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Abstract: Methods for fault diagnosis based on metric learning, in which a query sample is classified
by picking the closest prototype from the support set based on their feature similarities, have been the
subject of many studies. In real-world applications of in-orbit products, such as circulating pumps, the
computation of similarity between different pairs is prone to different degrees of inaccuracy, especially
epistemic uncertainty. Knowing and considering the uncertainty of similarity may improve fault
detection accuracy. This article provides a unique approach to fault diagnosis based on Prototypical
Network (Pro-Net) and Uncertainty Theory. In particular, we use epistemic uncertainty by altering
the representation of prototypes from a deterministic scalar to an uncertain representation. To assess
the similarity between a query and the prototypes in a support set, we calculate the uncertain
distance between the pairs using cross-entropy. Experiments with symmetrical structures reveal that
our proposed method significantly enhances classification precision and achieves state-of-the-art
performance. It improves the reliability of fault diagnosis and reduces the risk of making erroneous
judgments in safety-critical systems, decreasing the possibility of adverse consequences.

Keywords: circulating pumps; fault diagnosis; Prototypical Network; uncertainty theory; epistemic
uncertainty; safety-critical

1. Introduction

China National Space Administration has finished building the T-shaped Tiangong
orbiting outpost, comprising the Tianhe core module and the Wentian and Mengtian
experiment modules [1]. With the experiment racks placed in the Experiment Modules, it is
anticipated that the station, just the second laboratory in orbit, would host over a thousand
scientific experiments for at least ten years. They include the study of microgravity’s
influence on novel materials, biological tissues, and basic physics. Since experiment
modules must work within a certain range of temperatures, the thermal control subsystem
is crucial in completing the abovementioned experiment. In addition, while discussing
human spaceflight, various factors must be considered to secure people’s lives throughout
the voyage. Thus, the thermal control subsystem built for human flights is more crucial
and sophisticated. Being crucial components of the thermal control subsystem, centrifugal
pumps are susceptible to wear and have short lifespans. If the malfunction arises and
is not recognized and remedied in time, it will have catastrophic repercussions for the
space station and crew. Thus, fault diagnosis, timely detection, and treatment of circulating
pumps must ensure the station’s safe functioning over the next decade in orbit.

In the previous several decades, much research has been conducted on the fault
diagnosis of circulating pumps. Various strategies have been created, spanning from
model-based [2–4] to data-driven [5–9]. As the most popular method for fault diagnosis,
Prototypical Networks (Pro-Net) have been utilized extensively. Prototypical Networks
(Pro-Net) have the advantage of dealing with small samples without expanding the dataset
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with random noise or unlabeled samples, unlike traditional deep learning methods such
as CNN [10] and RNN [11]. For bearing fault identification, He et al. [12] combined a
kernel principal component analysis strategy with a semi-supervised prototype network
(PSSPN), using unlabeled data to its maximum potential. Yu et al. [13] suggested a failure
detection technique based on a mixed self-attention Prototypical Network that can acquire
more discriminative characteristic information to learn the measurement prototypes of
gearboxes in different health conditions. Zhang et al. [14] developed a feature distance-
based deep prototype network (FDDPN) for few-shot defect detection in an open-set
domain adaptation situation. Liu [15] suggested a fault diagnosis technique for gearboxes
with noisy labels based on twin Prototypical Networks with label self-correction.

The fundamental procedure for Pro-Net is obtaining the prototype from raw measure-
ment data using a probability metric. However, the probability metric [16] is limited in that
it solely captures aleatory uncertainty (the intrinsic unpredictability of the actual world
reflected by probability distributions [17]) and does not take epistemic uncertainty into
account (uncertainty caused by our lack of knowledge [18,19]). In real-world scenarios, as a
newly developed product with only a few samples, the circulation pump suffers from insuf-
ficient ground testing and large differences between ground testing and in-orbit operating
environments, limiting knowledge on system fault diagnosis, and resulting in epistemic
uncertainty. Thus, Pro-Net approaches that do not account for epistemic uncertainty cannot
be used directly for practical applications, resulting in erroneous diagnostic findings. The
uncertainty theory, developed by Liu [20] and detailing uncertain metrics for quantifying
events with epistemic uncertainty, has been established. Regarding aleatory and epistemic
uncertainty, Liu [21] widened the scope of the unsure measure to the chance measure.

We propose a novel defect diagnostic approach (Uncertainty Pro-Net) for centrifugal
pumps based on Pro-Net and uncertainty theory as a result of the abovementioned study.
The core concept of the Uncertainty Pro-Net method is to convert the representation of
prototypes from a deterministic scalar to an uncertain representation by adding an epistemic
uncertainty variable and then to classify faults using uncertainty metrics, such as uncertain
distance, instead of probability metrics. By comparing the computational complexity and
accuracy of the results of the suggested technique, we discover that the new method is
more efficient and accurate in most circumstances.

The main highlights of the study are as follows:

(1) A new fault diagnosis method based on uncertainty theory is proposed, which cap-
tures an accurate understanding of aleatoric and epistemic uncertainties.

(2) Compared with other fault diagnosis methods, such as CNN (Convolutional Neural
Network), the new method achieves more accurate and reliable diagnosis results
when few labeled samples are available.

(3) The new method has been applied for the first time to the circulation pump of the
space station. It can effectively diagnose four typical failure modes: bearing race wear,
bearing roller wear, impeller wear, and bearing pre-stress slack.

The structure of the paper is as follows: Section 2 provides a concise introduction
to uncertainty theory and Prototypical Network. Then, in Section 3, we describe the
architecture of the proposed Uncertainty Pro-Net framework for fault diagnostics, along
with model implementation details. Section 4 presents the test bed for centrifugal pumps
and demonstrates the efficacy of our suggested technique. In this part, the suggested
approach is also compared to other methods. Finally, conclusions are presented in Section 5.

2. Preliminaries
2.1. Uncertainty Theory

This part provides the relevant concepts and theorems to comprehend the sug-
gested technique.

Uncertainty theory has been widely used as a fresh technique for describing epis-
temic (especially human) uncertainties. In uncertainty theory, belief degrees of events are
quantified by establishing measures of uncertainty.
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Theorem 1 ([22]). Assume Γ is a nonempty set and L is an algebra over. If a set functionM meets
the following three axioms, it is an uncertain measure.

Axiom2(Normality Axiom):M{Γ} = 1 for the universal set Γ.
Axiom3(Duality Axiom):M{Λ}+M{Λc} = 1 for any event Λ ∈ L.
Axiom4(Subadditivity Axiom): For every countable sequence of events, Λ1, Λ2, · · · ,

we have

M
{

∞
∪

i=1
Λi

}
≤

∞

∑
i=1
M{Λi} (1)

Theorem 2 ([23]). A variable ξ is considered linear if its uncertainty distribution is linear.

Φ(x) =


0, i f x ≤ a

x−a
b−a , i f a ≤ x ≤ b

1, i f x ≥ b

(2)

Denoted by L[a, b], where a and b satisfy the inequality a < b.

Theorem 3 ([24]). The inverse uncertainty distribution of the linear uncertain variables L[a, b] is

Φ−1(α) = (1− α)a + αb (3)

Theorem 4 ([25]). Let ξ and η be independent uncertain variable with regular uncertainty
distribution Φ and Ψ,respectively. Then the distance between ξ and η is

d(ξ, η) =
∫ 1

0

∣∣∣Φ−1(α)−Ψ−1(1− α)
∣∣∣dα (4)

2.2. Prototypical Network

Pro-Net [26] classifies an unknown instance into its closest class based on similarities
with a few labeled samples, as is customary for similarity-based fault diagnostic algorithms.
A neural network obtains an embedding function via prototype network learning; samples
are extracted into feature vectors. The prototype is composed of the mean vectors of each
class. Classification requires query samples to be transformed into feature vectors; the
proximity of these vectors to the prototypes’ vectors is a measure of how well they match
that class. Figure 1 illustrates how the Pro-Net operates. The circle in the embedding
space represents the embedded vector of each fault, and the classes are represented by red,
orange, and blue, respectively. The star in the figure represents each principal characteristic.
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To acquire a feature vector as the embedding result of a feature extractor, we first
input an image through the feature extractor to create a feature map. Then, prototypes are
created for classes using the support set, where the feature embeddings of all class samples
are averaged to get a value for class index k.

ck =
1
|Sk| ∑

(xi ,yi)∈Sk

fφ(xi) (5)

where xi represents the query-sample indexed by i and yi represents its label, Sk represents
the collection of samples of the k-th class in the support set S = {S1, · · · , SN}, and fφ(·)
represents the quantity of samples in Sk.

We calculate the classification loss for a given query picture with ground-truth label
as follows:

L[xi, yi = k] = − log(
exp(−d( fφ(xi), ck))

∑k exp(−d( fφ(xi), ck))
) (6)

where d(·) represents the Euclidean distance between the given query-sample xi and the
prototype ck of the class k.

3. Proposed Method

This work developed a defect diagnostic approach based on Pro-Net and uncertainty
theory (Uncertainty Pro-Net). Figure 2 provides a full overview of the workflow of the
suggested solution.
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Figure 2. Fault diagnosis framework of the proposed method.

Part 1 converts the original vibration signals from 1D-dimensional signals to 2D
pictures utilizing Bi-spectrums, which can suppress Gaussian-colored noise. First, separate
these photos into a support and query set, then input them into Pro-Net to extract each
class’s primary characteristic (prototype).

Part 2 converts the deterministic scalar form of embedded query vectors and proto-
types to an uncertain representation by adding an epistemic uncertainty variable. Next,
compute the uncertainty distances between embedded query vectors and the prototypes
of each class. Finally, compute the loss and adjust the network’s settings. The pre-trained
model is obtained by iteration.
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Part 3, Through the pre-trained model, predict the label of test data. Fault classification
can be achieved.

3.1. Bi-spectrum

Bi-spectrum is the Fourier transform of a cumulant of the third order [27]. The order
of the bi-spectrum is the lowest in the high-order spectrum. Hence it is the most simple
and practical. In this research, {x(n)} it was defined as a non-stationary random signal
with zero means, and its autocorrelation function was defined as follows:

r(τ) = E{x(n)x(n + τ)} (7)

where E{x(n)x(n + τ) is the mathematical expectation. The definition of a power spectrum
is the Fourier transform of an autocorrelation function:

p(w) =
+∞

∑
−∞

r(τ) exp{−j(wτ)} (8)

The momentum of the third order is defined as:

R(τ1, τ2) = {x(n)× (n + τ1)× (n + τ2)} (9)

The 2D Fourier transform of the third moment is characterized by a bi-spectrum.

B(ω1, ω2) =
+∞

∑
τ1=−∞

+∞

∑
τ2=−∞

R(τ1, τ2)× e{−j(w1τ1+w2τ2)} (10)

A bispectrum of {x(n)} can be approximated as:

B(ω1, ω2) = X(ω1)X(ω2)X(ω1 + ω1) (11)

where X(ω) is the Fourier transform of x(n).

3.2. Uncertainty Pro-Net

The uncertainty of a query-prototype pair’s similarity is characterized by shifting the
representation of ck and zj from a deterministic scalar to an uncertainty representation. We
enable a differentiable representation of ck and zj by re-parameterizing it as:

ξk = ck + εk
ηj = zj + ε j

(12)

εk and ε j denotes the epistemic uncertainty of prototype and query, respectively. We
define them following a linear uncertainty distribution.

Compared to previous studies that used cosine distance for distance metrics between
query-prototype pairs. In this paper, we use cross-entropy as the distance metrics. For
example, the cross-entropy of ξ from η can be written as:

dij = D[ξ, η] =
∫ +∞

−∞
(φξ(x) ln(

φξ(x)
φη(x)

) + (1− φξ(x)) ln(
1− φξ(x)
1− φη(x)

))dx (13)

Since εk and ε j follows linear distribution, it is known by definition that ξk and ηj also
follows the linear distribution. Suppose that ξk and ηj follows uncertainty distributions
L(a, b) and L(c, d) (b ≥ a, d ≥ c), respectively. Then the cross-entropy ξ from η is [28]:

dij = D[ξ, η] =
∫ b

a ( x−a
b−a ln (x−a)(d−c)

(b−a)(x−c) +
b−x
b−a ln (b−x)(d−c)

(b−a)(d−x) )dx

+
∫ a

c ln d−c
d−x dx +

∫ d
b ln d−c

x−c dx
(14)
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For a query image x, the probability of classifying it into the class k is:

p(yi = k|xi) =
exp(τ · d( fφ(xi), ck))

∑N
j=1 exp(τ · d( fφ(xi), cj))

(15)

where N is the number of classes in the support set and τ is a hyper-parameter (i.e., N-way).
The d( fφ(xi), ck) indicates how closely the provided query-sample xi resembles the class k
prototype ck. Here, a similarity-based classifier is built using the N prototypes from the
support set’s N classes.

Algorithm 1 describes the whole algorithm.

Algorithm 1: Uncertainty Pro-Net strategy

Input: support set Sk, query set Qe
Output: Fault diagnosis result p(yi = k

∣∣xT
i )

1. Preprocess the original vibration signals with Bi-spectrum.
2. For each class, do:
3. Select N classes from the dataset randomly; each class includes K samples from the
support set Sk.
4. Obtain samples xS

i and xQ
i from support set Sk and query set Qe, respectively and generate

the support feature set fφ(xS
i ) and query feature set fφ(xQ

i )
5. Generate prototype ck through Equation (5)
6. Discretizing the query vectors and prototypes by adding epistemic uncertainty variables
εk and ε j

7. Using the uncertainty distance metric, calculate the classification probability p(yi = k
∣∣∣xQ

i )

8. Calculate the loss, and update the learnable parameter of Pro-Net
9. Use the model pre-trained in steps 2–8 to predict the classification probability of the
test dataset.
10. End

4. Case Study
4.1. Data Acquisition

Using fault diagnostic tests on circulating pumps, the efficiency of the suggested
diagnosis approach based on the Pro-Net and uncertainty theory was shown in this work.
Figure 3 depicts the fault test bench for circulating pumps, which consisted primarily of
a circulating pump, its associated equipment, and a signal-collecting system from which
the experimental data were collected. The centrifugal pump is powered by a brushless
DC motor, is self-lubricating, and has a dynamic seal design to provide a long and steady
operation in orbit. The particular parameters are detailed in Table 1. By substituting
invalid components, the fault test bench may mimic various failure types for learning fault
diagnosis procedures. Included among the failure types that may be simulated are bearing
race wear, bearing roller wear, impeller wear, and bearing pre-stress slack.

Table 1. Particular parameters of circulating pumps.

No. Parameter Settings Value No. Parameter Settings Value

1 Rated flow rate 600 L/h 1 Rated speed 7000 r/min
2 Inlet pressure 0.17 MPa 2 Leakage rate ≤1 × 10−7 Pa·m3/s
3 Lifting capacity 220 kPa 3 Power consumption ≤159 Kw

During the test, the bearing working speed was 7000 r/min, and the vibration signal
was captured at 10,600 Hz. Vibration data are recorded under normal and fault circum-
stances, including bearing roller wear, impeller wear, and bearing pre-stress slack fault
conditions. Each set is sampled for 2 s, and one set is gathered every 5 s.
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4.2. Signal Processing by Bi-spectrum

The bi-spectrum counter maps of bearing roller wear, bearing ball wear, impeller wear
fault state, and normal circumstances are shown in Figure 4a–d. The image illustrates con-
siderable variances between the various fault modes, which may be utilized to distinguish
between fault kinds.
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4.3. Networks and Training

The eResNet [29] network turns the bi-spectrum into a 128−dimensional vector
throughout the experiment. Each residual block consists of three 3 × 3 convolutional
layers and a 2 × 2 maximum pooling layer. The network consists of four residual blocks
and a 1 × 1 convolutional layer with an average pooling layer. Figure 5 depicts the whole
network architecture. The architectures of embedding networks of eResNet are shown in
Table 2.
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Table 2. The architecture of embedding networks of eResNet.

Model Name eResNet

Architecture


C : 3× 3, 64
C : 3× 3, 64
C : 3× 3, 64
MP : 2× 2




C : 3× 3, 96
C : 3× 3, 96
C : 3× 3, 96
MP : 2× 2




C : 3× 3, 128
C : 3× 3, 128
C : 3× 3, 128

MP : 2× 2

× 2

Parameter layers 13
Parameters 1.24× 106

In image learning, 50, 100, and 200 training examples were chosen to feed the uncer-
tainty Pro-Net. At each iteration, the support set is picked randomly from the samples, the
number of support sets is set to 10, and the remaining samples are utilized as the query set.
We used a Squama Model in [30] to quantify the epistemic uncertainty factor (EUF). The
results are shown in Table 3.

Table 3. Epistemic uncertainty factor assumed in this paper.

Failure Mode EUF Failure Mode EUF

Bearing race wear εe ∼ L(2, 5) Impeller wear εe ∼ L(3, 7)
Bearing rollers wear εe ∼ L(5, 8) Bearing pre-stress slack εe ∼ L(9, 11)

4.4. Fault Diagnosis and Results

When the model has been completely trained according to the approach shown in
Figure 1, the validation set verifies the model’s performance in defect identification using
real centrifuge data. The validation set has ten samples, and the number of iterations is
also set at 10. The final diagnostic result was determined by averaging the ten instances of
correctness to limit the impact of random elements.



Symmetry 2023, 15, 903 9 of 14

The Uncertainty Pro-Net approach has high accuracy in diagnosing four different
fault modes. The experimental data to verify that the samples whose probability value was
greater than 0.7 had high classification accuracy, as shown in Figure 6.
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samples, the number of support sets is set to 10, and the remaining samples are utilized 
as the query set. We used a Squama Model in [30] to quantify the epistemic uncertainty 
factor (EUF). The results are shown in Table 3. 

Table 3. Epistemic uncertainty factor assumed in this paper. 

Failure Mode EUF Failure Mode EUF 

Bearing race wear  ~e L （2,5） Impeller wear ~e L （3,7） 

Bearing rollers wear ~e L （5,8） Bearing pre-stress slack ~e L （9,11） 

4.4. Fault Diagnosis and Results 
When the model has been completely trained according to the approach shown in 

Figure 1, the validation set verifies the model’s performance in defect identification using 
real centrifuge data. The validation set has ten samples, and the number of iterations is 
also set at 10. The final diagnostic result was determined by averaging the ten instances 
of correctness to limit the impact of random elements. 

The Uncertainty Pro-Net approach has high accuracy in diagnosing four different 
fault modes. The experimental data to verify that the samples whose probability value 
was greater than 0.7 had high classification accuracy, as shown in Figure 6. 

  
(a) (b) 
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The value of the loss function recorded to characterize the performance of the model is
calculated to estimate the convergence of the algorithm, shown in Figure 7. In the beginning,
losses decrease dramatically, which means the model has not found the direction for the
optimal solution. Then the loss ascends gradually with the increase of iteration. Finally,
from about the 120th iteration, losses reduce slowly and converge to 0 around, which
indicates the model has been well-trained.
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4.5. Comparison of Experimental Results

(1) Convolutional Neural Network (CNN) [31]: A traditional machine learning model
that can directly classify data without preprocessing. A large number of samples are
needed as a training set.

(2) Bispectral Neural Networks (BNN) [32]: The BNN method is proposed based on the
CNN method and can simultaneously learn a group-equivariant Fourier transform
and its corresponding group-invariant bispectrum.

(3) Prototypical Network (Pro-Net) [33]: The Pro-Net method is a typical metric-based
few-shot learning method, which classifies an unseen instance into its nearest class
based on the similarities with a few labeled examples.

(4) Uncertainty Pro-Net: The new approach proposed by this article can take both aleatoric
and epistemic uncertainties into consideration in the process of fault diagnosis.

Figure 8 illustrates the block diagram for our experiment.
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We conducted trials comparing the aforementioned models using the same data set
and equipment with sample sizes of 10, 50, 100, and 200. To guarantee the correctness of
the experimental findings, we repeated the experiment under each sample 10 times and
calculated the final accuracy rate by averaging the ten results. Table 4 shows the average
accuracy of each model.

Table 4. Average diagnostic accuracy.

Methods 10 50 100 150 300

CNN 38.71 ± 0.16% 42.41 ± 0.41% 54.08 ± 0.01% 83.36 ± 0.14% 92.15 ± 0.24%
BNN 40.25 ± 0.53% 44.24 ± 0.18% 49.05 ± 0.06% 64.02 ± 0.14% 70.82 ± 0.29%

Pro-Net 63.59 ± 2.20% 67.89 ± 1.91% 80.74 ± 0.07% 84.84 ± 0.04% 90.42 ± 0.20%
Uncertainty Pro-Net 70.24 ± 0.30% 83.04 ± 0.06% 88.18 ± 0.08% 90.25 ± 0.04% 91.17 ± 0.03%

Figure 9 indicates that as the number of training samples rises, the accuracy of the four
models will improve. Unfortunately, the accuracy of typical machine learning algorithms,
whether CNN or BNN, is poor. This is because standard machine learning approaches can
only obtain effective results with adequate training data. When the number of training
samples increases, the accuracy rate of BNN decreases. BNN’s topology is overly com-
plicated, leading to severe overfitting. Pro-Net has always maintained a high degree of
accuracy and uncertainty as a meta-learning technique, even with a sample size of 10. In
addition, since Bispectral analysis decreases background noise greatly and accounts for
epistemic uncertainty, the accuracy rate of uncertainty Pro-Net rose even more. In these four
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instances, the classification accuracy of Uncertainty Pro-Net exceeded that of Pro-Net. The
improvement is most noticeable in the sample size of 50, which is 15.15%. As the number
of training samples increased, the difference between the two models steadily shrunk to
7.44%, 5.45%, and 0.75%. This demonstrates that Uncertainty Pro-Net outperforms typical
machine learning models and meta-learning in scenarios with small sample sizes and high
background noise.
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Figure 9. Diagnosis results with different sample sizes.

We created a confusion matrix to analyse the consistency and reliability of these four
models in further depth. The confusion matrix is shown in Figure 10. Each model was
repeated 3 times. Although containing some learning potential, CNN cannot maximise its
advantages owing to a small sample size. BNN almost loses its capacity to classify. This is
a result of the intricacy of the BNN structure and the vast number of trainable parameters.
The results of BNN are almost random. In contrast, Pro-net and Uncertainty Pro-net are
both stable. This illustrates that the model based on meta-learning can learn the capacity to
learn, not just a specific classification task and that Uncertainty Pro-Net is more stable and
less error-prone than Pro-Net.
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Figure 10. Cont.
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Figure 10. Confusion matrix of several models mentioned in the paper (each model repeated
three times): (a) Convolutional Neural Network (CNN); (b) Bispectral Neural Networks (BNN);
(c) Prototypical Network (Pro-Net); (d) Uncertainty Pro-Net.

5. Conclusions

Combining uncertainty theory with the Pro-Net approach yields a novel defect diag-
nostic technique.

(1) The dual-spectrum analysis method can convert the one-dimensional vibration signal
with complex components into a clear and suitable two-dimensional image with good
noise cancellation capability, highlighting the fault feature information more in the
centrifuge’s environment of strong background noise.

(2) The Uncertainty Pro-Net approach categorizes the health state of the query sample us-
ing uncertainty metric learning. Compared to conventional deep learning techniques
such as CNN, the novel approach provides superior fault classification processing
capabilities and more precise outputs. In particular, the new formula is symmetrical to
the former formula, which shows that when it is too intricate to deal with a problem
using the former formula, the problem can be observed from another perspective
by using the new formula. New ideas may be obtained from the combination of
uncertainty theory and symmetry.

(3) The Uncertainty Pro-Net approach has considerable relevance in engineering prac-
tice. Due to the vastly different ground test environment and in-orbit operational
environment, circulating pumps have confusing fault perceptions. Without incorpo-
rating epistemic uncertainty in defect identification, such safety-critical products face
severe repercussions.
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