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Abstract: Discrete kinetic equations describing binary processes of agglomeration and fragmentation
are considered using formal equivalence between the kinetic equations and the geodesic equations of
some affinely connected space A associated with the kinetic equation and called the kinetic space
of affine connection. The geometric properties of equations are treated locally in some coordinate
chart (x; U). The peculiarity of the space A is that in the coordinates (x) of some selected local chart,
the Christoffel symbols defining the affine connection of the space A are constant. Examples of the
Smoluchowski equation for agglomeration processes without fragmentation and the exchange-driven
growth equation are considered for small dimensions in terms of geodesic equations. When frag-
mentation is taken into account, the kinetic equations can be written as equations of quasigeodesics.
Particular cases of spaces with symmetries are discussed.
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1. Introduction

In this paper, we explore a geometric approach to the kinetics of agglomeration and
fragmentation processes concerning the equivalence of binary discrete kinetic equations of
agglomeration and fragmentation and geodesic equations in some space of affine connec-
tion associated with the kinetic equation.

The agglomeration and fragmentation of particles of various sizes represent the driving
mechanisms behind natural phenomena on the entire range of scales, from the formation
of molecular aggregates at the microscopic level and association of nanoparticles in suspen-
sions and colloidal solutions at the meso- and macroscales, to the processes of evolution
of planetary and stellar matter at the astronomical scale (see, e.g., Refs. [1,2]; more details
about current research can be found in [3]).

Binary processes of coagulation, coalescence, and nucleation with the pairwise interac-
tion of particles are most common in systems with a relatively low particle density, while
many-particle aggregation is a characteristic of a densely dispersed system [4].

The mathematical modeling of binary processes of coagulation and fragmentation in
the mean-field representation is based on the classical Smoluchowski equation [5], as well
as the Becker–Döhring [6] equation.

In our study, we consider the systems usually assumed to be composed of a finite
number N of identical ’atoms’ (monomers) which can bind (stick together) with each other
during collisions, forming clusters.

The aggregation process is commonly described by the particle number density uk(t)
of clusters containing k monomers at time t; k is the cluster size; i, j, k, l, m, n = 1, N.
The clusters are supposed to interact according to the law of mass action, in which a rate
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constant, p(k, l) with p(k, l) = p(l, k), is introduced generally depending on the sizes k and
l of interacting clusters.

In the coagulation process, two clusters of sizes k and l can bind with each other and
create a cluster of the size k + l.

The coagulation–fragmentation equation can be written as [7,8]

u̇k(t) =
1
2 ∑

l<k
p(l, k− l)ul(t)uk−l(t)−

N−k

∑
l≥1

p(k, l)uk(t)ul(t)−

−∑
l<k

q(k, l)uk(t) + 2 ∑
l>k

q(l, k)ul(t). (1)

Here, u̇k(t) = duk(t)/dt; q(k, l), k > l, is the rate constant for the fragmentation of a cluster
of k particles into clusters of l and k− l particles. Obviously, we have q(k, l) = q(k, k− l).
For solutions uk(t) of (1), the number of particles in the system, c0, is conserved (the
normalization condition [8]):

c0 =
N

∑
k=1

kuk(t). (2)

Denote by u(t) = (ui(t)) and u(0) = (ui(0)), i = 1, N, the state vectors of the system at
time t and at the initial time t = 0, respectively. Then, c0(u(t)) = c0(u(0)), i.e., c0 is the
integral of the system (1).

In the case q(l, k) = 0, Equation (1) describes only the process of coagulation when
no fragmentation occurs. Such processes were considered in [9] to study the kinetics
of irreversible aggregation and clustering phenomena. It was found that the k and t
dependence of uk(t) is given by a universal function of a single variable, k/s(t), that does
not depend on the initial distribution. Here, s(t) is a mean cluster size.

In [10], a class of kinetic processes of cluster growth due to exchange mechanisms was
defined and studied.

Exchange-driven growth (EDG) is defined as a special kind of non-equilibrium cluster
expansion process in which pairs of clusters interact by exchanging a single monomer at
a time [10]. The exchange rate is described by an interaction kernel p(k, l) depending on
the interacting cluster sizes. The mathematical foundations of the EDG model, analysis of
its properties, and various applications are detailed in [10–12]. The EDG kinetic equations
introduced in [10] differ from the Smoluchowski equation, but also describe binary kinetics:

u̇k(t) = ∑
l≥1

p(l, k− 1)ul(t)uk−1(t)−∑
l≥1

p(k, l − 1)uk(t)ul−1(t)−

−∑
l≥1

p(l, k)ul(t)uk(t) + ∑
l≥1

p(k + 1, l − 1)uk+1(t)ul−1(t),

k > 0, p(i, j) = p(j, i), u0(t) = 0. (3)

More detailed studies of exchange-driven growth can be found in [11,12].
In applications, the standard techniques for studying kinetic phenomena are computer

methods, due to the mathematical complexity of kinetic equations. Therefore, the involve-
ment of new theoretical ideas and approaches for this area seems promising, because
the set of known analytical methods for kinetic equations is extremely limited. In this
regard, the special cases of affinely connected spaces with high symmetry are of interest
when it becomes possible to study the properties of geodesics involving Lie symmetry
analysis methods.

In this work, we consider some geometric features of binary kinetic equations of the
form (1) or (3), using a reformulation of them as a system of geodesic equations on some
N-dimensional manifoldM with an affine connection.
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The affine connection coefficients (the Christoffel symbols) are defined by the form of
the kinetic equation. The connection coefficients obtained in this way are symmetric and
independent of the coordinates of points of the manifold. Generalizing these special cases,
we can introduce a class of torsion-free affinely connected spaces in which the connection
coefficients are constant in some special coordinate system.

Such affinely connected spaces are naturally associated with binary kinetic equations
and can serve as an object of study by known methods of differential geometry of affinely
connected spaces (see, for example, [13,14]), and may also reveal new aspects in the study
of kinetic phenomena.

The paper is structured as follows. In Section 2, we introduce the basic concepts and
notations of the theory of affinely connected spaces and the problem setup. A kinetic
affinely connected space is introduced. The equiaffinity of these spaces is discussed in
Section 3. In Section 4, the properties of the Smoluchowski equation for small dimensions
are considered in terms of geodesic and quasigeodesic equations. Examples of the exchange-
driven growth Equation (3) are discussed in Section 5. In Section 6, the concluding remarks
are given.

2. Kinetic Spaces with Affine Connection

Let us first recall some basic concepts related to the spaces with an affine connection;
we will be mainly concerned with local properties. We mostly follow the notations and
conventions in Refs. [15,16].

Consider a smooth N-dimensional manifoldM, a tangent bundle TM, and a space
of vector fields V(TM) onM. For real smooth functions f and g , f , g ∈ C∞, and vector
fields X, Y ∈ V(TM), an affine connection ∇ on M is defined as a bilinear map ∇ :
V(TM)× V(TM) → V(TM), (X, Y) 7→ ∇XY ∈ V(TM), such that ∇ f XY = f∇XY and
∇X( f Y) = ∇X( f ) ·Y + f∇XY.

A smooth manifoldM endowed with a connection ∇ is a space of affine connection
by definition and is denoted by A(M,∇) (or more simply A).

Consider a point p ∈ M, some open neighborhood U ⊂M of p, and a frame

Φ = (X1, . . . , XN) (4)

consisting of a set of smooth vector fields of TM over U associated to a coordinate chart
(x; U) such that (X1(p), . . . , XN(p)) is a basis of TpM.

There exist smooth functions Γi
jk : U → RN , called Christoffel symbols of ∇ with

respect to Φ, such that ∇Xi Xj = Γk
ijXk. Einstein summation convention is used when this

does not cause confusion.
For any vector fields X = ξ iXi and Y = η jXj on U, ξ, η : U → RN , the covariant

derivative of Y along X with respect to the connection ∇ reads

∇XY = (X(ηk) + Γk
ijη

j)Xk, (5)

or, in the coordinates x = (x1, . . . , xN) of a local card (x, U),

ξ i∇iη
k = ξ i ∂ηk

∂xi + Γk
ijξ

iη j.

In the following, we will deal with spaces A with a symmetric connection ∇. In such
a space, for arbitrary vector fields X, Y ∈ V(TM), the Lie bracket [X, Y] satisfies the
condition [X, Y] = ∇XY−∇YX, i.e., the Christoffel symbols are symmetric with respect
to a coordinate chart (x; U) ofM, Γi

jk = Γi
kj.

For our approach to the binary kinetic equations, we need the concept of geodesics
and the equations of geodesics in spaces with an affine connection in terms of a local frame
Φ = (X1, . . . , XN) associated to a coordinate chart (x; U).
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Assume that γ is a smooth curve onM, mapping a finite or infinite interval I ⊂ R1 to
M, γ : I → γ(t) ∈ M. A vector field along γ is a map X : t ∈ I → X(t) ∈ Tγ(t)M.

The vector space of vector fields along γ is denoted by Vγ . The field X is smooth if,
for any t0 ∈ I, γ(t0) ∈ U and t ∈ J = γ−1(U) ⊂ I, the principal parts (components) ξ i(t)
(ξ i : γ−1(U)→ R1) of X with respect to local frame Φ are smooth functions such that

X(t) = ξk(t)Xk(γ(t)), (6)

where Xk(γ(t)) are the frame vectors of (4) on the curve γ(t).
The covariant derivative of vector fields from Vγ induced by the connection ∇ of the

space A can be defined as follows.
For a curve γ set γi = xi ◦ γ on J, where x = (x1, . . . , xN) are coordinates of a local

card (x, U), the coordinates γi(t), t ∈ J, are smooth functions, and λ(t) = γ̇(t) = (γ̇i(t)) =
(dγi(t)/dt) is the tangent vector to the curve γ.

The covariant derivative ∇γ
t X(t) of a vector field X ∈ Vγ along the curve γ, also

denoted by ∇λX(t), reads

∇γ
t X(t) = ∇λX(t) = {ξ̇k(t) + Γk

ij(γ(t))γ̇
i(t)ξ j(t)} · Xk(γ(t)), (7)

where ξ̇k(t) = dξk(t)/dt, Xk are the frame vector fields of (4), and the smooth functions

ξ̇k(t) + Γk
ij(γ(t))γ̇

i(t)ξ j(t) (8)

are principal parts (components) of the vector field ∇γ
t X(t) with respect to local frame (4)

on the curve γ. For ∇γ
t X(t) in (7), the following notation is also used: ∇γ

t X(t) = ∇γ̇X(t).
A vector field X along a curve γ is parallel if∇γ

t X(t) = 0, and in terms of (8), we have

ξ̇k(t) + Γk
ij(γ(t))γ̇

i(t)ξ j(t) = 0. (9)

A smooth γ is called a geodesic if the tangent vector γ̇(t) is parallel along γ:

γ̈k(t) + Γk
ij(γ(t))γ̇

i(t)γ̇j(t) = 0. (10)

Let us represent binary kinetic equations in terms of a suitable space of affine connec-
tion, using as an example Equation (1) with q(k, l) = 0,

u̇i =
1
2

i−1

∑
l=1

p(l, i− l)ui−lul − ui
N−i

∑
l=1

p(i, l)ul . (11)

In the coordinate map (x, U), U ⊂ M, referred to frame (4), in the coordinate system
x = (x1, . . . , xN), consider a smooth curve γ :→ U, γ = {x ∈ U|xi = xi(t), t ∈ I, i = 1, N},
with tangent vector u(t) = ẋ(t), and let the curve γ be subject to the condition (11).

Comparing (11) with the equation of geodesics (10), we have

Γi
jk = −

1
4

i−1

∑
l=1

(
δl jδi−l k + δl kδi−l j

)
p(i− l, l) +

1
2

N−i

∑
l=1

(
δj iδl k + δk iδj l

)
p(l, i). (12)

On the manifold M, we define an affine connection ∇ by the coefficients of the
connection Γi

jk of the form (12) in the local chart (x, U). Then, M will be an affinely
connected space A(M,∇), in which we consider a kinetic Equation (11) as an equation
of geodesics.

Next, we can write the EDG kinetic Equation (3) in the form [10]:

u̇i = ∑
k,j

p(k, j)
(

δi k+1 + δi k−1 − 2δi k

)
ukuj =

=
1
2 ∑

k,j
p(k, j)

(
δi k+1 + δi j+1 + δi k−1 + δi j−1 − 2δi k − 2δi j

)
ukuj, (13)
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where the summation indices k, j run over the corresponding range.
Similarly to (11), we write the Christoffel symbols Γi

jk for (13) as

Γi
jk = −

1
2

p(k, j)
(

δi k+1 + δi j+1 + δi k−1 + δi j−1 − 2δi k − 2δi j

)
. (14)

Then, similarly to Equation (11), the kinetic Equation (13) can be considered as the
equation of geodesics in the space A(M,∇), where the connection ∇ is given by (14). We
will also assume the connection coefficients to be symmetric, Γi

jk = Γi
kj, and independent of

the coordinates x in some distinguished coordinate system of the local map (x, U) ofM.
From the above examples, we consider an affinely connected space A(M,∇) such

that in the local chart U of the manifold M containing a neighborhood of some point
x0 ∈ U ⊂M, there exists a local coordinate system (xi) where the connection coefficients
(Christoffel symbols) Γi

jk are constant and symmetric, ∂Γi
jk/∂xl = ∂lΓi

jk = 0, Γi
jk = Γi

kj. For
brevity, we call such a space the kinetic one and denote it by AK.

For Christoffel symbols Γi
jk, we write the Riemann curvature tensor as

Ri
.jkl = −∂kΓi

jl + ∂lΓ
i
jk − Γi

skΓs
jl + Γi

slΓ
s
jk, (15)

and the Ricci tensor reads

Rjl = Rk
.jkl = −∂kΓk

jl + ∂lΓ
k
jk − Γk

skΓs
jl + Γk

slΓ
s
jk. (16)

For constant and symmetric Christoffel symbols of the space AK, Γs
jl = Γs

lj, we have

Ri
.jkl = −Γi

skΓs
jl + Γi

slΓ
s
jk, (17)

and

Rjl = Rk
.jkl = −Γk

skΓs
jl + Γk

slΓ
s
jk. (18)

The spaces with affine connection are also general objects with a wide variety of
properties. Therefore, spaces or classes of spaces with certain additional conditions are
studied, making it possible to reveal and analyze the geometry of such spaces in detail.
The important classes of affinely connected spaces are symmetric ones, recurrent, Ricci-
recurrent, projective, etc. [13,14].

The theory of affinely connected spaces is traditionally developed on the basis of cer-
tain connection properties for which general results can be obtained. However, the spaces
AK are determined by the form of the kinetic equations, and their general geometric prop-
erties have not been investigated. Therefore, it is reasonable to study their correspondence
to one known case or another.

In this paper, as a first (preparatory) step, we discuss only some simple consequences
from the definition of affinely connected kinetic spaces and illustrative examples.

3. Equiaffinity

The spaces AK have the important property of being equiaffine. A torsion free space
A(M,∇) with affine connection is equiaffine if the volume of an N-dimensional paral-
lelepiped is conserved under parallel translation of vectors [13,14].

The volume at a point x is given by V = e(x, v1 . . . , vN), where e(x, ·, . . . , ·) is a
completely antisymmetric covariant tensor field (the main N-form), and (v1 . . . , vN) is
a basis of the tangent space TxM. In the coordinate system of the local map (x, U), we
write e(x, v1 . . . , vN) = e(x)i1 ...iN vi1

1 . . . , viN
N . The conservation of volume under parallel

translation of vectors is equivalent to the condition ∇ke(x)i1 ...iN = 0.
Denote by e(x) = e(x)12...N the only essential component of the main N-form. Then,

we have



Symmetry 2023, 15, 905 6 of 16

Γk = ∂k log e(x), (19)

where ∂k = ∂/∂xk, Γk = Γs
ks is the affine connection trace, and e(x) is determined by (19)

up to a constant factor.
Additionally, note that the criterion for the equiaffinity of a torsion free space A(M,∇)

is the symmetry condition for the Ricci tensor defined by the affine connection ∇.
We can apply these definitions to the space AK. The Ricci tensor of the form (18) is

symmetric, Rjl = Rl j, so the space AK defined above is equiaffine. The main density e(x) in
the considered coordinate system of the local map (x, U), in which the Christoffel symbols
are constant, is defined by Equation (19) as

e(x) = e0 exp
(

Γkxk
)

, (20)

where e0 is a constant.
The equiaffinity is essential in the study of affinely connected spaces; in particular,

in the theory of geodesic mappings and their generalizations [17–19].
Simple examples of non-linear systems of equations with constant coefficients that can

be represented as geodesic equations are the Lorenz [20] and Rössler [21] systems, whose
solutions demonstrate the behavior of dynamic chaos. This indicates that the spaces AK,
despite their specificity (the existence of constant connection coefficients and equiaffinity),
remain excessively complex subjects for a simple, uniform description. Therefore, it is
natural to study narrower classes of spaces AK with additional restrictions that allow
the use of special methods and approaches. Additionally, we can modify a given affine
connection in such a way that the new connection has useful properties for analysis and
corresponds to the original one in a certain sense. For example, connections (including those
with torsion) on homogeneous spaces or on Riemann–Cartan manifolds (e.g., Ref. [14]).

4. Example: Smoluchowski’s Equation

Consider particular cases of geodesic Equation (10) with connection coefficients (12)
corresponding to the Smoluchowski Equation (11) for low dimensions N. The case N = 2
is trivial, so, for reasons of simplicity, we restrict ourselves to the cases N = 3, 4.

In the case N = 3 with the notations i, k = 1, 2, 3, ui = ui(t), p(1, 1) = p, p(1, 2) = q,
and p(i, k) = p(k, i), we can write (11) as

u̇1 = −p(u1)2 − qu1u2; (21)

u̇2 =
1
2

p(u1)2 − qu1u2; (22)

u̇3 = qu1u2. (23)

From (12) we find the following nonzero components of the symmetric Christoffel sym-
bols Γi

jk:

Γ1
11 = p, Γ2

11 = −1
2

p, Γ1
12 = Γ2

12 = −Γ3
12 =

1
2

q. (24)

The nonzero components of the Riemann curvature tensor (17), given the antisymmetry
Ri

.jkl = −Ri
.jlk, are

R1
.112 = −1

4
q2, R1

.212 =
1
4

q2;

R2
.112 = −1

4
q2 +

3
4

pq, R2
.212 =

1
4

q2;

R3
.112 =

1
4

q2 − 1
2

pq, R3
.212 = −1

4
q2, (25)
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and from (18) we find the nonzero components of the Ricci tensor: R11 = R2
.121, R12 = R1

.112,
R22 = R1

.212. The main space density e(x) given by (20) reads

e(x) = e0 exp
[(

p +
1
2

q
)
x1 +

1
2

qx2],
where Γk = Γs

ks in (19) are Γ1 = p + 1
2 q, Γ2 = 1

2 q, Γ3 = 0.
From the normalization condition (2),

u1 + 2u2 + 3u3 = c0, c0 = const, (26)

we can express u3 in terms of u1 and u2, and from (21) and (22) we find

du1

du2 = − pu1 + qu2

1
2 pu1 − qu2

. (27)

Integrating Equation (27) yields the dependence of u1 on u2 in an implicit form

1
2

log
∣∣ f (u1, u2)

∣∣− p + q√
−∆

arctan
g(u1, u2)

u2
√
−∆

= c1, ∆ < 0,

1
2

log
∣∣ f (u1, u2)

∣∣+ p + q√
∆

arctanh
g(u1, u2)

u2
√

∆
= c1, ∆ > 0, (28)

where ∆ = (p − q)2 − 2pq, f (u1, u2) = p(u1)2 + 2(p − q)u1u2 + 2q(u2)2, g(u1, u2) =
pu1 + (p− q)u2, and c1 is the integration constant that can be found from the initial data;
arctanh(z) = 1

2 log((z + 1)/(z− 1)).
From the numerical analysis of (28), one can observe a linear dependence of u1(t) and

u2(t) for some initial values u1(0) and u2(0), when u1(0) � u2(0) and q is sufficiently
small (Figure 1).

1.5 2.0 2.5 3.0
u2

1197

1198

1199

1200

u1

Figure 1. The dependence of u1 on u2 in accordance with Equations (21) and (22) at p = 0.8; q = 0.05;
u1(1) = 1200.

In the case of a small q compared with p, the system (21)–(23) becomes a slow–fast
dynamical system with respect to slow time pt, in which u1 and u2 are fast variables, and u3

is a slow one.
The theory of slow–fast dynamical systems, or singularly perturbed systems, has been

actively developed since the last century and is presented in a wealth of papers and books;
we refer to recent works with a fairly representative bibliography [22,23].

Such systems describe various physical phenomena in which a change in dynamic
regimes is observed with a slow change in some of its variables. However, the (21)–(23)
system does not show a variety of dynamic modes. This, in particular, is due to the non-
hyperbolicity of the “slow curve” [22,23], which is obtained by equating the right-hand
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sides of Equations (21)–(23) to zero and is a set of points of the form (0, 0, ū3), ū3 =const,
of the phase space of the system (21)–(23).

We construct an asymptotic solution for the system (21)–(23) accurate to o(q) by
restricting ourselves to the leading term.

Let us search for a particular solution of Equation (27) accurate to o(q) in the form

u1(u2) = m− 2u2 + qh(u2), (29)

where a smooth function h(u2) does not depend on q.
From (23) and (27) with a given accuracy in q, we obtain

u1(u2) = m− 2u2 +
3q
p
(
u2 +

m
2

log
∣∣m− 2u2∣∣)− 3q

2p
m log m, u1(0) = m. (30)

Approximate solutions of the system (21)–(23) can be found in the form of an expansion in
q with an accuracy of o(q):

ui(t) = ui
(0)(t) + qui

(1) + o(q). (31)

Equations for ui
(0), ui

(1) obtained from (21)–(23) and (31) are

u̇1
(0) + p(u1

(0))
2 = 0, (32)

u̇1
(1) + 2pu1

(0)u
1
(1) + u1

(0)u
2
(0) = 0, (33)

u̇2
(0) −

1
2

p(u1
(0))

2 = 0, (34)

u̇2
(1) − pu1

(0)u
1
(1) + u1

(0)u
2
(0) = 0, (35)

u̇3
(0) = 0, u̇3

(1) − u1
(0)u

2
(0) = 0; (36)

ui
(l)(t)

∣∣
t=0 = ui

(l)(0), l = 0, 1, i = 1, 2, 3.

For more compact notation, we set u1
(0)(0) = c, µ = u1

(0)(0) + 2u2
(0)(0), µ1 = c0 =

u1
(0)(0) + 2u2

(0)(0) + 3u3
(0)(0) = µ + 3u3

(0)(0), u2
(0)(0) = κ, g(t) = 1 + pu1

(0)(0)t = 1 + pct,
where c0 is given in (26). Integration of system (32)–(36), subject to the conditions (26),
yields

u1
(0)(t) =

c
g(t)

, u2
(0)(t) =

1
2
(
µ− u1

(0)(t)
)
, u3

(0)(t) = u3
(0)(0), (37)

u1
(1)(t) =

1
g(t)2

[
u1
(1)(0)−

1
2

ct
(
2κ +

1
2

µpct
)]

, (38)

u2
(1)(t) =

1
2
[
c0 − u1

(1)(t)− 3u3
(1)(t)

]
, (39)

u3
(1)(t) =

µ

2p
log |g(t)| − c2t

2g(t)
+ u3

(1)(0). (40)

The geodesics in the coordinates (xi) of a local card (x, U) of the space AK in the
considered case are written as

xi(t) = xi
(0)(t) + qxi

(1)(t) + o(q). (41)

They are obtained by integrating the relations ẋi
(l)(t) = ui

(l)(t) with initial values xi
(l)(t) =

xi
(l)(0), and for ui

(l)(t) of the form (37)–(40) they are
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x1
(0)(t) =

1
p

log |g(t)|+ x1
(0)(0), x2

(0)(t) =
1
2

µt− 1
2p

log |g(t)|+ x2
(0)(0),

x2
(0)(t) =

1
2

µt− 1
2

x1
(0)(t) +

1
2
(x1

(0)(0) + 2x2
(0)(0)), x3

(0)(t) = u3
(0)(0)t + x3

(0)(0), (42)

x1
(1)(t) =

u1
(1)(0)t

g(t)
− κ

p

( 1
cp

log |g(t)| − t
g(t)

)
− µ

4p

(
t− 2

cp
log |g(t)|+ t

g(t)

)
+ x1

(1)(0),

x2
(1)(t) =

1
2

µt− 1
2
(

x1
(1)(t)− x1

(1)(0)
)
− 3

2
(
x3
(1)(t)− x3

(1)(0)
)
+ x2

(1)(0),

x3
(1)(t) =

µ

2p2c
(

g(t) log |g(t)| − cpt
)
− 1

2p2

(
cpt− log |g(t)|

)
+ u3

(1)(0)t + x3
(1)(0). (43)

In the case q = 0, the Riemann tensor (25) vanishes and the space AK is flat. In the
coordinates (x) of the local map (x, U), some components of the Christoffel symbols
are zero (24). Hence, the coordinates (x) are not Cartesian. The transition to Cartesian
coordinates (y) is given by

y1 = exp(px1), y2 = x2 +
1
2

x1, y3 = x3,

x1 =
1
p

log y1, x2 = y2 − 1
2p

log y1, x3 = y3. (44)

In the coordinates (y), the vector ui is given by the components vi(y) = ∂yi/∂xkuk(x)
that are as follows:

v1 = py1u1, v2 =
1
2

u1 + u2, v3 = u3, (45)

and the system (21)–(23) for the vector vi with q 6= 0 reads

v̇1 = −qv1(v2 − v1

2py1

)
, v̇2 = − 3q

2py1 v1(v2 − v1

2py1

)
=

3
2py1 v̇1, (46)

v̇3 =
q

py1 v1(v2 − 1
2py1 v1) = − 1

py1 v̇1. (47)

For q 6= 0, the coordinates (y) are not Cartesian, and AK is not flat, because the Christoffel
symbols (24) in these coordinates are nonzero, as are the components of the Riemann tensor.

Denote by Γ̃i
jk the Christoffel symbols (24) in the coordinates (y). The non-zero Γ̃i

jk are:

Γ̃1
11 = −1

2
q

py1 , Γ̃1
12 =

1
2

q, Γ̃2
11 = −3

4
q

(py1)2 , Γ̃2
12 =

3
4

q
py1 ,

Γ̃3
11 =

q
2(py1)2 , Γ̃3

12 = − q
2py1 . (48)

Equations (46) and (47) for geodesics in coordinates (y), according to (10), read

ÿ1 = −qẏ1(ẏ2 − ẏ1

2py1

)
, ÿ2 = − 3q

2py1 ẏ1(ẏ2 − ẏ1

2py1

)
, (49)

ÿ3 =
q

py1 ẏ1(ẏ2 − 1
2py1 ẏ1). (50)

For q = 0, Equations (49) and (50) have a solution in the form of straight lines:

yi(t) = yi
(0)(t) = vi

(0)t + yi
(0), vi(t) = vi

(0) = const, yi
(0) = const. (51)
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Equation (51) defines the geodesic flow in the flat AK.
In the case of q 6= 0, the numerical solutions of Equation (49) show that for various

p and q and various initial conditions, for long times, after passing transient processes at
short times, the solutions of Equation (49) behave as follows:

y1(t)→ const, y2(t)→ at + b, a, b = const. (52)

A typical example of such a solution is shown in Figure 2.

y1

y2

20 40 60 80 100
t

20

40

60

80

y

Figure 2. The numerical solution of Equation (49) for p = 0.5, q = 0.4, y1(0) = 15, y2(0) = 2,
ẏ1(0) = ẏ2(0) = 1.

The system (49), (50) for arbitrary p and q has the exact solution

ȳ1(t) = ȳ1(0), ȳ2(t) = v̄2(0)t + ȳ2(0), ȳ3(t) = v̄3(0)t + ȳ3(0), (53)

where ȳi(0) and v̄i(0) are constant initial conditions for Equations (49), (50) and (46), (47),
respectively. Then, from a comparison of (53) with numerical solutions, we can draw a
conclusion that (48) is an attractor of geodesics in the space AK defined by (49) and (50) in
the coordinates (y) for q 6= 0.

Passing to the original coordinates (x) according to (44), we find that the solution
of system (21)–(23) tends to the constant vector ū, u(t) = (u1(t), u2(t), u3(t)) → ū =
(0, ū2, ū3), as t→ ∞, where the constant components ū2 and ū3 of ū depend on the initial
vector u(0) = (u1(0), u2(0), u3(0)) and parameters p, q. The quantities ū2 and ū3 can
be obtained from two integrals given by (2) and (28), where the constants c0 and c1 are
determined by the initial vector u(0): c0 = c0(u(0)), c1 = c1(u(0)).

Figure 3 shows an example of the numerical solution of system (21)–(23) over a short
time interval, where a transition to the stationary state ū = (0, 284, 574) is observed for the
parameters p = 0.5 and q = 0.4 as in Figure 2, and the initial vector u(0) = (1200, 500, 30).
Numerical solutions of system (1) were controlled using the integral (2).

For N = 4 (i, k = 1, 4), the system (11) is written as

u̇1 = −u1(p(1, 1)u1 + p(1, 2)u2 + p(1, 3)u3),

u̇2 =
1
2

p(1, 1)u1u1 − u2(p(2, 1)u1 + p(2, 2)u2),

u̇3 =
1
2
(

p(1, 2)u2u1 + p(2, 1)u1u2)− u3 p(3, 1)u1,

u̇4 =
1
2
(

p(1, 3)u3u1 + p(2, 2)u2u2 + p(3, 1)u1u3). (54)

Considering Equation (54) as defining the geodesic x(t) in the coordinate system (x),
from the condition ẋi = ui(t), by analogy with (21)–(23), we define the connection ∇ by
the coefficients (12) for N = 4, whose explicit form we omit for simplicity reasons.
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u1

u2

u3

0.02 0.04 0.06 0.08 0.10
t
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1000

1200

Figure 3. Transition of the solution u(t) of the system (21)–(23) from the initial state u(0) to the
stationary state ū.

In the case of p(1, 2) = p(1, 3) = 0, the nonzero components of the Riemann tensor
are equal to R2

.121 = −R2
.112 = 2R4

.112 = −2R4
.121 = p(1, 1)2 p(2, 2)/2. We can directly verify

the relation

∇R = κ ⊗ R. (55)

Here, ∇R is the operator of covariant differentiation of the Riemann tensor R, and the
covector κ = (κi) has the form κ = (−2p(1, 1), 0, 0, 0).

Then, the space AK becomes a recurrent affine space, which was introduced in [24,25].
The studies of these spaces showed their importance not only in the geometry and topology
of manifolds, but also in physical applications such as gravity and field theory.

Analysis of the system (54) leads to results similar to the considered case N = 3.
The system (54) has the stationary solution

ū = (0, 0, ū3, ū4), (56)

which can be regarded as an attractor of the system. Here, ū3 and ū4 are constant.
Numerical solutions of Equations (54) for various initial conditions and parameters

p(i, j) show that there is a transition from the initial state u(0) to the stationary state ū
as t → ∞. This transition already occurs at rather short times. The typical behavior of
solutions to system (54) is shown in Figure 4 for u(0) = (1200, 500, 200, 60) and p(1, 1) = 0.5,
p(1, 2) = 0.4, p(1, 3) = 0.3, p(2, 2) = 0.2. The stationary state is ū = (0, 0, 391, 467).

u1

u2

u3

u4

0.05 0.10 0.15 0.20
t

200

400

600

800

1000

1200

Figure 4. The numerical solution of Equation (54).

From the considered examples, we can assume that the solutions of system (11) for
an arbitrary N tend to the stationary solution asymptotically in t, t→ ∞, and some of the
variables ūi, i = 1, N, of the stationary solution are equal to zero.

In the generalizations of the theory of geodesic mappings of affinely connected spaces
and Riemannian spaces, the definition of quasigeodesic [26,27] or F-planar curves (see, e.g.,
Ref. [18]) is introduced, which generalizes the notion of the geodesic curve.
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The idea of the theory of geodesic mappings and its generalizations can be compiled
from [17–19], where an extensive bibliography can also be found. In a torsion-free affine
connection space A(M,∇) with a tensor field F of the type (1,1), a curve x(t) is said
to be quasigeodesic or F-planar (see [18,27] and references therein) if its tangent vector
λ = dx(t)/dt during parallel transport does not leave the domain formed by the tangent
vector λ and the adjoint vector Fλ, i.e.,

∇λλ = ρ1(t)λ + ρ2(t)Fλ, (57)

where = ρ1(t) and ρ2(t) are functions of t and ∇λ is the covariant derivative along λ of (7).
For the case N = 3, the Smoluchowski Equation (1) with q(l, k) 6= 0 can be written

as (57). We will consider it as the equation of the quasigeodesic in the sense of [26,27].
The nonzero components of the tensor F in the (x) coordinate system are F1

2 = 2q(2, 1), F1
3 =

2q(3, 1), F2
2 = −q(2, 1), F2

3 = 2q(3, 2), F3
1 = −q(3, 1), F3

2 = −q(3, 2), where q(3, 2) = q(3, 1)
due to the particle number conservation in the system. Equation (1) with the notations of
the system (21)–(23) can be written as

u̇1 = −p(u1)2 − qu1u2 + 2
(
q(2, 1)u2 + q(3, 1)u3),

u̇2 =
1
2

p(u1)2 − qu1u2 − q(2, 1)u2 + 2q(3, 2)u3,

u̇3 = qu1u2 −
(
q(3, 1) + q(3, 2)

)
u3. (58)

The construction of analytical exact or approximate solutions of the system (58) for
arbitrary parameters p, q, and q(i, j) is non-trivial and makes sense for large N; this calls
for separate study.

The system (58) for q(i, j) 6= 0 has the exact stationary solution ū = (ū1, ū2, ū3), where
ū1 is an arbitrary constant and

ū2 =
p

2q(2, 1)
(ū1)2, ū3 =

pq
4q(2, 1)q(3, 1)

(ū1)3. (59)

The stationary solution (59) can be regarded as an attractor of solutions to the system (58)
with the given initial vector u(0) = (u1(0), u2(0), u3(0)), and the parameter ū1 of (59) is
determined using the integral (2) from the condition

c0(ū) = c0(u(0)), (60)

which yields a cubic equation for ū1.
Figure 5 shows an example of a numerical solution of the system for the values of the

parameters p = 0.4, q = 0.3, q(2, 1) = 0.1, q(3, 1) = q(3, 2) = 0.2 and initial conditions
u(0) = (1200, 300, 30) on a short time interval t ∈ [0, 0.1] , where the transition to the exact
stationary state ū = (7, 103, 559) can be observed.

u1

u2

u3

0.02 0.04 0.06 0.08 0.10
t

200

400

600

800

1000

1200

Figure 5. The numerical solution of Equation (58).
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The cubic Equation (60) has two complex conjugate roots and one real positive root
ū1 = 7, which determines the stationary state ū in Figure 5.

5. Example: EDG Equation

Here, we look at the EDG Equation (13) as the geodesic Equation (10) with Christoffel
symbols (14) for low dimensions N, by analogy with (11) in the previous section. Note
that, by the definition of Equation (13) in accordance with [10], we can assume p(0, j) =
p(N, j) = 0 for a given N.

Let us consider the simplest nontrivial case, N = 4. For N = 4, i, j, k = 1, 4, Equation (13)
is written as

u̇1 = −2p(1, 1)(u1)2 − p(1, 2)u1u2 − 2p(1, 3)u1u3 + p(2, 2)(u2)2 + p(2, 3)u2u3,

u̇2 = p(1, 1)(u1)2 − p(1, 2)u1u2 + 2p(1, 3)u1u3 − 2p(2, 2)(u2)2 − p(2, 3)u2u3 + p(3, 3)(u3)2,

u̇3 = p(1, 2)u1u2 − 2p(1, 3)u1u3 + p(2, 2)(u2)2 − p(2, 3)u2u3 − 2p(3, 3)(u3)2,

u̇4 = p(1, 3)u1u3 + p(2, 3)u2u3 + p(3, 3)(u3)2. (61)

From (14), the nonzero symmetric Christoffel symbols are

Γ1
11 = 2p(1, 1), Γ1

12 =
1
2

p(1, 2), Γ1
13 = p(1, 3), Γ1

22 = −p(2, 2), Γ1
23 =

1
2

p(2, 3);

Γ2
11 = −p(1, 1), Γ2

12 =
1
2

p(1, 2), Γ2
13 = −p(1, 3), Γ2

22 = 2p(2, 2), Γ2
23 =

1
2

p(2, 3), Γ2
33 = −p(3, 3);

Γ3
12 = −1

2
p(1, 2), Γ3

13 = p(1, 3), Γ3
22 = −p(2, 2), Γ3

23 =
1
2

p(2, 3), Γ3
33 = 2p(3, 3);

Γ4
13 = −1

2
p(1, 3), Γ4

23 = −1
2

p(2, 3), Γ4
33 = −p(3, 3). (62)

For arbitrary parameters p(i, j), the Riemann and Ricci tensors have a complex form.
In the case where p(1, 2) = 2p(1, 1), p(2, 2) = p(1, 1), p(i, 3) = 0, i = 1, 2, 3, the Rie-

mann tensor vanishes, and the space AK with the connection (62) is flat. The dynamics of
the system (61) can be explored using exact analytical solutions for u(t) = (ui(t)), similarly
to the system (21)–(23) discussed in Section 4. The influence of the parameters p(i, 3) under
the assumption when they are small can be taken into account through perturbation theory.

Numerical solutions of the system (61) show that, for different values of the parameters
p(i, j), the behavior of the solutions is qualitatively similar. A characteristic feature is
the transition to stationary values of ui(t) with increasing t. Figure 6 shows a typical
example of such a solution for p(1, 1) = 0.3, p(1, 2) = 0.6, p(1, 3) = p(2, 2) = 0.35,
p(2, 3) = p(3, 3) = 0.2 with the initial condition u(0) = (1200, 5, 5, 2).

u1
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0.02 0.04 0.06 0.08 0.10
t
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400
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u

Figure 6. The numerical solution of the system (61) for the parameters p(1, 1) = 0.3, p(1, 2) = 0.6,
p(1, 3) = p(2, 2) = 0.35, p(2, 3) = p(3, 3) = 0.2 with the initial condition u(0) = (1200, 5, 5, 2).
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As t → ∞, the variables ui(t) of the system (61) tend to the stationary solution
ui(t) → 0 for i = 1, 2, 3 and u4(t) → c0/4. Here, c0 is the integral (2) of the system (61)
expressed in terms of the initial conditions: c0 = ∑4

k=1 kuk(0). Additionally, we assume
that p(i, j) 6= 0.

Figure 7 shows the solution of the system (61) for p(1, 1) = p(2, 2) = 0.3, p(1, 2) = 0.6,
and p(i, 3) = 0, which corresponds to the case of a flat space AK. A comparison of Figures 6
and 7 shows the similarity in the behavior of both solutions. However, in this case, for
t → ∞ we have ui(t) → 0 for i = 1, 2, u3(t) → (1/3)∑3

k=1 kuk(0), and u4(t) = u4(0) due
to the last equation of the system (61).
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800

1000

1200

u

Figure 7. The numerical solution of equations of the system (61) for p(1, 1) = p(2, 2) = 0.3, p(1, 2) =
0.6, p(i, 3) = 0 with the initial condition u(0) = (1200, 5, 5, 200).

Over a long time, the behavior of a solution u(t) = (ui(t)), i, j = 1, N, to the system
(13) with a given initial value u(0) = (ui(0)) for arbitrary N and p(i, j) 6= 0, can be such
that ui(t)→ 0 for i = 1, N − 1, and uN(t)→ (1/N)∑N

k=1 kuk(0).

6. Concluding Remarks

Mathematical models of the processes of aggregation and fragmentation of particles
of various sizes and compositions have been developed and studied for over a century and
continue to be a topical area of research. Because these processes are ubiquitous in natural
phenomena at all spatial scales, from the micro to the macro level, they are a key element in
understanding the patterns of specific phenomena.

In this paper, we use an approach in which binary kinetic equations are considered as
equations of geodesics of an appropriate space with an affine connection. This makes it
possible to describe kinetic processes in terms of the geodesic flows of the space associated
with the kinetic equation.

The geometry of affine spaces has a long history and has by now accumulated a rich
spectrum of ideas and methods that are used in numerous applications, especially in field
theory and gravity, as partially presented in the bibliography below, e.g., Refs. [13,14,27], et al.

However, the spaces of affine connection introduced in this work and associated
with binary kinetic equations are little studied, but may be of interest in various fields of
condensed matter physics, as well as in biophysics. Some properties of the introduced
spaces follow directly from their definition. In particular, such a space has the property
that it has a coordinate system related to some local map, in which the connection is given
by symmetric and constant Christoffel symbols defined by the kinetic equation. As a
consequence, this space turns out to be equiaffine, and the volume element is conserved
in it. As a preliminary study of these spaces, we have considered some of their obvious
properties and toy examples of cases for N = 3, 4. The transition to a stationary state over
long times in these examples is natural due to the conservation of the number of particles
in the system.

In this connection, we note the role of kinetics in describing the specific properties
of highly dilute aqueous solutions and suspensions using fractal representations [8,28],
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as well as in the search for approaches to the study of a number of phenomena discovered
experimentally that can be of interest as a means of construction of mathematical models.

In [8], using the kinetic Equation (1), and in [28], it was shown that in highly dilute
solutions and suspensions, viscosity nonlinearly depends on concentration as a power law
with an exponent associated with the fractal dimension. In our opinion, this indicates a
correlation between kinetic phenomena and fractal properties in such systems. A detailed
study of these objects is beyond the scope of this work and requires the use of new mathe-
matical methods, among which fractal calculus seems to be the most promising (see [29]
and references therein).

The specific properties of biologically active highly dilute substances called released-
active forms (RA) have been discussed in [30,31]. Related issues have also been discussed
in [32,33].

The physical basis of this phenomenon is currently not developed; therefore, various
approaches are being tried, among which the fractality associated with the kinetics of
particles in highly diluted substances ([34] and references therein) can become a prerequisite
for features of the emergent behavior of such a system (e.g., Ref. [35]), which manifests
itself in the specifics of its properties.
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