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Abstract: Lattice attacks can compromise the security of encryption algorithms used in blockchain
networks, allowing attackers to tamper with transaction records, steal private keys, and execute other
forms of attacks. With symmetric encryption, both parties can encrypt and decrypt messages using
the same key. Lattice attacks on digital signature algorithms (ECDSA) involve forming a basis and
setting a target vector from signatures, then solving the closest vector problem (CVP) or shortest
vector problem (SVP) in the generated lattice to obtain the private key. Prior research focused on
obtaining leakage information from the signature’s random nonce to facilitate a CVP or SVP solution.
This study establishes a clear boundary for a successful ECDSA attack and introduces a “double basis”
lattice version that expands the boundary or reduces the necessary signatures by nearly half with
the same lattice rank. To approach the boundary, a heuristic strategy is employed to shift the target
vector in different directions with a feasible step size, using tests on the Trusted Platform Module
(TPM) 2.0 ECDSA. The distance from the closest moved target vector to the boundary is reduced by
a ratio of 424 to 179 to the minimal length of orthogonal vectors in the formed basis. Experimental
results show that moving attempts in two directions with the original basis and 84 signatures take
approximately 247.7 s on the experiment computer.

Keywords: elliptic curve digital signature algorithm; blockchain; closest vector problem; heuristic
strategy; trusted platform module TPM2.0; symmetric encryption

1. Introduction

With the increasing adoption of blockchain technology in various industries, ensuring
the security of blockchain systems has become an important concern. However, recent
research has shown that lattice-based attacks, a type of cryptographic attack, could pose a
threat to the security of blockchain systems, including the symmetric encryption used to
encrypt and decrypt messages. Lattice-based attacks exploit the mathematical properties of
lattices, a type of mathematical structure, to break cryptographic systems. These attacks
could compromise the security of the underlying encryption and signature schemes used
in blockchain technology, including symmetric encryption. In this context, it is important
to understand the relationship between lattice-based attacks and the security of blockchain
systems and to explore potential solutions to mitigate such attacks, including symmetric
encryption methods that provide an additional layer of security.

In 1996, Boneh et al. [1] first proposed the lattice method to attack the Diffie-Hellman
key exchange algorithm; the method was then extended to attack other crypto-ecosystems
such as Rivest–Shamir–Adleman (RSA) [2], Digital Signature Algorithm (DSA) [3–6], and
Elliptic Curve Digital Signature Algorithm (ECDSA) [7]. The general method of lattice
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attacks on (EC)DSA can be divided into three main steps [8]. First, the attacker undertakes
the task of securing the private key into a hidden number problem (HNP) or extended
hidden number problem (EHNP) from the congruent equations with the signatures. Next,
the HNP or EHNP is transformed into a lattice closest vector problem (CVP) or shortest
vector problem (SVP). Finally, attempts are made to solve the CVP or SVP via lattice-related
techniques—such as lattice basis reduction [9] and the Babai algorithm [10]—while the
private key is embedded in the solution.

To help identify the correct vector solution, existing work has focused on exploit-
ing random noncoded leaks in the cryptographic computation process, such as timing,
cache activity, and side-channels such as energy consumption. The most common nonce
leaks are where the most significant bits (MSBs) or least significant bits (LSBs) are set or
cleared. Weiser et al. [11] pointed out the locations where nonce leakage might occur in the
implementations of ECDSA.

In 2011, Brumley et al. [12] exploited the timing leakage in the implementation of
the Montgomery Ladder algorithm to obtain the MSBs of nonces to break the ECDSA in
8000 Transport Layer Security (TLS) handshakes. Moghimi et al. [13] used timing side-
channel and lattice attacks to fully recover ECDSA private keys in hardware and firmware
trusted platform modules (TPMs). They exploit the vulnerability that the CPU time of
an encrypted computation is related to the nonce used by ECDSA. A shorter nonce (with
a partial MSB of 0) leads to faster computations; the attacker can find the shorter nonce
by filtering the execution time. They attack from three different angles: the system level
with administrator privileges to accurately measure the time, the user level with a less
privileged API to measure the execution time, and the remote level where the time can
only be measured over the network [14], which was seen as the first work to use a cache
side-channel attack to obtain nonce leakage. The task of recovering the DSA private key
was turned into an EHNP. Brumley et al. [15] recovered a 160-bit private key by using a
cache-timing template attack to obtain the LSBs of the nonce. In 2014, Yarom et al. proposed
a cache attack called Flush + Reload [16]; they used it to precisely measure the computation
of RSA signing and extracted the private key successfully. Some work has tried to migrate
the Flush + Reload method to attack ECDSA. Benger et al. [17] applied the Flush + Reload
technique to obtain cache activities, infer the LSBs of the nonce in OpenSSL ECDSA, and
solve the SVP to obtain the private key. OpenSSL uses window Non-Ajacent-Form (wNAF)
to recode the random nonce with a fixed size window and a value di for each other window.
For point multiplication, when di is nonzero, double and add operations are carried out;
otherwise, only double operations are carried out. With a spy program running to monitor
the cache activities, the attacker can obtain the operation sequences related to the nonce
to obtain some leakage information. Fan et al. [18] proposed an efficient method to obtain
information from side-channels with only a few signatures, under the assumption that
Flush + ReLoad is implemented perfectly. Wang et al. [19] utilized the Flush + ReLoad
technique to extract both MSBs and LSBs of the nonce and recovered the private key with
only 85 signatures.

In 2014, Aranha et al. [20] used power analysis to obtain one-bit leakage of the nonce of
ECDSA then recovered the private key with Gallant–Lambert–Vanstone (GLV)/Galbraith–
Lin–Scott (GLS) decomposition. Genkin et al. [21] extracted the LSBs of nonces from mobile
devices via the power of electromagnetic attack method. In 2016, Belgarric et al. [22] also
used the same side-channel attack to obtain LSBs and private keys on Android smartphones.
Zhang et al. [23] used a power attack to extract LSBs of the nonce in the Chinese SM2 Digital
Signature Algorithm and recovered the private key with an instance of HNP.

The fault injection attack can also be used to obtain nonce bits leakage. In 2012, Nguyen
et al. [24] used a fault injection attack to obtain LSBs of RSA and LSBs of DSA nonces. Cao
et al. [25] used a different fault injection attack to obtain the LSBs of a ECDSA nonce.

When some fixed methods have been patched into the ECDSA implementations, it
has become more difficult to obtain the leakage information of the random nonce. Albrecht
et al. [26] noted the presence of a “lattice barrier” for the attack when the leaked bit length
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was short. The development of effective methods to mitigate lattice-based attacks is crucial
to ensure the security and confidentiality of data in the blockchain network, including
those protected by symmetric encryption methods.

In this paper, we try to ascertain the boundary of the lattice attack on ECDSA and move
the target vector closer to the boundary. We have made the following main contributions:

(1) We ascertain that the boundary of the lattice attack on ECDSA is half the minimal
length of the vectors in the Gram–Schmidt orthogonal basis formed from signatures
by proving a theorem that states the condition that the Babai algorithm outputs the
correct closest vector.

(2) We form a variant of the lattice basis to attack ECDSA called the double basis, which
can expand the boundary of a successful attack or reduce the number of required
signatures by almost half with the same lattice rank.

(3) Using heuristics in the TPM2.0 ECDSA experiments, we attempted to move the target
vector in different directions to move closer to the boundary, the larger the step size,
the better. In our experiments, the distance from the closest moving target vector to the
boundary is reduced in proportion to the minimum length of the orthogonal vector,
from 424 to 179. On our experimental computer, it took approximately 247.7 s to
complete the move attempt with the original basis and 84 signatures in both directions.

The remainder of this paper is organized as follows: Section 2 introduces the necessary
background, Section 3 presents the steps of the lattice attack on ECDSA in general, Section 4
proves a theorem to describe the boundary of the lattice attack, Section 5 describes the
boundary value experiment, Section 6 forms a variant of the lattice basis, Section 7 states
the process of moving the target vector to move closer to the boundary, and Section 8 draws
the conclusions and discusses future work.

2. Background

In this section, we give a brief introduction to ECDSA and lattices.

2.1. ECDSA

The elliptic curve digital signature algorithm (ECDSA) is widely used. To sign one
digest h(m) of a message m, the ECDSA takes a private key α and a set of public parameters,
including a generator point G with order q on an elliptic curve E over a finite field. The
private key α ∈ Z∗q . The signer takes the following actions:

(1) Generates a per message random nonce k ∈ Z∗q ;
(2) Computes kG, and takes the x-coordinate of kG as r;
(3) Computes the value s = k−1(h(m) + αr)modq;
(4) Takes the value pair (r, s) as the signature.

2.2. Lattice and Closest Vector Problem

A lattice is a discrete subgroup of vector space Rm. Let B = {b0, b1, ..., bn−1} be n
linearly independent vectors in Rm, the set of integer linear combinations of bi forms a
lattice L and the vectors B are called a lattice basis. In this work, only the full-rank lattice is
considered, which means m = n.

L = {
n−1

∑
i=0

zibi : zi ∈ Z} (1)

The closest vector problem (CVP) is a computational problem in a lattice: given a
lattice L spanned by a basis B and a vector t in Rm, find a vector v in L such that the distance
||v− t|| is minimal for all v in L. ||v|| denotes the Euclidean norm of vector v.

Although CVP is known to be an NP-hard problem, the Babai nearest plane algo-
rithm [10] can find a vector not far from the closest vector in polynomial time. The Babai
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algorithm uses Gram–Schmidt orthogonalization as a subroutine, which computes an
orthogonal basis

{
b∗0 , b∗1 , ..., b∗n−1

}
for a basis B.

3. General Lattice Attack on ECDSA

Suppose we have obtained n− 1 ECDSA signatures.{
si = k−1

i (h(m) + αri)modq
ri = xi, (xi, yi) = kiG

(i = 1, 2, ..., n− 1) (2)

and there are:
ki + Ciα + Di = 0modq (i = 1, 2, ..., n− 1) (3)

where Ci = −ris−1
i modq, Di = −h(m)s−1

i modq.
These equations can also be expressed as:

ki + Ciα + Di = ziq (i = 1, 2, ..., n− 1) (4)

Ci(−α) + ziq− Di = ki (i = 1, 2, ..., n− 1) (5)

Adding one equation (−1)(−α)− 0 = α, we have the following joint equations:{
(−1)(−α)− 0 = α (i = 0)

Ci(−α) + ziq− Di = ki (i = 1, 2, ..., n− 1)
(6)

These joint equations can be expressed as matrices and vectors operations:
−1
C1 q
...

. . .
Cn−1 q



−α
z1
...

zn−1

−


0
D1
...

Dn−1

 =


α
k1
...

kn−1

 (7)

Let b0 = (−1, C1, ..., Cn−1)
T , b1 = (0, q, 0, ..., 0)T , . . . , bn−1 = (0, ..., 0, q)T be linearly

independent vectors; then, the set of these vectors B can be seen as a lattice basis.

B = {b0, b1, ..., bn−1} (8)

The lattice generated by B is the set L(B).

L(B) = {
n−1

∑
i=0

zibi : zi ∈ Z} (9)

The vector (0, D1, ..., Dn−1)
T in Equation (7) can be seen as a target vector t not in the

lattice L(B).
t = (t0, ..., tn−1)

T = (0, D1, ..., Dn−1)
T (10)

The vector (−α, z1, ..., zn−1)
T is an integer coefficient vector for the lattice basis B,

which determines a vector v in L(B). The distance between v and t is the length of vector
(α, k1, ..., kn−1)

T .

||v− t|| =

√√√√α2 +
n−1

∑
1

k2
i (11)

If this distance is sufficiently short, then v can be obtained by solving the CVP of L(B),
and the private key α is the first element of v.



Symmetry 2023, 15, 913 5 of 20

4. Boundary of Successful Attack

If the correct closest vector described in Equation (7) was found, the lattice attack
succeeded. The Babai algorithm [10] is a useful method to solve the CVP [27] in the situation
proposed by Theorem 1 [28]. In this section, we prove that we need this theorem for the
description of our work.

Theorem 1. Let {b0, b1, ..., bn−1} be an ordered basis for a lattice L. Let
{

b∗0 , b∗1 , ..., b∗n−1
}

be the
corresponding Gram–Schmidt basis. If the distance of target vector t to its nearest lattice vector v is
less than min( 1

2

∣∣∣∣∣∣b∗i ∣∣∣∣∣∣) (i = 0, 1, ..., n− 1) , the Babai algorithm always outputs the vector v.

First, the Babai algorithm computes the Gram–Schmidt basis {b0, b1, ..., bn−1}. Define
U as the space spanned by basis {b0, b1, ..., bn−2}. This nearest plane algorithm then tries
to find a vector yn−1 ∈ L such that the distance from t to the plane formed by yn−1 + U is
minimal.

Let target vector t be (t0, ..., tn−1)
T, which can be written as t =

n−1
∑

i=0
rib∗i , ri ∈ R,

and ti = ri||b∗i ||. According to Lemma 18.1.1 in [28], when yn−1 = [rn−1]bn−1, the dis-
tance between t and the plane yn−1 + U is minimal. Since tn−1 = rn−1

∣∣∣∣b∗n−1
∣∣∣∣, then

rn−1 = tn−1/
∣∣∣∣b∗n−1

∣∣∣∣. Let t′ be the orthogonal projection of t on the plane yn−1 + U, and let
L′ = L ∩U be the sublattice spanned by the basis {b0, b1, ..., bn−2}. Let t′′ = t′ − yn−1 ∈ U.
Then, the algorithm attempts to solve the CVP of the target t′′ with the lattice L′ to obtain yn−2.
Similarly, yn−2 = rn−2

∣∣∣∣b∗n−2
∣∣∣∣, rn−2 = tn−2/

∣∣∣∣b∗n−2
∣∣∣∣, . . . , y0 = r0

∣∣∣∣b∗0∣∣∣∣, r0 = t0/||b∗0 ||. Fi-
nally, the Babai algorithm outputs v = yn−1 + ... + y0 as the closest vector.

In other form, v =
n−1
∑

i=0
[ri]bi, then v − t =

n−1
∑

i=0
[ri]bi −

n−1
∑

i=0
rib∗i . Since ri − [ri] ≤

1
2 ,
∣∣∣ri

∣∣∣∣∣∣b∗i ∣∣∣∣∣∣−[ri]
∣∣∣∣∣∣b∗i ∣∣∣∣∣∣∣∣∣≤ 1

2

∣∣∣∣∣∣b∗i ∣∣∣∣∣∣ and
∣∣∣[ri]

∣∣∣∣∣∣b∗i ∣∣∣∣∣∣−ti

∣∣∣≤ 1
2

∣∣∣∣∣∣b∗i ∣∣∣∣∣∣ for 0 ≤ i ≤ n− 1. [ri]||b∗i || is

the projection of v on b∗i , so the vector v− t lies in the range of:

{
n−1

∑
i=0

rib∗i : |ri| ≤
1
2
} (12)

which forms a hyperrectangle. Its center is the output vector of the Babai algorithm.
For a target vector t with a distance within min( 1

2

∣∣∣∣∣∣b∗i ∣∣∣∣∣∣) to vector v, that is,

v− t ≤ min( 1
2

∣∣∣∣∣∣b∗i ∣∣∣∣∣∣) , the distance from t to v’s adjacent point (v′)||v′ − t||=||bi||−||v− t||
for i = 0, 1, ..., n − 1. Since the Gram–Schmidt orthogonal basis holds

||bi||≥||b∗i ||,
∣∣∣∣∣∣v′ − t

∣∣∣∣∣∣≥∣∣∣∣∣∣b∗i ∣∣∣∣∣∣−∣∣∣∣∣∣v− t
∣∣∣∣∣∣≥ min( 1

2

∣∣∣∣∣∣b∗i ∣∣∣∣∣∣) . Then, all the adjacent points have
a longer distance to the target vector t compared with v. The output lattice point of the
Babai algorithm is the closest vector to the target vector.

5. Minimal Length of b∗i
For the attack to succeed the distance from the target to the correct closest vector should

be in the boundary of half the minimal length of b∗i (0 ≤ i ≤ n− 1), as shown in Theorem 1.
The orthogonal basis

{
b∗0 , b∗1 , ..., b∗n−1

}
in Theorem 1 for the original basis {b0, b1, ..., bn−1}

is calculated by Gram–Schmidt orthogonalization. The idea is to first set b∗1 = b1 and

then compute b∗i = bi −
i−1
∑

j=0
ui,jb∗j , (0 ≤ i ≤ n− 1), where ui,j =< bi, b∗j > /

∣∣∣∣∣∣b∗j ∣∣∣∣∣∣2. In this

section, we attempt to obtain the minimal ||b∗i || for Equation (7) via experiments, as
illustrated in Figure 1.
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Figure 1. Diagram of the experiment to obtain min(||b∗i ||) .

We performed the experiments by using open-source software, including IBM’s Soft-
ware TPM2.0 [29], Intel’s TPM2.0 software stack [30], TPM2.0 Tools [31], and SageMath9.1.

First, we launched TPM2.0 software and the TPM2 Access Broker (TAB) and Resource
Manager (RM) service daemons (tpm2-abrmd service). To obtain the ECDSA signature
pairs, we created a bash script that runs various command tools provided by the TPM2.0
Tools. The bash script first runs the command tpm2_createprimary with the argument
ecc256 to construct a primary key, then runs the command tpm2_create to generate an
ECC sign key pair under the newly formed primary key. After loading the ECC sign
key into the TPM by command tpm2_load, the script requests that the TPM sign the pre-
generated message digest computed by SHA256 with the command tpm2_sign. With
the same sign key, we can obtain more signatures by executing tpm2_sign more times.
If we want the signature to have a new and different sign key, the bash script should
re-execute tpm2_create, tpm2_load, and tpm2_sign, under the same primary key. When the
command tpm2_sign with ECDSA is executed, the software TPM2.0 invokes the function
BnSignEcdsa(). We modified the source code of the function BnSignEcdsa() to let the
software TPM2.0 output the generated signatures, the random nonces, and the generator
order q to temporary files directly.

Upon the signatures being saved into the temp file, the SageMath Python program—
written by us for this experiment—constructs the lattice basis and computes its Gram–
Schmidt orthogonal basis to obtain the minimal ||b∗i ||. The Python program first loads the
signatures and the parameter q from the temporary files to the SageMath environment.
Then, the program converts the strings to type sage.ring.integer_ring, which natively sup-
ports large number modular computation, and computes Ci = −ris−1

i modq, 0 ≤ i ≤ n− 1.
Now, the lattice basis can be constructed from Ci and q with the matrix() utility. Finally, the
program obtains the Gram–Schmidt basis with the function gram_schmidt() and finds the
minimal length of bi, 0 ≤ i ≤ n− 1.

In our experiments, we generated 199 signatures. With equation (−1)(−α)− 0 = α,
we can construct 199 different lattice bases with ranks from 2 to 200. Every lattice basis
has a minimal ||b∗i ||. All the half minimal ||b∗i ||’s bit lengths are shown in Figure 2. We
can see when the rank is under approximately 40, the minimal ||b∗i || rises quickly with the
growth of the rank. When the rank is between approximately 40 and 70, the minimal ||b∗i ||
rises slowly. When the rank is greater than approximately 70, the minimal ||b∗i || is basically
stable. This means, min(||b∗i ||) does not continuously increase with increasing lattice rank.
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2

∣∣∣∣∣∣b∗i ∣∣∣∣∣∣ obtained in our experiments is shown in Table 1,
its corresponding bit length is 250 with lattice rank 105. The default curve used by the
software TPM2.0 for ECDSA is NIST-p256 with a 256-bit order q. The maximum of the
minimal approximately 1

2

∣∣∣∣∣∣b∗i ∣∣∣∣∣∣ equals 0.013q.

Table 1. Some 1
2 min(

∣∣∣∣∣∣b∗i ∣∣∣∣∣∣) )s and some distances between v and t for Equation (7).

Item Value Bit Length Rank

1
2 min(

∣∣∣∣∣∣b∗i ∣∣∣∣∣∣) 0X61AF733A022AB4CA5F264CAC644AEDAE 127 2

max( 1
2 min(

∣∣∣∣∣∣b∗i ∣∣∣∣∣∣)) 0X38DA9F271B1BF4296697B0E5D094494EB85004067B384C8A14AEE695030A8CC 250 105

1
2 min(

∣∣∣∣∣∣b∗i ∣∣∣∣∣∣) 0X3123B127700F8CD8418EC35B6250F5C8424324B3870EFD3E9B5126DFA4D3E23 250 200

q 0xFFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551 256

min(||v− t||) 0XCD0B58F65D1F87F005FF9FA142D2CEDCC0D8A746886933746546CB1BA5D7598F 256 2

||v− t|| 0X614C3BBC9CB9D043F131FDCB8B54EA3E032620EFF5768CC9FD73B4F9595BB569F 259 105

max(||v− t||) 0X85F80F52F5C1645FAD8A8D5A27EC4733765F02EA90B0D44D4260BDD977C7DC6E7 259 200

If we want to continue attacking by attempting to solve the CVP with the basis B
and target t in Equation (7), the closest vector we want to find is (−α, z1, ..., zn−1)

T ; the
distance between v and t can be calculated by Equation (11). The bit length of the distance
in our experiments is also shown in Figure 2. We can see the distance rises very slowly
at the start then remains almost stable with the growth of the lattice rank. The range
of the distance bit length is from 256 to 259. When the rank is 105, the 1

2 min(
∣∣∣∣∣∣b∗i ∣∣∣∣∣∣)

we obtained is the maximal distance; the distance between v and t is listed in Table 1,∣∣∣∣∣∣v− t
∣∣∣∣∣∣105 ≈ 438.1× 1

2 min (||b∗i ||) 105 . The minimal and maximal distances between v and

t obtained in our experiments and the corresponding 1
2 min(

∣∣∣∣∣∣b∗i ∣∣∣∣∣∣) are also listed in Table 1.
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The corresponding lattice ranks are 2 and 200, and
∣∣∣∣∣∣v− t

∣∣∣∣∣∣2 ≈ 7.1× 1038 × 1
2 min (||b∗i ||) 2

and
∣∣∣∣∣∣v− t

∣∣∣∣∣∣200 ≈ 698× 1
2 min (||b∗i ||) 200 .

The ratio of ||v− t|| to 1
2 min(

∣∣∣∣∣∣b∗i ∣∣∣∣∣∣) can indicate the boundary of the lattice attack.
The smaller the ratio, the more likely we were to have a successful attack. If the ratio was
less than 1, we could obtain the secret key. The ratio in our experiments with the lattice rank
from 26 to 200 is shown in Figure 3; the ratio with rank from 2 to 25 is not shown because it
is too large and meaningless. We can see when the rank is under approximately 50, the ratio
declines quickly with the growth of the rank. When the rank is between approximately
50 and 70, the ratio declines slowly. When the rank is greater than approximately 70, the
ratio is basically stable. This means, the ratio does not always decrease with increasing
lattice rank. The minimal ratio is 424.0 in our experiments with a lattice rank of 84, but the
distance ||v− t||84 is still much longer than 1

2 min (||b∗i ||) 84. According to Theorem 1, the
Babai algorithm cannot output the correct closest vector. In the next section, we tried to
increase the minimal length of b∗i .
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6. Doubling Lattice Basis

To increase 1
2 min(

∣∣∣∣∣∣b∗i ∣∣∣∣∣∣) and extend the boundary of attack, we tried a variant of
the lattice basis construction called the double basis. For Equation (5) with one signature,
both sides of the equation were multiplied by −1, generating a new equation for each
0 ≤ i ≤ n− 1:

(−Ci)(−α) + (−ziq)− (−Di) = (−ki) (13)

We added these new equations to the joint Equation (6), the new joint equations are
Equation (14), and the form of matrix and vector operations is expressed by Equation (15).
Now, with the same number of signatures for Equation (7), n− 1, we could construct a
lattice with rank 2n− 1, which almost doubles the original rank n.

(−1)(−α)− 0 = α (i = 0 )
Ci(−α) + ziq− Di = ki (i = 1, 2, ..., n− 1)

(−Ci)(−α) + (−ziq)− (−Di) = (−ki) (i = 1, 2, ..., n− 1)
(14)
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

−1
C1 q
−C1 q

...
. . .

Cn−1 q
−Cm−1 q





−α
z1
−z1

...
zn−1
−zm−1


−



0
D1
−D1

...
Dn−1
−Dm−1


=



α
k1
−k1

...
kn−1
−km−1


(15)

The double basis is:
B = {b0, b1, ..., bn−1} (16)

where b0 = (−1, C1,−C1, ..., Cn−1,−Cn−1)
T , b1 = (0, q, 0, ..., 0)T , . . . , bn−1 = (0, ..., 0, q)T .

For the constructed variant lattice, the target vector is:

t = (t0, ..., t2n−2)
T = (0, D1,−D1, ..., Dn−1,−Dn−1)

T (17)

The distance between the correct v and t is:

||v− t|| =

√√√√α2 +
n−1

∑
1

2k2
i (18)

We carried out similar experiments in Section 5 to obtain the minimal length of
b∗i (0 ≤ i ≤ 2n− 1) for the newly constructed double lattice basis. Both the bit length of
1
2 min(

∣∣∣∣∣∣b∗i ∣∣∣∣∣∣) and the distance from the correct vector to the target for Equation (15) in our
experiments are shown in Figure 4. They exhibit the same change trend with the bit length
for the original basis in Figure 2.
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The maximum of 1
2 min(

∣∣∣∣∣∣b∗i ∣∣∣∣∣∣) with the double basis obtained in our experiments
is shown in Table 2, and its corresponding bit length is 250 with lattice rank 371. The
maximum of 1

2 min(
∣∣∣∣∣∣b∗i ∣∣∣∣∣∣) approximately equals 0.019q increased 35.9% over the original

basis for Equation (7). Although we still used the 199 generated signatures in Section 5, we
could obtain a larger max( 1

2 min(
∣∣∣∣∣∣b∗i ∣∣∣∣∣∣)) by constructing the double basis. When the rank

is 371, the distance between v and t is listed in Table 2. Additionally, listed in Table 2, for
the double basis, are the minimal and maximal distances between v and t obtained in our
experiments and the corresponding 1

2 min(
∣∣∣∣∣∣b∗i ∣∣∣∣∣∣) , where the corresponding lattice ranks

are 3 and 399.

Table 2. Some 1
2 min(

∣∣∣∣∣∣b∗i ∣∣∣∣∣∣) s and some distances between v and t for Equation (15).

Item Value Bit Length Rank

1
2 min(

∣∣∣∣∣∣b∗i ∣∣∣∣∣∣) 0X87CA530003E630A584C5268A5D19E160 127 3 (1 signature)

max( 1
2 min(

∣∣∣∣∣∣b∗i ∣∣∣∣∣∣)) 0X4D40A83F3F42DD05934BEF7FB76C4F10E0
D81842975B37DAE526F312C70FCE3 250 371 (185 signature)

1
2 min(

∣∣∣∣∣∣b∗i ∣∣∣∣∣∣) 0X433FE3970F1C7375606C6D12F52994C18ED
9F40516086D8E33B9A88A96D6FA4 250 399 (199 signature)

q 0xFFFFFFFF00000000FFFFFFFFFFFFFFFF
BCE6FAADA7179E84F3B9CAC2FC632551 256

min(||v− t||) 0XE82D9B5A290322FFD26F0DF3301FA45C0E
01B2BC501E07E8B879EA87B9DBB51E 256 3 (1 signature)

1
2 min(

∣∣∣∣∣∣b∗i ∣∣∣∣∣∣) 0XB7217DB2B20AA2438103A19D84C03438716
867F78FE7732EFB99EEA38B8B253E4 259 371 (185 signature)

max( 1
2 min(

∣∣∣∣∣∣b∗i ∣∣∣∣∣∣)) 0XBD263DC52AE0729C3E2D9CF3CF63F0F3E
368632FC388933DEDD76A3C6EECCE08D 260 399 (199 signature)

For the double basis:
∣∣∣∣∣∣v− t

∣∣∣∣∣∣3 ≈ 5.8× 1038× 1
2min(||b∗i ||)3 , ‖v − t‖371 ≈ 606.9×

1
2 min(‖b∗i ‖)371, and

∣∣∣∣∣∣v− t
∣∣∣∣∣∣399 ≈ 720.0× 1

2min(||b∗i ||)399 . The ratio of ||v− t|| to 1
2min(

∣∣∣∣∣∣b∗i ∣∣∣∣∣∣)
in our experiments with the lattice rank from 53 to 399 (only odd numbers) is shown in Figure 5;
the ratio with rank from 3 to 51 (only odd numbers) is not shown because it is too large and
meaningless. It has the same change trend with the ratio for the original basis in Figure 3. The
minimal ratio is 433.0 in our experiments with lattice rank 171, but the distance ||v− t||171 is still
much longer than 1

2min(||b∗i ||)171. According to Theorem 1, the Babai algorithm cannot output

the correct closest vector. Although max(1
2min(

∣∣∣∣∣∣b∗i ∣∣∣∣∣∣)) can be extended by constructing the

double basis, it cannot reduce the minimal ratio of ||v− t|| to 1
2min(

∣∣∣∣∣∣b∗i ∣∣∣∣∣∣) . In the next section,
we tried moving the target vector into the boundary of the attack.
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7. Moving Target Vector

In this section, except for extending the boundary for a successful attack, we tried
moving the target vector into the boundary of attack.

The distance between the correct vector v and the original target t = (0, D1, ..., Dn−1)
T

or (0, D1,−D1..., Dn−1,−Dn−1)
T can be calculated by Equation (11) or (18). The idea

destination d of the target vector is to stay in the boundary of a successful attack.
Let:

w =

{ 1
2
√

n min(b∗i ), for equation(7)
1

2
√

2n−1
min(b∗i ), for equation(15)

(19)

If the distance on every dimension between the correct v and d is less than w, then
the total distance must be less than 1

2 min(
∣∣∣∣∣∣b∗i ∣∣∣∣∣∣) , which is derived from Equation (20).

The idea target moving with the original basis for Equation (7) is expressed by Equation
(21) and the idea target moving with the double basis for Equation (15) is expressed by
Equation (22).

However, in real situations, we do not know the private key α and the random nonces
k0, k1, ..., kn−1, thus we cannot have an ideal target moving. We can only attempt to move
the target vector t with the step size w. t with the original basis in Equation (7) has n
dimensions; the position on each dimension should be moved by a different number of
steps. Then, the final distance between the moved t, d, and the correct v could be less
than 1

2 min(
∣∣∣∣∣∣b∗i ∣∣∣∣∣∣) . Since 0 < α < q and 0 < ki < q, (0 ≤ i ≤ n − 1), the maximum

number of attempts on each dimension are ( q
w ) and the total number of attempts could be

( q
w )

n. Although t with the double basis in Equation (15) has 2n− 1 dimensions and Di and
−Di(0 ≤ i ≤ n− 1) have the same length, we can move the target with the same number
of steps on these two dimensions in our attempts. Then, the total number of attempts is
still ( q

w )
n.

Sections 5 and 6 continue the experiments. Figure 6 depicts the bit length of the step
size w obtained in our trials using the original foundation in Equation (7). Figure 7 depicts
the bit length using the double basis in Equation (15). They exhibit the same change trend
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of 1
2 min(

∣∣∣∣∣∣b∗i ∣∣∣∣∣∣) in Figures 2 and 4. The maximum step size obtained in our experiments is

listed in Table 3. The corresponding number of attempts ( q
w ) on one dimension is shown

in Figure 8 (the number with rank from 2 to 25 is not shown because it is too large and
meaningless) and Figure 9 (the number with rank from 3 to 51, only odd numbers, is not
shown because it is too large and meaningless). They have a similar change trend with the
ratio of ||v− t|| to 1

2 min(
∣∣∣∣∣∣b∗i ∣∣∣∣∣∣) in Figures 3 and 5. The minimum number of attempts ( q

w )

is 690 and 709 for the original and double basis, respectively. Although 1
2 min(

∣∣∣∣∣∣b∗i ∣∣∣∣∣∣) can
be extended by constructing the double basis, it cannot extend the step size and reduce the
number of attempts.
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Table 3. The value of the maximal step size.

Item Value Bit Length Rank

with original basis for
Equation (7)

0X5EDAB1E5C6048F0D24629C92405DA8A8E
D164889CBCB931F2E417A1341AE4A 247 85 (84 signatures)

with double basis for
Equation (15)

0X5C65C707378D97AABA31AB46F37EC84E6
1F4AD58E1931FE9DC789859B5B58C 247 177 (85 signatures)
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The total number of attempts ( q
w )

n truly reflects the difficulty of the lattice attack; its
bit length is shown in Figures 10 and 11. Both increase with increasing lattice rank. The
minimal number of total attempts is 1.6× 1078 ≈ 2260 and 1.2× 1078 ≈ 2259 with rank 2 for
the original basis and rank 3 for the double basis, respectively, which is more difficult than
key guessing via use of brute force with 2256. However, if some leakage information of the
random nonces is known, the lattice attack has a great advantage.
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To observe how close the moved target vector d was to the boundary of lattice attack,
we attempted moving the target vector with the maximal step size obtained in our experi-
ments in only two directions: first, for the private key dimension, and second, for the other
random nonce dimensions. The private key dimension represents t0 of the target vector t
in Equation (10) or (17) and the random nonce dimensions represent ti(i > 0). The move
starts from

[ q
w
]

to 0 steps in each direction. The ratio of ||v− d|| to 1
2 min(

∣∣∣∣∣∣b∗i ∣∣∣∣∣∣) obtained
in our experiments is shown in Figures 12 and 13, which reveals the closeness to the attack
boundary. Due to the number of attempts being too large to display all ratios, only some
samplings were selected; the sampling rule equated to the selection of one ratio for every
1000 attempts. The “index” in Figures 12 and 13 represents the sample ratio index. We can
see the distance from the moved target vector d to the boundary was changed with the
change in step size in two directions. For the closest moved target vector d obtained in
our experiments, the ratio of ||v− d|| to 1

2 min(
∣∣∣∣∣∣b∗i ∣∣∣∣∣∣) is 179.0 and 187.0 with the original

basis for Equation (7) and the double basis for Equation (15), which is significantly less
than the initial target’s minimum ratio, 424.0 and 433.0, of ||v− t|| to 1

2 min(
∣∣∣∣∣∣b∗i ∣∣∣∣∣∣) in

Sections 5 and 6.
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It is obvious that the more directions in which we attempted to move, the closer the
distance from the moved target vector to the attack boundary became; it also took more
time to finish the attempts. Our experiments ran on one VMWare Ubuntu 18.04.6 TLS
with 1 processor (4 cores) and 4 gigabytes (GB) Random Access Memory (RAM). The
host physical machine ran Windows 10 with Intel(R) Core(TM) i7-9700 CPU @ 3.00 GHz
and 32 GB RAM(Intel Corporation in Santa Clara, California, the United States). With
the original basis (84 signatures, lattice rank 85) and double basis (85 signatures, lattice
rank 171), it took 247.7 s and 354.4 s to complete all moving attempts in two directions,
respectively. The idea target moving, expressed by Equations (21) and (22), represents
moving with different step numbers on each dimension. It was impossible to finish the
idea moving attempts in such a limited amount of time.

||v− d|| <



√
n−1
∑
0

w2 = 1
2 min(||b∗i ||), for equation 7√

2n−2
∑
0

w2 = 1
2 min(||b∗i ||), for equation 15

(20)


−1
C1 q
...

. . .
Cn−1 q



−α
z1
...

zn−1

−


0 + [α/w]w
D1 + [k1/w]w

...
Dn−1 + [kn−1/w]w

 =


αmodw
k1modw

...
kn−1modw

 (21)



−1
C1 q
−C1 q

...
. . .

Cn−1 q
−Cm−1 q





−α
z1
−z1

...
zn−1
−zm−1


−



0 + [α/w]w
D1 + [k1/w]w
−D1 − [k1/w]w

...
Dn−1 + [kn−1/w]w
−Dm−1 − [kn−1/w]w


=



αmodw
k1modw
−k1modw

...
kn−1modw
−km−1modw


(22)

Suppose we know some leakage information of the random nonces, we could filter out
the signatures whose one MSB or two MSBs of the random nonce is 0. We performed similar
experiments of attempting to move the target in two directions with the filtered signatures.
The sample ratios of ||v− d|| to 1

2 min(||b∗i ||) obtained in our experiments are shown in
Figures 14–17. For the closest moved target vector d obtained in our experiments, the ratio
of ||v− d|| to 1

2 min(||b∗i ||) is 45.6 with the original basis and two clear MSBs of the random
nonces. We can see where the greater the random nonce’s MSBs were clear, the closer the
distance between the moved target vector and the attack boundary would become, but it is
also more difficult to obtain more leakage information of the random nonce.
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8. Conclusions and Future Work

The findings presented in this paper have significant implications for enhancing
the overall security of blockchain systems, including the use of symmetric encryption to
protect communication between parties. By establishing the boundary for a successful
lattice attack on ECDSA and implementing effective measures to mitigate such attacks,
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including the use of heuristics and the exploration of alternative basis structures, this
study contributes to strengthening the security of blockchain systems. As a result, data
encrypted using symmetric encryption methods in the blockchain network are better
protected against potential attacks, ensuring the confidentiality and integrity of transmitted
data between parties.

To improve the success rate of lattice attacks, the authors developed a variant of the
lattice basis, the “double basis”, which allows for expansion of the boundary or reduction in
the required signatures by almost half with the same lattice rank, achieved by multiplying
both sides of one signature equation by one. In addition, the authors utilized a heuristic
approach and conducted experiments on TPM2.0 ECDSA to move the target vector closer
to the boundary in different directions with a step size determined by half the minimal
length of the orthogonal vectors. The distance from the closest moved target vector to the
boundary was reduced in the authors’ experiments with a ratio from 424 to 179, relative
to the minimal length of orthogonal vectors. The experiment was conducted using the
original basis and 84 signatures (lattice rank 85), and the moving attempts in two directions
could be completed in approximately 247.7 s on the experiment computer. If the authors
had filtered out the signatures with random nonces having two clear MSBs, the ratio could
be reduced even further by only attempting to move in two directions.

In the future, we will try to form a new variant of the lattice basis to expand the
boundary and attempt step size further, which requires fewer signatures. We may move
the target vector with the same step number in all directions. Then, the total number of
attempts could be reduced from ( q

w )
n to ( q

w )
2.
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