(
(1− t)

q
τ
+ t((1− ξ)

q
τ
+ ξw)

)
dt,
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which, when rearranged, gives us the right hand side inequality. The left hand side
inequality follows in a similar way by considering the auxiliary function ψC(x) = ψ(x)−
1
2 cx2, which is twice-differentiable and convex on I0. The middle inequality follows by
comparing the integral parts of the left hand part of the right inequality and the right hand
side of the left hand side inequality. If we take ψ(x) = x2, then the inequality reduces to an
equality c = C = 2.

Corollary 5. Setting τ = 1 in the Lemma, it reduces to the Lemma 2 given by Dragomir ([35], p. 11)

1
2

cξ(1− ξ)(w− q)2 6 (1− ξ)ψ(q) + ξψ(w)− ψ((1− ξ)q + ξw) 6
1
2

Cξ(1− ξ)(w− q)2.

Theorem 4. Let ψ : I ⊂→ R be a twice-differentiable function on the interval I0, the interior of
I. If there exist the constants c, C such that the condition holds, then for any self-adjoint operators
Q?, W? with SP(Q?), SP(W?) ⊂ I,

c
2

ξ(1− ξ)

(
1
τ

Q? ⊗?̃ 1− 1⊗?̃ W?

)2
6 (1− ξ)ψ

(
Q?

τ

)
⊗?̃ 1 + ξ1⊗?̃ ψ

(
W?

τ

)

−ψ

(
1− ξ

τ
Q? ⊗?̃ 1 + ξ1⊗?̃ W?

)
−ξ

(
1− 1

τ

) ∫ 1

0

[
c
(

1− uξ

τ
Q? ⊗?̃ W? + uξ(1⊗?̃ W?)

2
)

−(1⊗?̃ W?)ψ
′
(
(1− uξ)

τ
Q? ⊗?̃ 1 + uξ1⊗?̃ W?

)]
du

6 (1− ξ)ψ

(
Q?

τ

)
⊗?̃ 1 + ξ1⊗?̃ ψ

(
W?

τ

)
− ψ

(
1− ξ

τ
Q? ⊗?̃ 1 + ξ1⊗?̃ W?

)
−ξ

(
1− 1

τ

) ∫ 1

0

[
C
(

1− uξ

τ
Q? ⊗?̃ W? + uξ(1⊗?̃ W?)

2
)

−(1⊗?̃ W?)ψ
′
(

1− uξ

τ
Q? ⊗?̃ 1 + uξ1⊗?̃ W?

)]
du

6
C
2

ξ(1− ξ)

(
1
τ

Q? ⊗?̃ 1− 1⊗?̃ W?

)2
.

Proof. Assume that Q and W have spectral resolutions

Q =
∫

I
tdEt and W =

∫
I

sdFs.

If we take the double integral
∫

I

∫
I over dE(t)⊗?̃ dF(s) in the inequality which we

obtained in Lemma 3, then we get

1
2

cξ(1− ξ)
∫

I

∫
I

(
−s +

t
τ

)2
dE(t)⊗?̃ dF(s)

6 (1− ξ)
∫

I

∫
I

ψ

(
t
τ

)
dE(t)⊗?̃ dF(s) +

∫
I

∫
I

ξψ
( s

τ

)
dE(t)⊗?̃ dF(s)

−
∫

I

∫
I

ψ

(
(1− ξ)

t
τ
+ ξs

)
dE(t)⊗?̃ dF(s)

−
∫

I

∫
I

wξ

(
1− 1

τ

) ∫ 1

0
d
(
(1− u)

t
τ
+ u((1− ξ)

t
τ
+ ξw)

)
dudE(t)⊗?̃ dF(s)
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+
∫

I

∫
I

wξ

(
1− 1

τ

) ∫ 1

0
ψ′
(
(1− u)

t
τ
+ u((1− ξ)

t
τ
+ ξw)

)
dudE(t)⊗?̃ dF(s)

6 (1− ξ)
∫

I

∫
I

ψ

(
t
τ

)
dE(t)⊗?̃ dF(s) +

∫
I

∫
I

ξψ
( s

τ

)
dE(t)⊗?̃ dF(s)

−
∫

I

∫
I

ψ

(
(1− ξ)

t
τ
+ ξs

)
dE(t)⊗?̃ dF(s)

−
∫

I

∫
I

wξ

(
1− 1

τ

) ∫ 1

0
C
(
(1− u)

t
τ
+ u((1− ξ)

t
τ
+ ξw)

)
dudE(t)⊗?̃ dF(s)

+
∫

I

∫
I

wξ

(
1− 1

τ

) ∫ 1

0
ψ′
(
(1− u)

t
τ
+ u((1− ξ)

t
τ
+ ξw)

)
dudE(t)⊗?̃ dF(s)

6
1
2

Cξ(1− ξ)
∫

I

∫
I

(
−s +

t
τ

)2
dE(t)⊗?̃ dF(s),

since ∫
I

∫
I

(
−s +

t
τ

)2
dE(t)⊗?̃ dF(s) =

∫
I

∫
I

(
t2

τ2 −
2
τ

ts + s2
)

dE(t)⊗?̃ dF(s)

=
∫

I

∫
I

t2

τ2 dE(t)⊗?̃ dF(s)− 2
τ

∫
I

∫
I

tsdE(t)⊗?̃ dF(s) +
∫

I

∫
I

s2dE(t)⊗?̃ dF(s)

=
1
τ2 Q2

? ⊗?̃ 1− 2
τ

Q? ⊗?̃ W? + 1⊗?̃ W2
? .

Using the tensorial properties we get

∫
I

∫
I

(
−s +

t
τ

)2
dE(t)⊗?̃ dF(s) =

(
1
τ

Q? ⊗?̃ 1− 1⊗?̃ W?

)2
.

Using Fubini’s Theorem on the term with the integral under the spectral resolution,
we obtain the original inequality,

c
2

ξ(1− ξ)

(
1
τ

Q? ⊗?̃ 1− 1⊗?̃ W?

)2

6 (1− ξ)ψ

(
Q?

τ

)
⊗?̃ 1 + ξ1⊗?̃ ψ

(
W?

τ

)
− ψ

(
1− ξ

τ
Q? ⊗?̃ 1 + ξ1⊗?̃ W?

)
−ξ

(
1− 1

τ

) ∫ 1

0

[
c
(

1− uξ

τ
Q? ⊗?̃ W? + uξ(1⊗?̃ W?)

2
)

−(1⊗?̃ W?)ψ
′
(
(1− uξ)

τ
Q? ⊗?̃ 1 + uξ1⊗?̃ W?

)]
du

6 (1− ξ)ψ

(
Q?

τ

)
⊗?̃ 1 + ξ1⊗?̃ ψ

(
W?

τ

)
− ψ

(
1− ξ

τ
Q? ⊗?̃ 1 + ξ1⊗?̃ W?

)
−ξ

(
1− 1

τ

) ∫ 1

0

[
C
(

1− uξ

τ
Q? ⊗?̃ W? + uξ(1⊗?̃ W?)

2
)

−(1⊗?̃ W?)ψ
′
(

1− uξ

τ
Q? ⊗?̃ 1 + uξ1⊗?̃ W?

)]
du

6
C
2

ξ(1− ξ)

(
1
τ

Q? ⊗?̃ 1− 1⊗?̃ W?

)2
.
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4. Some Examples and Consequences

In the following sequel we give examples which demonstrate the obtained Theorems.

Example 2. We consider the power function, f (t) = tz, t > 0, which is convex for z ∈ (−∞, 0) ∪
[1,+∞). From Theorem 3 for A, B > 0, we obtain the following:

0 6
1
τz ((1− ξ)Qz

? ⊗?̃ 1 + ξ1⊗?̃ Wz
?)−

(
1− ξ

τ
Q? ⊗?̃ 1 + ξ1⊗?̃ W?

)z

+zξ

(
1− 1

τ

) ∫ 1

0
(1⊗?̃ W?)

(
1− ξu

τ
Q? ⊗?̃ 1 + uξ1⊗?̃ W?

)z−1
du

6 z
(

ξ(1− ξ)

τ
Q? ⊗?̃ 1− ξ ·

(
1
τ
− ξ

)
1⊗?̃ W?

)(
Qz−1

? ⊗?̃ 1− 1⊗?̃ Wz−1
?

)
.

Corollary 6. Letting τ = 1, we obtain the example given by Dragomir ([35], p. 15):

0 6 (1− ξ)Qz
? ⊗?̃ 1 + ξ1⊗?̃ Wz

? −
(
(1− ξ)Q? ⊗?̃ 1 + ξ1⊗?̃ W?

)z

6 zξ(1− ξ)
(
Q? ⊗?̃ 1− 1⊗?̃ W?

)(
Qz−1

? ⊗?̃ 1− 1⊗?̃ Wz−1
?

)
.

Setting ξ, τ = 1
2 , we get

0 6 2z−1(Qz
? ⊗?̃ 1 + 1⊗?̃ Wz

?)−
(

Q? ⊗?̃ 1 +
1
2

1⊗?̃ W?

)z

− z
2

∫ 1

0
(1⊗?̃ W?)

(
(2− u)Q? ⊗?̃ 1 +

u
2

1⊗?̃ W?

)z−1
du

6 z
(

1
2

Q? ⊗?̃ 1− 3
4

1⊗?̃ W?

)(
Qz−1

? ⊗?̃ 1− 1⊗?̃ Wz−1
?

)
.

Using the inequality obtained in Theorem 4, we obtain

c
2

ξ(1− ξ)

(
1
τ

Q? ⊗?̃ 1− 1⊗?̃ W?

)2

6
1
τz ((1− ξ)Qz

? ⊗?̃ 1 + ξ1⊗?̃ Wz
?)−

(
1− ξ

τ
Q? ⊗?̃ 1 + ξ1⊗?̃ W?

)z

−ξ

(
1− 1

τ

) ∫ 1

0

[
c
(

1− uξ

τ
Q? ⊗?̃ W? + uξ(1⊗?̃ W?)

2
)

−z(1⊗?̃ W?)

(
(1− uξ)

τ
Q? ⊗?̃ 1 + uξ1⊗?̃ W?

)z−1]
du

6
1
τz ((1− ξ)Qz

? ⊗?̃ 1 + ξ1⊗?̃ Wz
?)−

(
1− ξ

τ
Q? ⊗?̃ 1 + ξ1⊗?̃ W?

)z

−ξ

(
1− 1

τ

) ∫ 1

0

[
C
(

1− uξ

τ
Q? ⊗?̃ W? + uξ(1⊗?̃ W?)

2
)

−z(1⊗?̃ W?)

(
(1− uξ)

τ
Q? ⊗?̃ 1 + uξ1⊗?̃ W?

)z−1]
du

6
C
2

ξ(1− ξ)

(
1
τ

Q? ⊗?̃ 1− 1⊗?̃ W?

)2
.
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Example 3. Let us consider now the convex function f (t) = eαt, t, α ∈ R and α 6= 0. From
Theorem 3, we get the following for self-adjoint operators Q? and W?:

(1− ξ)e
α
τ Q? ⊗?̃ 1 + ξ1⊗?̃ e

α
τ W? − eα( 1−ξ

τ Q?⊗?̃1+ξ1⊗?̃W?)

+αξ

(
1− 1

τ

) ∫ 1

0
(1⊗?̃ W?)eα( 1−ξu

τ Q?⊗?̃1+uξ1⊗?̃W?)du

6 α

(
ξ(1− ξ)

τ
Q? ⊗?̃ 1− ξ ·

(
1
τ
− ξ

)
1⊗?̃ W?

)
(eαQ? ⊗?̃ 1− 1⊗?̃ eαW?).

Corollary 7. Setting τ = 1 in the obtained inequality, we recover the example given by Dragomir
([35], p. 15)

0 6 (1− ξ)eαQ? ⊗?̃ 1 + u1⊗?̃ eαW? − eα((1−ξ)Q?⊗?̃1+ξ1⊗?̃W?)

6 αξ(1− ξ)
(
Q? ⊗?̃ 1− 1⊗?̃ W?

)
(eαQ? ⊗?̃ 1− 1⊗?̃ eαW?).

Setting ξ, τ = 1
2 , we obtain

1
2

(
e2αQ? ⊗?̃ 1 + 1⊗?̃ e2αW?

)
− eα(Q?⊗?̃1+ 1

2 1⊗?̃W?)− α

2

∫ 1

0
(1⊗?̃ W?)eα((2−u)Q?⊗?̃1+ u

2 1⊗?̃W?)du

6 z
(

1
2

Q? ⊗?̃ 1− 3
4

1⊗?̃ W?

)
(eαQ? ⊗?̃ 1− 1⊗?̃ eαW?).

Using the inequality obtained in Theorem 4, we obtain

c
2

ξ(1− ξ)

(
1
τ

Q? ⊗?̃ 1− 1⊗?̃ W?

)2
6 (1− ξ)e

α
τ Q? ⊗?̃ 1 + ξ1⊗?̃ e

α
τ W? − eα( 1−ξ

τ Q?⊗?̃1+ξ1⊗?̃W?)

−ξ

(
1− 1

τ

) ∫ 1

0

[
c
(

1− uξ

τ
Q? ⊗?̃ W? + uξ(1⊗?̃ W?)

2
)
− z(1⊗?̃ W?)e

(
(1−uξ)

τ Q?⊗?̃1+uξ1⊗?̃W?

)]
du

6 (1− ξ)e
α
τ Q? ⊗?̃ 1 + ξ1⊗?̃ e

α
τ W? − eα( 1−ξ

τ Q?⊗?̃1+ξ1⊗?̃W?)

−ξ

(
1− 1

τ

) ∫ 1

0

[
C
(

1− uξ

τ
Q? ⊗?̃ W? + uξ(1⊗?̃ W?)

2
)
− z(1⊗?̃ W?)e

(
(1−uξ)

τ Q?⊗?̃1+uξ1⊗?̃W?

)]
du

6
C
2

ξ(1− ξ)

(
1
τ

Q? ⊗?̃ 1− 1⊗?̃ W?

)2
.

5. Conclusions

Tensors have become important in various fields, for example in physics, because
they provide a concise mathematical framework for formulating and solving physical
problems in fields such as mechanics, electromagnetism, quantum mechanics, and many
others. As such, inequalities are crucial in numerical aspects. Reflected in this work is
the generalized Dragomir’s lemma, which, as a consequence, has new inequalities of the
classical type. Using that lemma enabled us to generalize the results from Dragomir [35].
New HH inequalities are given, as well as the consequences showing our generalization.
Examples of specific convex functions and their inequalities using our results are given in
the section on examples and consequences. Plans for future research can be reflected in the
fact that the obtained inequalities in this work can be sharpened or generalized by using
other methods. An interesting perspective can be seen in incorporating other techniques
for Hilbert space inequalities with the techniques shown in this paper. One direction is the
technique of the Mond–Pecaric inequality, which we will work on.
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Inequalities Involving (k-p) Fractional Operator for Various Types of Convex Functions. Fractal Fract. 2022, 6, 376. [CrossRef]
5. Stojiljković, V.; Ramaswamy, R.; Ashour Abdelnaby, O.A.; Radenović, S. RiemannLiouville Fractional Inclusions for Convex

Functions Using Interval Valued Setting. Mathematics 2022, 10, 3491. [CrossRef]
6. Stojiljkovic, V. Hermite Hadamard Type Inequalities Involving (k-p) Fractional Operator with (α, h-m)-p convexity. Eur. J. Pure

Appl. Math. 2023, 16, 503–522. [CrossRef]
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