
Citation: Malik, S.; Kumar, S.; Biswas,

A.; Yıldırım, Y.; Moraru, L.;

Moldovanu, S.; Iticescu, C.; Alotaibi,

A. Highly Dispersive Optical Solitons

in the Absence of Self-Phase

Modulation by Lie Symmetry.

Symmetry 2023, 15, 886. https://

doi.org/10.3390/sym15040886

Academic Editors: Vassilis M Rothos

and Aydin Secer

Received: 26 February 2023

Revised: 3 April 2023

Accepted: 7 April 2023

Published: 9 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Highly Dispersive Optical Solitons in the Absence of
Self-Phase Modulation by Lie Symmetry
Sandeep Malik 1 , Sachin Kumar 1 , Anjan Biswas 2,3,4,5,6, Yakup Yıldırım 7, Luminita Moraru 8,* ,
Simona Moldovanu 9 , Catalina Iticescu 8 and Abdulaziz Alotaibi 10

1 Department of Mathematics and Statistics, Central University of Punjab, Bathinda 151401, India
2 Department of Mathematics and Physics, Grambling State University, Grambling, LA 71245, USA
3 Mathematical Modeling and Applied Computation (MMAC) Research Group, Department of Mathematics,

King Abdulaziz University, Jeddah 21589, Saudi Arabia
4 Department of Applied Mathematics, National Research Nuclear University, 31 Kashirskoe Hwy,

Moscow 115409, Russia
5 Department of Applied Sciences, Cross-Border Faculty of Humanities, Economics and Engineering,

Dunarea de Jos University of Galati, 111 Domneasca Street, 800201 Galati, Romania
6 Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University,

Medunsa 0204, South Africa
7 Department of Computer Engineering, Biruni University, Istanbul 34010, Turkey
8 Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment,

Dunarea de Jos University of Galati, 47 Domneasca Street, 800008 Galati, Romania
9 Department of Computer Science and Information Technology, Faculty of Automation, Computers, Electrical

Engineering and Electronics, Dunarea de Jos University of Galati, 47 Domneasca Street, 800008 Galati, Romania
10 Department of Industrial Engineering, University of Tabuk, Tabuk 45512, Saudi Arabia
* Correspondence: luminita.moraru@ugal.ro

Abstract: The paper revisits highly dispersive optical solitons that are addressed by the aid of Lie
symmetry followed by the implementation of the Riccati equation approach and the improved
modified extended tanh-function approach. The soliton solutions are recovered and classified. The
conservation laws are also recovered and the corresponding conserved quantities are enlisted.
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1. Introduction

The key principle of soliton transmission across intercontinental distances is the
sustainment of a delicate balance between chromatic dispersion (CD) and self-phase modu-
lation (SPM) [1–26]. Occasionally it may so happen that CD carries a low count. This would
lead to a catastrophic collapse during soliton transmission across long distances. One of the
measures to replenish this low count is to provide additional sources of dispersive effects.
This can be done by including higher-order dispersion terms. In this case, inter-modal
dispersion (IMD), third-order dispersion (3OD), fourth-order dispersion (4OD), fifth-order
dispersion (5OD), and sixth-order dispersion effects are introduced. These would make up
for the low count of CD. However, one of the cons that these additional dispersion terms
would introduce is the presence of pronounced soliton radiation. This effect is neglected
so the focus of the paper would be the successful applicability of Lie symmetry to recover
soliton solutions to the model.

Another twist to the model is the absence of the necessary SPM. This absence is
however replaced by the perturbation terms that provide the necessary balance through
the nonlinear effects stemming from the perturbed terms. Thus, the modified model is still
the well-known nonlinear Schrodinger’s equation (NLSE) but it comes with six dispersion
terms and no SPM; instead, three perturbation terms provide the effect of nonlinearity that
maintains the balance. This is referred to as highly dispersive (HD) NLSE or HD-NLSE.
This model will be the focus of attention in the paper.
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The integration approach is Lie symmetry analysis. This would reduce the govern-
ing partial differential equation (PDE) to a pair of ordinary differential equations (ODEs).
These ODEs will be addressed by the usage of a pair of integration schemes. These are the
Riccati equation approach and the improved modified extended tanh-function approach.
The two approaches would lead to the soliton solutions and plane waves although such
waves are a byproduct of the two schemes and are not applicable in Fiber Optics.
The soliton solutions are classified, and their respective existence criteria are also enlisted
as parameter constraints. Finally, the conservation laws are computed for the scheme by
the usage of the multipliers approach. The conserved quantity is derived from the retrieved
conserved density with the aid of the bright soliton solution of the model. The results are
exhibited in the rest of the paper after a succinct intro to the model.

Governing Equation

The modified model that comes with six dispersion terms and no SPM is indicated
below [1–3]

iqt + ia1qx + a2qxx + ia3qxxx + a4qxxxx + ia5qxxxxx + a6qxxxxxx
+i
[
λ
(
|q|2q

)
x + µ

(
|q|2
)

xq + σ|q|2qx
]
= 0.

(1)

Here, the first term depicts the linear–temporal evolution, where i =
√
−1, while

q(x, t) describes soliton molecule, where x and t are spatial and temporal variables in
sequence. al (l = 1− 6) comes from IMD, CD, 3OD, 4OD, 5OD and 6OD in sequence.
Lastly, λ, µ and σ stem from the perturbation terms, where λ yields self-steepening, µ
gives self-frequency shift and σ arises from nonlinear dispersion. Biswas et al. [1] de-
rived the singular and bright-singular combo solitons of the governing model using
the exp-function method. The bright and dark solitons of model (1) were obtained by
González-Gaxiola et al. [2] using a numerical algorithm, namely the Laplace–Adomian
decomposition method. Ullah et al. [3] obtained some exact solutions to model (1) using
the generalized tanh method and Kudryashov’s method. These findings are significant
as they provide a good understanding of the behavior of the model. For a deeper under-
standing, here we identify new solutions and symmetries of the governing model using
Lie symmetry and then followed by the implementation of the Riccati equation approach
and the improved modified extended tanh-function approach. Moreover, the conservation
laws are also recovered, and the corresponding conserved quantities are enlisted from
the retrieved conserved density with the aid of some obtained solution. These findings
contribute to understanding the behavior of solitons in nonlinear models and can be useful
in the design of optical communication systems.

Higher-order dispersion terms refer to the third-, fourth-, and higher-order derivatives
of the refractive index with respect to frequency in the Taylor expansion of the refractive
index. These higher-order terms can have a significant impact on the propagation of ul-
trashort pulses of light in optical fibers, waveguides, and other nonlinear optical media.
The second-order dispersion term, which is proportional to the frequency squared, is the
dominant dispersion term in most optical systems and is responsible for pulse broaden-
ing and distortion. However, higher-order dispersion terms become more important as
the pulse duration decreases, leading to additional pulse broadening and other effects.
The third-order dispersion term, which is proportional to the frequency cubed, can cause
pulse splitting and the formation of multiple pulses during propagation. It can also lead
to the formation of highly dispersive optical solitons (HDOS), which rely on the balance
between higher-order dispersion and nonlinear effects to maintain their shape during
propagation. The fourth-order dispersion term, which is proportional to the frequency of
the fourth power, can cause pulse compression and can play a role in the generation of
supercontinuum spectra.

Inter-modal dispersion in nonlinear optics is a phenomenon that occurs in optical
fibers or waveguides, where different modes of the electromagnetic field (e.g., different
polarizations or transverse modes) propagate at different speeds due to their different
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group velocities. This results in a temporal broadening and distortion of an optical pulse,
which can limit the performance of optical communication systems or other optical devices
that rely on the accurate transmission of a narrow pulse of light. In the presence of nonlinear
effects, such as self-phase modulation or four-wave mixing, inter-modal dispersion can
be even more complex and can lead to new phenomena such as mode conversion, mode
locking, or inter-modal solitons. These effects arise due to the nonlinear interactions between the
different modes of the electromagnetic field and can lead to novel applications in nonlinear optics.
Overall, inter-modal dispersion is an important consideration in the design and performance
of optical communication systems and other optical devices that rely on the transmission of
narrow optical pulses. It is a complex phenomenon that requires careful attention and mitigation
strategies to optimize the performance of these systems.

Self-steepening is a nonlinear effect that occurs in optics when a short, intense pulse
of light propagates through a medium. In this phenomenon, the leading edge of the
pulse experiences a higher intensity than the trailing edge due to the nonlinear interaction
between the pulse and the medium, leading to a self-induced steepening of the pulse.
Self-steepening is an important phenomenon in ultrafast optics and laser physics, as it
can lead to the generation of very short pulses of light with high peak power and broad
spectral bandwidth. These properties make self-steepening a useful tool for a variety of
applications, such as laser micromachining, spectroscopy, and optical communications.

Self-frequency shift is a nonlinear effect that occurs in optical fibers or other nonlinear
optical media when intense light propagates through them. In this phenomenon, the
frequency of light changes due to the nonlinear interaction between the light and the
medium. The self-frequency shift effect arises due to a combination of two nonlinear
effects: self-phase modulation (SPM) and the Kerr effect. SPM causes a broadening of
the spectrum of the pulse, and the Kerr effect causes a change in the refractive index of
the medium proportional to the intensity of the light. This change in the refractive index
leads to a change in the velocity of the light, causing the frequency to shift. Self-frequency
shift can lead to a variety of interesting and useful phenomena, such as the generation
of frequency combs or the formation of solitons. For example, when a pulse of light
propagates through a fiber with anomalous dispersion, the self-frequency shift can balance
the dispersion and cause the pulse to form a soliton, which is a stable, self-contained
pulse that maintains its shape and frequency during propagation. Self-frequency shift
can also be used in applications such as optical communications, where it can be used to
extend the transmission distance of optical fibers by compensating for the dispersion of
the fiber. However, self-frequency shift can also limit the performance of optical devices if
not properly controlled, as it can lead to spectral broadening, pulse distortion, and other
undesirable effects.

To derive Equation (1), it dates back to the earlier days of Maxwell’s equation from
Electromagnetics. With the application of multiple scales, one can easily derive the gov-
erning NLSE. This is for a very idealistic situation. There are several forms of departure
from this idealistic scenario and that too for several practical reasons. If CD comes out to be
problematic, the classical solitons give way to dispersion-managed solitons whose details
have been extensively studied about two decades ago. The other form of problematic
situation is when CD runs low. This therefore would lead to distortion to the delicate
balance between CD and SPM, a much-needed symbiotic necessity for solitons to sustain
the transmission across intercontinental distances. The current paper addresses the situa-
tion when both CD and SPM run low. In such an extreme situation, CD is compensated
with additional dispersion terms and they are IMD, 3OD, 4OD, 5OD, and 6OD. However,
the SPM effect is completely replaced by the nonlinear effects that stem from the three
perturbation terms that are incorporated, namely the self-steepening, self-steepening, and
the nonlinear dispersion. This gave way to the current model that is being addressed for the first
time in this paper by Lie symmetry. Earlier this model was addressed numerically including
Laplace–Adomian decomposition scheme and other mathematical formalisms [27–32].
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2. Lie Symmetry Analysis

Lie symmetry analysis is a mathematical method used to study the invariance prop-
erties of differential equations. It involves the use of Lie groups, which are mathematical
structures that represent continuous symmetries of a system, to analyze the equations and
identify invariant solutions and transformations. In simple terms, Lie symmetry analysis
is a tool for identifying solutions of a differential equation that remain unchanged under
certain transformations. These transformations are represented by Lie groups, which are
collections of transformations that leave the differential equation invariant. The basic idea
of Lie symmetry analysis is to look for a set of transformations that map solutions of the
differential equation to other solutions of the same equation. This set of transformations
is called the symmetry group of the differential equation, and it plays a crucial role in
understanding the structure and properties of the solutions. Lie symmetry analysis has
many applications in physics, engineering, and other fields where differential equations are
used to model complex systems. It provides a powerful tool for understanding the structure
and behavior of solutions to differential equations, and for identifying new solutions and
symmetries that were previously unknown.

In this portion, we will apply the Lie group analysis [4–7] to Equation (1) for possible
symmetry reduction. First, we express q(x, t) as follows:

q(x, t) = u(x, t) + iv(x, t). (2)

This turns Equation (1) into the following real and imaginary equations as:

−vt − a1vx + a2uxx − a3vxxx + a4uxxxx − a5vxxxxx + a6uxxxxxx − λ[(2uux + 2vvx)v
+
(
u2 + v2)vx

]
− µ(2uux + 2vvx)v− σ

(
u2 + v2)vx = 0,

(3)

and

ut + a1ux + a2vxx + a3uxxx + a4vxxxx + a5uxxxxx + a6vxxxxxx + λ[(2uux + 2vvx)u
+
(
u2 + v2)ux

]
+ µ(2uux + 2vvx)u + σ

(
u2 + v2)ux = 0.

(4)

To derive the symmetries of system of Equations (3) and (4), let us introduce the Lie
group of point transformations

x∗ = x + εξ(x, t, u, v) + O(ε2),

t∗ = t + ετ(x, t, u, v) + O(ε2),

u∗ = u + εη(x, t, u, v) + O(ε2),

v∗ = v + εφ(x, t, u, v) + O(ε2),

(5)

where ε is a continuous parameter, while ξ, τ, η and φ represent the infinitesimal, which
must be determined. For the group of transformations (5),

V = ξ∂x + τ∂t + η∂u + φ∂v, (6)

is the corresponding vector field. Using the sixth prolongation formula [5,6] for system of
Equations (3) and (4), we obtain the invariance conditions as

a6ηxxxxxx − a5φxxxxx + a4ηxxxx − a3φxxx + a2ηxx − φx[a1 + 2v2(λ + µ) + (u2 + v2)(λ + σ)
]

−2uv(λ + µ)ηx − φt − 2η[vux(λ + µ) + uvx(λ + σ)]− 2φ[(uux + 2vvx)(λ + µ) + vvx(λ + σ)] = 0,
(7)

and

a6φxxxxxx + a5ηxxxxx + a4φxxxx + a3ηxxx + a2φxx + ηx[a1 + 2u2(λ + µ) + (u2 + v2)(λ + σ)
]

+2uv(λ + µ)φx + ηt + 2φ[uvx(λ + µ) + vux(λ + σ)] + 2η[(2uux + vvx)(λ + µ) + uux(λ + σ)] = 0,
(8)
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where ηt, φt, ηx, φx etc. are the extended infinitesimals. We obtain a system of partial
differential equations by replacing the values of the extended infinitesimals and equating
the coefficient of various derivative components to zero. The system’s solution yields the
symmetries as

ξ = C1, τ = C2, η = C3v, φ = −C3u. (9)

The corresponding infinitesimal generators are given by

V1 =
∂

∂t
, V2 =

∂

∂x
, V3 = v

∂

∂u
− u

∂

∂v
. (10)

By considering the vector field V1 + νV2 + κV3, the similarity variables are obtained
as follows:

q(x, t) = F(ξ)ei(κt+G(ξ)), ξ = x− νt, (11)

where F and G are new dependent variables. Now substituting (11) into Equation (1) and
assuming G(ξ) = Bξ, we obtain the reduced system of ODEs as

a6F(6) +
(
−15B2a6 − 5Ba5 + a4

)
F(4) +

(
15B4a6 + 10B3a5 − 6B2a4 − 3Ba3 + a2

)
F′′

−B(σ + λ)F3 −
(

B6a6 + B5a5 − B4a4 − B3a3 + B2a2 + (−ν + a1)B + κ
)

F = 0,
(12)

and

(6Ba6 + a5)F(5) +
(
−20B3a6 − 10B2a5 + 4Ba4 + a3

)
F′′′ + (2µ + σ + 3λ)F2F′

+
(
6B5a6 + 5B4a5 − 4B3a4 − 3B2a3 + 2Ba2 − ν + a1

)
F′ = 0.

(13)

From Equation (13), one has the restrictions as

a5 = −6Ba6, (14)

a3 = −40B3a6 − 4Ba4, (15)

σ = −2µ− 3λ, (16)

and the velocity ν of the soliton is

ν = 96B5a6 + 8B3a4 + 2Ba2 + a1. (17)

Now we can substitute the values of (14)–(17) into Equation (12) to obtain

a6F(6) +
(

15B2a6 + a4

)
F(4) +

(
75B4a6 + 6B2a4 + a2

)
F′′ + 2B(µ + λ)F3 +

(
61B6a6 + 5a4B4 + a2B2 − κ

)
F = 0. (18)

3. Integration Schemes and Optical Solitons

Optical solitons are self-sustaining waves that maintain their shape and intensity
while propagating over long distances in certain nonlinear media. Unlike traditional waves,
which spread out and become weaker as they propagate, solitons retain their shape due
to a balance between the dispersive and nonlinear effects in the medium. The dispersive
effect refers to the tendency of waves to spread out over time, caused by differences in the
speed of propagation for different frequencies. In contrast, the nonlinear effect arises when
the refractive index of the medium varies with the intensity of the light. This nonlinear
refractive index causes a self-focusing effect, where regions of higher intensity attract more
light, further increasing their intensity. Optical solitons can be formed in various types of
nonlinear media, such as optical fibers or photonic crystals. They have a wide range of
applications in telecommunications, where they can transmit signals over long distances
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without degradation, and in nonlinear optics, where they are used to manipulate light at
the nanoscale [33–44].

One of the most famous examples of an optical soliton is the so-called “bright soliton”,
which is a pulse of light that maintains its shape and travels without distortion. Another
type of soliton is the “dark soliton”, which is a localized region of low intensity that
propagates through a background of higher intensity. In nonlinear optics, a singular soliton
is a special type of soliton that has a singularity at its center. It is a self-sustained wave
packet of light that has a highly localized intensity profile, with an infinitely narrow peak
at its center. The singularity is also known as an optical vortex or phase singularity, and it
arises due to the nonlinear interactions between the light and the medium. Unlike regular
solitons, which have a smooth profile and propagate without changing shape, singular
solitons are characterized by their highly localized intensity and their ability to create and
sustain a phase singularity. This singularity gives the wavefront of the light a twisted,
helical shape, such as a corkscrew or a tornado. Singular solitons are also known as optical
vortices, because of this twisting, helical shape. Singular solitons have a wide range of
applications in nonlinear optics, including optical communications, optical trapping and
manipulation, and quantum optics. They can be generated in a variety of ways, such
as using specially designed optical fibers, waveguides, or photonic crystals, or using
holographic techniques to imprint a phase singularity onto a laser beam. Singular solitons
are also of fundamental interest in the study of nonlinear phenomena in optics and the
understanding of the role of singularities in wave physics. A straddled soliton is a type
of soliton that consists of two soliton pulses of opposite polarity, which are separated by
a small region of zero amplitude. The two pulses are said to be “straddling” the zero-
amplitude region, hence the name straddled soliton. In nonlinear optics, straddled solitons
can arise in certain types of fiber optic systems, where the interplay between dispersion
and nonlinearity can lead to the formation of two soliton pulses that attract each other and
eventually merge into a single pulse. However, if the initial separation between the two
pulses is small enough, they can remain separate and form a straddled soliton. Straddled
solitons have some interesting properties that make them useful in various applications.
For example, they can be used to generate ultrashort pulses of light with high peak power
and high energy, which can be used for precision laser machining, material processing,
and medical applications. They can also be used to create optical frequency combs, which
are precise sources of evenly spaced frequencies that are used in frequency metrology and
spectroscopy. Straddled solitons are an active area of research in nonlinear optics, as they
are relatively new and not fully understood. Researchers are investigating ways to optimize
their generation, control their properties, and use them in new and exciting applications.

3.1. Riccati Equation Method

In this subsection, first, we provide a brief overview of the Riccati equation method [8,9]
and then present the solution of the model (1).

Consider the model equation

K(w, wx, wt, wtx, wxx, . . . ) = 0, (19)

where w = w(x, t) is the dependent variable, while x and t are independent variables.
The wave transformation

ξ = kx− vt, w(x, t) = F(ξ), (20)

reduces (19) to

P(F,−vF′, kF′, k2F′′, . . . ) = 0, (21)

where k and v are arbitrary constants. Consider (21) has a solution as

G(ξ) = A0 + A1R(ξ) + A2R(ξ)2 + · · ·+ AN R(ξ)N , (22)



Symmetry 2023, 15, 886 7 of 22

where the unknown parameters Ai’s, (i = 0, 1, . . . , N) are to be determined, while N
emerges from the homogeneous balance principle [25,26], by balancing the highest order
derivative and nonlinear terms appearing in ODE (21). More precisely, we define the degree
of F(ξ) as D[F(ξ)] = N, which gives way to the degree of other expressions as follows

D
[

dpF
dξ p

]
= N + p, D

[
Fq
(

dpF
dξ p

)s]
= qN + s(N + p). (23)

Hence, we can derive the value of N. In (22), R(ξ) satisfies the Riccati equation

R′(ξ) = B0 + B1R(ξ) + B2R(ξ)2, (24)

where B0, B1 and B2 are constants. Equation (24) generates the hyperbolic, trigonometric,
and rational solutions, which are given as

R(ξ) = − B1

2B2
−
√

δ

2B2
tanh

(√
δ

2
ξ + ξ0

)
, δ > 0,

R(ξ) = − B1

2B2
−
√

δ

2B2
coth

(√
δ

2
ξ + ξ0

)
, δ > 0,

R(ξ) = − B1

2B2
+

√
−δ

2B2
tan
(√
−δ

2
ξ + ξ0

)
, δ < 0,

R(ξ) = − B1

2B2
−
√
−δ

2B2
cot
(√
−δ

2
ξ + ξ0

)
, δ < 0,

R(s) = − B1

2B2
− 1

B2s + s0
, δ = 0,

(25)

where δ = B2
1 − 4B0B2. By plugging (22) along with (24) into (21), and extracting a system

of algebraic equations, we can find the unknown constants k, v, Ai’s, (i = 0, 1, . . . , N).
Now, we will perform the Riccati equation method to solve Equation (18). According

to (22) and using the balance principle, the solution of (18) can be taken as

F(ξ) = A0 + A1R(ξ) + A2R(ξ)2 + A3R(ξ)3, (26)

where the unknown parameters Ai’s, (i = 0, 1, 2, 3) are to be determined. Substituting (26)
along with (24) into (18) and after equating the coefficients of the same power of R to zero,
we have a system of algebraic equations, which yields the following results:

Result 1:

A0 =
A2
(
6B0B2 − B2

1
)

6B2
2

, A1 =
2A2B0

B1
, A3 =

2A2B2

3B1
, λ = −

22680B2
1B4

2a6 + BµA2
2

BA2
2

,

a4 = − a6

(
15B2 − 332B0B2 + 83B2

1

)
,

a2 = a6

(
15B4 − 1992B2B0B2 + 498B2B2

1 + 15136B2
0B2

2 − 7568B0B2
1B2 + 946B4

1

)
,

κ = a6

(
B6 − 332B4B0B2 + 83B4B2

1 + 15136B2B2
0B2

2 − 7568B2B0B2
1B2 + 946B2B4

1

+80640B3
0B3

2 − 60480B2
0B2

1B2
2 + 15120B0B4

1B2 − 1260B6
1

)
.

(27)

Substituting (27) along with (26) into (11), we arrive at soliton wave profiles:
Dark and singular solitons are, respectively, indicated below

q(x, t) =

{
A2(δ)

3/2

12B1B2
2

tanh
(√

δ

2
(x− νt) + ξ0

)(
3− tanh

(√
δ

2
(x− νt) + ξ0

)2
)}

ei(κt+B(x−νt)), (28)
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and

q(x, t) =

{
A2(δ)

3/2

12B1B2
2

coth
(√

δ

2
(x− νt) + ξ0

)(
3− coth

(√
δ

2
(x− νt) + ξ0

)2
)}

ei(κt+B(x−νt)), (29)

where δ = B2
1 − 4B0B2 > 0.

The rational wave is also introduced below

q(x, t) =

{
A2B0

3B2
+

2A2B0

B1

(
− B1

2B2
− 1

B2(x− νt) + ξ0

)
+ A2

(
− B1

2B2
− 1

B2(x− νt) + ξ0

)2

+
2A2B2

3B1

(
− B1

2B2
− 1

B2(x− νt) + ξ0

)3
}

ei(κt+B(x−νt)),

(30)

where B2
1 − 4B0B2 = 0.

Result 2:

A0 =
A2B0

3B2
, A1 =

A2
(
2B0B2 + B2

1
)

3B1B2
, A3 =

2A2B2

3B1
, λ = −

22680B2
1B4

2a6 + BµA2
2

BA2
2

,

a4 = − 15B2a6, a2 = 3a6

(
5B4 − 112B2

0B2
2 + 56B0B2

1B2 − 7B4
1

)
,

κ = a6

(
B6 − 336B2B2

0B2
2 + 168B2B0B2

1B2 − 21B2B4
1 + 1280B3

0B3
2 − 960B2

0B2
1B2

2

+240B0B4
1B2 − 20B6

1

)
.

(31)

Inserting (31) along with (26) into (11), we arrive at optoelectronic wave fields:
Dark-bright soliton and singular soliton are, respectively, extracted as

q(x, t) =−
{

A2(δ)
3/2

12B1B2
2

tanh
(√

δ

2
(x− νt) + ξ0

)
sech2

(√
δ

2
(x− νt) + ξ0

)}
ei(κt+B(x−νt)), (32)

and

q(x, t) =

{
A2(δ)

3/2

12B1B2
2

coth
(√

δ

2
(x− νt) + ξ0

)
csch2

(√
δ

2
(x− νt) + ξ0

)}
ei(κt+B(x−νt)), (33)

where δ = B2
1 − 4B0B2 > 0.

Rational wave is also presented as

q(x, t) =

{
A2B0

3B2
+

A2
(
2B0B2 + B2

1
)

3B1B2

(
− B1

2B2
− 1

B2(x− νt) + ξ0

)
+ A2

(
− B1

2B2
− 1

B2(x− νt) + ξ0

)2

+
2A2B2

3B1

(
− B1

2B2
− 1

B2(x− νt) + ξ0

)3
}

ei(κt+B(x−νt)),

(34)

where B2
1 − 4B0B2 = 0.

3.2. Improved Modified Extended Tanh-Function Method

In this subsection, first, we provide a brief overview of the improved modified ex-
tended tanh-function method [10,11] and then present the solution of the model (1).

Consider (21) has a solution as

G(ξ) =
N

∑
i=0

AN R(ξ)N +
N

∑
j=1

BN R(ξ)−N , (35)
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where the unknown parameters Ai’s, (i = 0, 1, . . . , N) and Bj’s, (j = 1, 2, . . . , N) are to be
determined, while N emerges from the balancing algorithm. Here R(ξ) satisfies the equation

R′(ξ) = ε
√

c0 + c1R(ξ) + c2R(ξ)2 + c3R(ξ)3 + c4R(ξ)4, (36)

where ε = ±1 and ci’s, (i = 0, 1, . . . , 4) are constants. Equation (36) generates a variety of
essential solutions [10]. Plug (35) along with (36) into (21), providing a system of algebraic
equations that gives us a way to the unknown constants
k, v, Ai’s, (i = 0, 1, . . . , N), Bj’s, (j = 1, 2, . . . , N).

Now, we will perform the improved modified extended tanh-function method to solve
Equation (18). According to (35) and using the balance principle, the solution of (18) can be
taken as

F(ξ) = A0 + A1R(ξ) + A2R(ξ)2 + A3R(ξ)3 + B1R(ξ)−1 + B2R(ξ)−2 + B3R(ξ)−3, (37)

where the unknown parameters Ai’s, (i = 0, 1, 2, 3) and Bj’s, (j = 1, 2, 3) are to be
determined, and R(ξ) holds (36). By putting F(ξ) and its derivatives together with
Equation (36) into (18), and setting all the coefficients of R(ξ)k, k = {−9, 9} to equal zero,
we obtain a system of equations. After solving these equations for the unknown parameters,
we have the following cases:
Case 1: c0 = c1 = c3 = 0, c2 > 0, c4 < 0.
Result 1:

A0 = A1 = A2 = B1 = B2 = B3 = 0, A3 = 12c4

√
− 70c4a6

Bλ + Bµ
,

a2 = a6
(
15B4 + 498B2c2 + 1891c2

2
)
, a4 = −15B2a6 − 83c2a6,

κ = a6
(

B6 + 83B4c2 + 1891B2c2
2 + 11025c3

2
)
.

(38)

Thus, a bright soliton is structured as

q(x, t) =

{
12c4m

(√
− c2

c4
sech(

√
c2(x− νt))

)3
}

ei(κt+B(x−νt)), (39)

where m =
√
− 70c4a6

Bλ+Bµ .
Result 2:

A0 = A2 = B1 = B2 = B3 = 0, A1 =
144c2

17

√
− 70c4a6

Bλ + Bµ
, A3 = 12c4

√
− 70c4a6

Bλ + Bµ
,

a2 =
a6
(
4335B4 − 59262B2c2 + 92659c2

2
)

289
, a4 = −15B2a6 +

581
17

c2a6,

κ =
a6
(
289B6 − 9877B4c2 + 92659B2c2

2 + 102825c3
2
)

289
.

(40)

In this case, a bright soliton is extracted as

q(x, t) =

{
144c2

17
m
(√
− c2

c4
sech(

√
c2(x− νt))

)
+ 12c4m

(√
− c2

c4
sech(

√
c2(x− νt))

)3
}

ei(κt+B(x−νt)), (41)

where m =
√
− 70c4a6

Bλ+Bµ .
Case 2: c0 = c1 = c2 = c3 = 0, c4 > 0.
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Result 1:

A0 = A1 = A2 = B1 = B2 = B3 = 0, A3 = 12c4

√
− 70c4a6

Bλ + Bµ
,

a2 = 15B4a6, a4 = −15B2a6, κ = B6a6.

(42)

Therefore, the rational wave is arranged as

q(x, t) =−
{

εA3

(
√

c4(x− νt))3

}
ei(κt+B(x−νt)), (43)

where m =
√
− 70c4a6

Bλ+Bµ .

Case 3: c1 = c3 = 0, c0 =
c2

2
c4

, c2 < 0, c4 > 0.
Result 1:

A0 = A1 = A2 = A3 = B2 = 0, a2 = a6
(
15B4 − 996B2c2 + 3784c2

2
)
,

a4 = −a6
(
15B2 − 166c2

)
, κ = a6

(
B6 − 166B4c2 + 3784B2c2

2 + 10080c3
2
)
,

B1 =
6B3c4

c2
, λ = −

2BµB2
3c3

4 + 315a6c6
2

2B2
3Bc3

4
.

(44)

Hence, a singular optoelectronic wave field is cast as

q(x, t) =

{
6B3c4

c2

(
ε

√
− c2

2c4
tanh

(√
− c2

2
(x− νt)

))−1

+ B3

(
ε

√
− c2

2c4
tanh

(√
− c2

2
(x− νt)

))−3}
ei(κt+B(x−νt)). (45)

Result 2:

A0 = A2 = B1 = B2 = B3 = 0, a2 = a6
(
15B4 − 996B2c2 + 3784c2

2
)
,

a4 = −a6
(
15B2 − 166c2

)
, κ = a6

(
B6 − 166B4c2 + 3784B2c2

2 + 10080c3
2
)
,

A1 =
3A3c2

2c4
, λ = −

BµA2
3 + 10080a6c3

4
BA2

3
.

(46)

Consequently, a dark nonlinear waveform is recovered as

q(x, t) =

{
3A3c2

2c4

(
ε

√
− c2

2c4
tanh

(√
− c2

2
(x− νt)

))
+ A3

(
ε

√
− c2

2c4
tanh

(√
− c2

2
(x− νt)

))3}
ei(κt+B(x−νt)). (47)

Result 3:

A0 = A2 = B2 = 0, A1 =
2B1c4

c2
, A3 =

68B1c2
4

3c2
2

, B3 =
17B1c2

6c4
,

a2 =
a6
(
4335B4 + 118524B2c2 + 370636c2

2
)

289
, a4 = −

a6
(
255B2 + 1162c2

)
17

,

κ =
a6
(
289B6 + 19754B4c2 + 370636B2c2

2 − 822600c3
2
)

289
, λ = −

289BµB2
1c4 + 5670a6c4

2
289c4BB2

1
.

(48)

As a result, a dark-singular straddled soliton is introduced below
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q(x, t) =

{
2B1c4

c2

(
ε

√
− c2

2c4
tanh

(√
− c2

2
(x− νt)

))
+

68B1c2
4

3c2
2

(
ε

√
− c2

2c4
tanh

(√
− c2

2
(x− νt)

))3

+B1

(
ε

√
− c2

2c4
tanh

(√
− c2

2
(x− νt)

))−1

+
17B1c2

6c4

(
ε

√
− c2

2c4
tanh

(√
− c2

2
(x− νt)

))−3}
× ei(κt+B(x−νt)).

(49)

Result 4:

A0 = A2 = B2 = 0, A1 = −
36B3c2

4
c2

2
, A3 = −

8B3c3
4

c3
2

, B1 =
18B3c4

c2
,

a2 = a6
(
15B4 − 3984B2c2 + 60544c2

2
)
, a4 = −a6

(
15B2 − 664c2

)
,

κ = a6
(

B6 − 664B4c2 + 60544B2c2
2 + 645120c3

2
)
, λ = −

2BµB2
3c3

4 + 315a6c6
2

2B2
3Bc3

4
.

(50)

Thus, a dark-singular straddled optoelectronic wave field is structured as

q(x, t) =

{
−

36B3c2
4

c2
2

(
ε

√
− c2

2c4
tanh

(√
− c2

2
(x− νt)

))
−

8B3c3
4

c3
2

(
ε

√
− c2

2c4
tanh

(√
− c2

2
(x− νt)

))3

+
18B3c4

c2

(
ε

√
− c2

2c4
tanh

(√
− c2

2
(x− νt)

))−1

+ B3

(
ε

√
− c2

2c4
tanh

(√
− c2

2
(x− νt)

))−3}
× ei(κt+B(x−νt)).

(51)

Case 4: c0 = c1 = c4 = 0, c2 > 0.
Result 1:

A1 = A2 = A3 = B1 = B2 = 0, a2 = 15B4a6 + 84B2c2a6 + 49c2
2a6, B3 =

16A0c3
2

5c3
3

,

a4 = −15B2a6 − 14a6c2, λ = −µ, κ = B6a6 + 14B4a6c2 + 49B2c2
2a6 + 36c3

2a6.

(52)

In this case, the singular optoelectronic wave field is arranged as

q(x, t) =
{

A0 −
16A0

5
sech−6

(√
c2

2
(x− νt)

)}
ei(κt+B(x−νt)). (53)

Result 2:

A1 = A2 = A3 = B2 = B3 = 0, λ = −µ, B1 =
2A0c2

c3
,

κ = 61B6a6 + 75B4c2a6 + 5a4B4 + 15B2c2
2a6 + 6B2a4c2 + c3

2a6 + a2B2 + a4c2
2 + a2c2.

(54)

Therefore, the singular nonlinear waveform is presented below

q(x, t) =
{

A0 − 2A0 sech−2
(√

c2

2
(x− νt)

)}
ei(κt+B(x−νt)). (55)
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Result 3:

A1 = A2 = A3 = B3 = 0, λ = −µ, B1 =
8A0c2

c3
, B2 =

8A0c2
2

c2
3

,

κ =
(
61B4a6 + 56c2B2a6 + 5B2a4 + 16a6c2

2 + 4c2a4 + a2
)(

B2 + 4c2
)
.

(56)

Hence, the singular nonlinear wave profile is recovered as

q(x, t) =
{

A0 − 8A0 sech−2
(√

c2

2
(x− νt)

)
+ 8A0 sech−4

(√
c2

2
(x− νt)

)}
ei(κt+B(x−νt)). (57)

Result 4:

A1 = A2 = A3 = 0, B1 =
18A0c2

c3
, B2 =

48A0c2
2

c2
3

, B3 =
32A0c3

2
c3

3
,

λ = −µ, κ =
(
61B4a6 + 126c2B2a6 + 5B2a4 + 81a6c2

2 + 9c2a4 + a2
)(

B2 + 9c2
)
.

(58)

Consequently, a singular nonlinear soliton is presented below

q(x, t) =
{

A0 − 18A0 sech−2
(√

c2

2
(x− νt)

)
+ 48A0 sech−4

(√
c2

2
(x− νt)

)
− 32A0 sech−6

(√
c2

2
(x− νt)

)}
ei(κt+B(x−νt)). (59)

Result 5:

A1 = A2 = A3 = B1 = 0, a2 = a6
(
15B4 + 84B2c2 + 49c2

2
)
, B3 =

2c2
(
8A0c2

2 + 3B2c2
3
)

5c3
3

,

a4 = −15B2a6 − 14a6c2, λ = −µ, κ = a6
(

B2 + 9c2
)(

B2 + 4c2
)(

B2 + c2
)
.

(60)

As a result, a singular nonlinear soliton is constructed as below

q(x, t) =

{
A0 +

B2c2
2

c2
3

sech−4
(√

c2

2
(x− νt)

)
−

2
(
8A0c2

2 + 3B2c2
3
)

5c2
2

sech−6
(√

c2

2
(x− νt)

)}
ei(κt+B(x−νt)). (61)

Case 5: c0 = c1 = c2 = c4 = 0.
Result 1:

A1 = A2 = A3 = B2 = B3 = 0, a2 =
9B6a6 + 6κ

B2 , a4 = −14B6a6 + κ

B4 , λ = −µ. (62)

Thus, the rational wave is cast as

q(x, t) =
{

A0 +
4B1

c3(x− νt)2

}
ei(κt+B(x−νt)). (63)

Case 6: c0 = c1 = c2 = 0, c4 < 0.

A1 = A2 = A3 = B2 = B3 = 0, a4 = −75B4a6 + a2

6B2 , λ = −µ, κ = −
B2(9B4a6 − a2

)
6

. (64)
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In this case, solitary and rational waves are, respectively, extracted as

q(x, t) =

A0 +
c3B1

2c4 e

(
εc3

2
√
−c4

(x−νt)

)
ei(κt+B(x−νt)), (65)

and

q(x, t) =

{
A0 +

4c3B1

c2
3(x− νt)2 − 4c4

}
ei(κt+B(x−νt)). (66)

Case 7: c3 = c4 = 0, c0 =
c2

1
4c2

, c2 > 0.
Result 1:

A1 = A2 = A3 = B1 = 0, a2 = a6
(
15B4 + 498B2c2 + 946c2

2
)
, a4 = −a6

(
15B2 + 83c2

)
,

A0 = −6c2
2

√
− 35a6

2Bc2(µ + λ)
, B2 = 9c2

1

√
− 35a6

2Bc2(µ + λ)
, B3 =

3c3
1

c2

√
− 35a6

2Bc2(µ + λ)
,

κ = a6
(

B6 + 83B4c2 + 946B2c2
2 − 1260c3

2
)
.

(67)

Therefore, a solitary wave is indicated below

q(x, t) =

{
−6c2

2m + 9c2
1m
(
− c1

2c2
+ e(ε

√
c2(x−νt))

)−2
+

3c3
1m

c2

(
− c1

2c2
+ e(ε

√
c2(x−νt))

)−3
}

ei(κt+B(x−νt)), (68)

where m =
√
− 35a6

2Bc2(µ+λ)
.

Result 2:

A0 = A1 = A2 = A3 = 0, a2 = 3a6
(
5B4 − 7c2

2
)
, a4 = 3a6

(
5B4 − 7c2

2
)
,

B1 = 6c1c2

√
− 35a6

2Bc2(µ + λ)
, B2 = 9c2

1

√
− 35a6

2Bc2(µ + λ)
, B3 =

3c3
1

c2

√
− 35a6

2Bc2(µ + λ)
,

κ = a6
(

B6 − 21B2c2
2 − 20c3

2
)
.

(69)

Hence, a solitary wave is indicated below

q(x, t) =

√
− 35a6

2Bc2(µ + λ)

{
6c1c2

(
− c1

2c2
+ e(ε

√
c2(x−νt))

)−1
+ 9c2

1

(
− c1

2c2
+ e(ε

√
c2(x−νt))

)−2

+
3c3

1
c2

(
− c1

2c2
+ e(ε

√
c2(x−νt))

)−3
}

ei(κt+B(x−νt)).

(70)

Result 3:
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A1 = A2 = A3 = 0, A0 =
879
√

70 c2

2686B(µ + λ)

(
(µ + λ)Bc2m1 +

3m2

293

)
,

B1 =
8937
√

70 c1

2686B(µ + λ)

(
(µ + λ)Bc2m1 +

m2

993

)
, B2 =

9
√

70 m1c2
1

2
, B3 =

3
√

70 m1c3
1

2c2
,

a2 =
747m1m2c2

1343

(
B2 − 626891c2

668814

)
, a4 = − 15a6

m1B(µ + λ)

(
B(µ + λ)

(
B2 − 24319c2

40290

)
m1 −

83m2

13430

)
,

κ =
(1107540m1m2 − 40482540a6)c3

2
3607298

+
B2(−1880673m1m2 + 44697365a6)c2

2
3607298

− 24319B4c2

2686

(
−3m1m2

293
+ a6

)
+ B6a6,

(71)

where m1 =
√
− a6

Bc2(µ+λ)
and m2 =

√
2399

√
(µ + λ)Ba6c2. This result yields the solitary wave

q(x, t) =

{
A0 + B1

(
− c1

2c2
+ e(ε

√
c2(x−νt))

)−1
+ B2

(
− c1

2c2
+ e(ε

√
c2(x−νt))

)−2

+B3

(
− c1

2c2
+ e(ε

√
c2(x−νt))

)−3
}

ei(κt+B(x−νt)).

(72)

Case 8: c1 = c3 = c4 = 0, c0 > 0, c2 > 0.
Result 1:

A0 = A1 = A2 = A3 = B1 = B2 = 0, a2 = a6
(
15B4 + 498B2c2 + 1891c2

2
)
,

B3 = 12c0

√
− 70a6c0

Bλ + Bµ
, a4 = −15B2a6 − 83c2a6, κ = a6

(
B6 + 83B4c2 + 1891B2c2

2 + 11025c3
2
)
.

(73)

This result provides the singular soliton

q(x, t) =

{
12c0

√
− 70a6c0

Bλ + Bµ

(
ε

√
c0

c2
sinh

(√
−c2(x− νt)

))−3
}

ei(κt+B(x−νt)). (74)

Result 2:

A0 = A1 = A2 = A3 = B2 = 0, B1 =
144c2

17

√
− 70a6c0

Bλ + Bµ
, B3 = 12

√
− 70a6c0

Bλ + Bµ
,

a2 =
a6
(
4335B4 − 59262B2c2 + 92659c2

2
)

289
, a4 = −15B2a6 +

581
17

c2a6,

κ =
a6
(
289B6 − 9877B4c2 + 92659B2c2

2 + 102825c3
2
)

289
.

(75)

Thus, singular soliton appears as

q(x, t) =

√
− 70a6c0

Bλ + Bµ

{
144c2

17

(
ε

√
c0
c2

sinh
(√
−c2(x− νt)

))−1
+ 12

(
ε

√
c0
c2

sinh
(√
−c2(x− νt)

))−3
}

ei(κt+B(x−νt)). (76)

Case 9: c0 = c1 = 0, c2 > 0, c4 > 0.
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Result 1:

A1 = A2 = A3 = B2 = B3 = 0, A0 =
B1c3

2c2
,

λ = −µ, κ =
(
61B4a6 + 14c2B2a6 + 5B2a4 + a6c2

2 + c2a4 + a2
)(

B2 + c2
)
.

(77)

In this case, dark–bright straddled soliton comes out as

q(x, t) =


B1c3

2c2
+ B1

2ε
√

c2c4 tanh
(√

c2

2
(x− νt)

)
− c3

c2 sech2
(√

c2

2
(x− νt)

)

ei(κt+B(x−νt)). (78)

Result 2:

A1 = A2 = A3 = B3 = 0, A0 =
B1
(
4c2c4 + c2

3
)

8c2c3
, B2 =

B1c2

c3
,

λ = −µ, κ =
(

B2 + 4c2
)(

61B4a6 + 56c2B2a6 + 5B2a4 + 16a6c2
2 + 4c2a4 + a2

)
.

(79)

Therefore, dark–bright straddled soliton turns out to be

q(x, t) =


B1
(
4c2c4 + c2

3
)

8c2c3
+ B1

2ε
√

c2c4 tanh
(√

c2

2
(x− νt)

)
− c3

c2 sech2
(√

c2

2
(x− νt)

)


+
B1

c3

2ε
√

c2c4 tanh
(√

c2

2
(x− νt)

)
− c3

sech2
(√

c2

2
(x− νt)

)


2ei(κt+B(x−νt)).

(80)

Result 3:

A1 = A2 = A3 = 0, A0 =

(
12c2c4 + c2

3
)

B2

48c2
2

, B1 =
B2
(
4c2c4 + 3c2

3
)

8c2c3
, B3 =

2B2c2

3c3
,

λ = −µ, κ =
(
61B4a6 + 126c2B2a6 + 5B2a4 + 81a6c2

2 + 9c2a4 + a2
)(

B2 + 9c2
)
.

(81)

Hence, dark–bright straddled soliton shapes up as

q(x, t) =


(
12c2c4 + c2

3
)

B2

48c2
2

+
B2
(
4c2c4 + 3c2

3
)

8c2c3

2ε
√

c2c4 tanh
(√

c2

2
(x− νt)

)
− c3

c2 sech2
(√

c2

2
(x− νt)

)


+B2

2ε
√

c2c4 tanh
(√

c2

2
(x− νt)

)
− c3

c2 sech2
(√

c2

2
(x− νt)

)


2

+
2B2c2

3c3

2ε
√

c2c4 tanh
(√

c2

2
(x− νt)

)
− c3

c2 sech2
(√

c2

2
(x− νt)

)


3
× ei(κt+B(x−νt)).

(82)

Case 10: c0 = c1 = 0, c3 = 2ε
√

c2c4, c2 > 0, c4 > 0.
Result 1:
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A1 = B1 = B2 = B3 = 0, a2 = 15B4a6 + 498B2a6c2 + 946a6c2
2, a4 = −15B2a6 − 83a6c2,

A0 = −
3c2
√

c2c4

c4

√
− 70a6c4

Bλ + Bµ
, A2 = 18

√
c2c4

√
− 70a6c4

Bλ + Bµ
, A3 = 12c4

√
− 70a6c4

Bλ + Bµ
,

κ = a6
(

B6 + 83B4c2 + 946B2c2
2 − 1260c3

2
)
.

(83)

As a result, dark soliton evolves as

q(x, t) =

√
− 70a6c4

Bλ + Bµ

{
−

3c2
√

c2c4

c4
+ 18
√

c2c4

(
ε

2

√
c2

c4

(
1 + tanh

(√
c2

2
(x− νt)

)))2

+12c4

(
ε

2

√
c2

c4

(
1 + tanh

(√
c2

2
(x− νt)

)))3
}

ei(κt+B(x−νt)).

(84)

Result 2:

A0 = B1 = B2 = B3 = 0, a2 = 3a6
(
5B4 − 7c2

2
)
, a4 = −15B2a6,

A1 = 6c2

√
− 70a6c4

Bλ + Bµ
, A2 = 18

√
c2c4

√
− 70a6c4

Bλ + Bµ
, A3 = 12c4

√
− 70a6c4

Bλ + Bµ
,

κ = B6a6 − 21B2a6c2
2 − 20a6c3

2.

(85)

Therefore, the dark soliton stands as

q(x, t) =

√
− 70a6c4

Bλ + Bµ

{
6c2

(
ε

2

√
c2

c4

(
1 + tanh

(√
c2

2
(x− νt)

)))
+ 18
√

c2c4

(
ε

2

√
c2

c4

(
1 + tanh

(√
c2

2
(x− νt)

)))2

+12c4

(
ε

2

√
c2

c4

(
1 + tanh

(√
c2

2
(x− νt)

)))3
}

ei(κt+B(x−νt)).

(86)

Remark 1. We may also generate trigonometric solutions using both the Riccati equation approach
and the improved modified extended tanh-function method. However, we did not include such
solutions because they are less significant in optical fiber.

4. Conservation Laws

Conservation laws are fundamental principles in physics that describe the behavior of
physical systems under different circumstances. In nonlinear optics, several conservation
laws play a crucial role in understanding the behavior of light in nonlinear media. Conser-
vation of Energy: This law states that the total energy of a closed system remains constant
over time. In nonlinear optics, this law is important because it ensures that the energy
of the incident light is conserved as it interacts with the nonlinear medium. Nonlinear
optical processes can change the frequency and intensity of the incident light, but the
total energy must remain constant. Conservation of Momentum: This law states that the
total momentum of a closed system remains constant over time. In nonlinear optics, this
law is important because it governs the direction and magnitude of the changes in the
polarization of light as it passes through a nonlinear medium. Changes in polarization can
lead to changes in the direction and speed of light. Conservation of Angular Momentum:
This law states that the total angular momentum of a closed system remains constant over
time. In nonlinear optics, this law is important because it governs the behavior of light as it
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interacts with a nonlinear medium that possesses a certain symmetry. Changes in angular
momentum can lead to changes in the direction and polarization of the light. Conservation
of Phase Matching: This law states that for a nonlinear optical process to occur efficiently,
the phase velocities of the interacting waves must match. This law is important because it
determines the efficiency of nonlinear optical processes such as second harmonic generation
and optical parametric amplification. Understanding these conservation laws is essential
for understanding the behavior of light in nonlinear media and for designing nonlinear
optical devices with specific functionalities.

The local conservation laws of the system (3) and (4) are derived by the multiplier
approach [12–14].

Consider the multipliers of the form Λi(t, x, u, v), where i = 1, 2. The simplified
determining equations for multipliers are

∂

∂x
Λ2(x, t, u, v) = 0,

∂

∂t
Λ2(x, t, u, v) = 0,

∂

∂u
Λ2(x, t, u, v) =

Λ2(x, t, u, v)
u

,
∂

∂v
Λ2(x, t, u, v) = 0,

Λ1(x, t, u, v) = −Λ2(x, t, u, v)v
u

. (87)

The solution of the above system yields the following multiplier

Λ1(x, t, u, v) = −C1v, Λ2(x, t, u, v) = C1u, (88)

where C1 is arbitrary constant.
Using the direct method, the conservation fluxes [12] are achieved. Thus, the conserved

vectors for the multipliers (88) are

Tt =
u2 + v2

2

Tx =
3
4

λ u4 +
3
2

λ v2u2 +
1
2

µ u4 + µ v2u2 +
1
4

σ u4 +
1
2

σ v2u2 +
1
2

a1 u2 +
1
4

σ v4 +
3
4

λ v4

+
1
2

µ v4 +
1
2

a1 v2 + a2 uvx − a2 ux v,+a3uuxx + a3vvxx − a4vuxxx + a4uvxxx

+ a5uuxxxx + a5vvxxxx − a6vuxxxxx + a6uvxxxxx. (89)

Therefore, we have

Φt
1 =

1
2
|q|2. (90)

Thus, from soliton solution (39), the corresponding conserved quantity is given by

P1 =
∫ ∞

−∞
Φt

1dx =
∫ ∞

−∞
|q|2dx =

16A2

15B
, (91)

where A = −144 c3
2m2

c4
and B =

√
c2, which represents the power P1.

From soliton solution (41), the corresponding conserved quantity is given by

P2 =
∫ ∞

−∞
Φt

1dx =
∫ ∞

−∞
|q|2dx =

2(15C2 + 20CD + 8D2)

15E
, (92)

where C = 144c2m
17

√
− c2

c4
, D = 12c4m(− c2

c4
)

3
2 and E =

√
c2, which represents the power P2.

Similarly, we can obtain the corresponding conserved quantities from other soliton
solutions.



Symmetry 2023, 15, 886 18 of 22

5. Physical Interpretation

Here, we illustrate the graphical representation of our revealed optoelectronic wave
field in relation to the suggested Equation (1), along with its corresponding physical
significance. The interpretation of graphical plots is crucial for understanding the results in
physics. Since the geometrical composition determines how investigative solutions behave,
this section will depict various soliton solutions, including dark, bright, and dark-bright
straddled solitons, using 3D, contour, and 2D plots. Each of the graphics in Figures 1–3
consists of three subfigures: (a) shows the 3D plot, while (b) and (c) show the 2D and
contour plots, respectively. We begin by plotting the soliton solution |q(x, t)|2, as defined
by Equation (28), in various formats. These plots depict the dark optoelectronic wave field
for the given parameters: B0 = −1, B2 = 1, B1 = 1, A2 = 1, ξ0 = 1, B = 1, a6 = 1, a4 = 1,
a2 = 1, and a1 = 1, over the ranges x ∈ [−4, 4] and t ∈ [−6, 6]. Figure 1 shows these plots.
The plot of the soliton solution |q(x, t)|2, as given by Equation (41), represents the bright
optoelectronic wave field over the range x ∈ [−4, 4] and t ∈ [−6, 6] for the parameters
c2 = 1, c4 = −1, a6 = 1, B = 1, λ = 1, µ = 1, and a1 = 1. This plot is shown in Figure 2.
Figure 3 depicts the soliton solution |q(x, t)|2 as characterized by Equation (82), which
represents a dark-bright straddled soliton over the range x ∈ [−4, 4] and t ∈ [−6, 6] for the
following parameters: c2 = 1, c4 = 1, c3 = 1, B2 = 1, ε = 1, B = 1, a6 = 1, a4 = 1, a2 = 1,
and a1 = 1.
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(a) 3D Plot (b) 2D Plot
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Figure 1. Profiles of a dark optoelectronic wave field (28).
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Figure 2. Profiles of a bright optoelectronic wave field (41).
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Figure 3. Profiles of a dark–bright straddled optoelectronic wave field (82).

6. Conclusions

The paper addressed the recovery of optical soliton solutions to HD—NLSE, i.e., with
the absence of SPM. The perturbation terms carry the effect of nonlinearity that provides
the balance between CD and the effect of SPM and thus solitons sustain throughout. The
soliton solutions are recovered and classified. The conservation laws are obtained and
enlisted too.

The results of the paper provide a strong foundation for further exploration of the
model. The model will be later explored with the nonlinear terms having maximum
intensity. This would be a generalized version of the model whose integrability to obtain
an exact soliton solution would pose a challenge. The consideration of the model in
birefringent fibers and its extension to dispersion-flattened fibers would be the icing on the
cake. Those results are currently awaited and will be reported in due time.
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16. Mathanaranjan, T.; Rezazadeh, H.; Şenol, M.; Akinyemi, L. Optical singular and dark solitons to the nonlinear Schrödinger

equation in magneto-optic waveguides with anti-cubic nonlinearity. Opt. Quantum Electron. 2021, 53, 722. [CrossRef]
17. Hirota, R. The Direct Method in Soliton Theory; Number 155; Cambridge University Press: Cambridge, UK, 2004.
18. Nguyen, L.T.K. Wronskian formulation and Ansatz method for bad Boussinesq equation. Vietnam J. Math. 2016, 44, 449–462.

[CrossRef]
19. Ma, W.X. N-soliton solutions and the Hirota conditions in (2+1)-dimensions. Opt. Quantum Electron. 2020, 52, 511. [CrossRef]
20. Kudryashov, N.A. Highly dispersive optical solitons of the sixth-order differential equation with arbitrary refractive index. Optik

2022, 259, 168975. [CrossRef]
21. Kudryashov, N.A. Highly dispersive optical solitons of an equation with arbitrary refractive index. Regul. Chaotic Dyn. 2020,

25, 537–543. [CrossRef]
22. Kudryashov, N.A. Highly dispersive optical solitons of equation with various polynomial nonlinearity law. Chaos Solitons Fractals

2020, 140, 110202. [CrossRef]
23. Mathanaranjan, T.; Kumar, D.; Rezazadeh, H.; Akinyemi, L. Optical solitons in metamaterials with third and fourth order

dispersions. Opt. Quantum Electron. 2022, 54, 271. [CrossRef]
24. Kudryashov, N.A. Highly dispersive solitary wave solutions of perturbed nonlinear Schrödinger equations. Appl. Math. Comput.

2020, 371, 124972. [CrossRef]
25. Fan, E.; Zhang, H. A note on the homogeneous balance method. Phys. Lett. A 1998, 246, 403–406. [CrossRef]
26. Nguyen, L.T.K. Modified homogeneous balance method: Applications and new solutions. Chaos Solitons Fractals 2015, 73, 148–155.
27. Arnous, A.H.; Biswas, A.; Kara, A.H.; Yıldırım, Y.; Alshehri, H.M.; Belic, M.R. Highly dispersive optical solitons and conservation

laws in absence of self–phase modulation with new Kudryashov’s approach. Phys. Lett. A 2022, 431, 128001. [CrossRef]
28. Biswas, A.; Ekici, M.; Sonmezoglu, A.; Belic, M.R. Highly dispersive optical solitons in absence of self-phase modulation by

Jacobi’s elliptic function expansion. Optik 2019, 189, 109–120. [CrossRef]
29. Biswas, A.; Ekici, M.; Sonmezoglu, A.; Alshomrani, A.S. Highly dispersive optical solitons in absence of self-phase modulation

by F-expansion. Optik 2019, 187, 258–270. [CrossRef]
30. Hirota, R. Exact Solution of the Korteweg—de Vries Equation for Multiple Collisions of Solitons. Phys. Rev. Lett. 1971,

27, 1192–1194. [CrossRef]
31. Nguyen, L.T.K. Soliton solution of good Boussinesq equation. Vietnam J. Math. 2016, 44, 375–385. [CrossRef]
32. Ma, W.X.; You, Y. Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions. Trans. Am. Math. Soc. 2005,

357, 1753–1778. [CrossRef]
33. Neill, D.R.; Atai, J. Gap solitons in a hollow optical fiber in the normal dispersion regime. Phys. Lett. A 2007, 367, 73–82.

[CrossRef]
34. Atai, J.; Malomed, B.A.; Merhasin, I.M. Stability and collisions of gap solitons in a model of a hollow optical fiber. Opt. Commun.

2006, 265, 342–348. [CrossRef]
35. Chen, Y.; Atai, J. Dark optical bullets in light self-trapping. Opt. Lett. 1995, 20, 133–135. [CrossRef]
36. Wazwaz, A.M.; Albalawi, W.; El-Tantawy, S. Optical envelope soliton solutions for coupled nonlinear Schrödinger equations

applicable to high birefringence fibers. Optik 2022, 255, 168673. [CrossRef]
37. Wazwaz, A.M.; El-Tantawy, S.A. Optical Gaussons for nonlinear logarithmic Schrödinger equations via the variational iteration

method. Optik 2019, 180, 414–418. [CrossRef]

http://dx.doi.org/10.3103/S1541308X20030127
http://dx.doi.org/10.1016/j.ijleo.2020.164550
http://dx.doi.org/10.1016/j.rinp.2021.104043
http://dx.doi.org/10.1515/zna-2006-3-401
http://dx.doi.org/10.1080/17455030.2022.2045044
http://dx.doi.org/10.1017/S095679250100465X
http://dx.doi.org/10.1155/2013/897912
http://dx.doi.org/10.1016/j.rinp.2022.106083
http://dx.doi.org/10.1007/s11082-021-03383-z
http://dx.doi.org/10.1007/s10013-015-0145-z
http://dx.doi.org/10.1007/s11082-020-02628-7
http://dx.doi.org/10.1016/j.ijleo.2022.168975
http://dx.doi.org/10.1134/S1560354720060039
http://dx.doi.org/10.1016/j.chaos.2020.110202
http://dx.doi.org/10.1007/s11082-022-03656-1
http://dx.doi.org/10.1016/j.amc.2019.124972
http://dx.doi.org/10.1016/S0375-9601(98)00547-7
http://dx.doi.org/10.1016/j.physleta.2022.128001
http://dx.doi.org/10.1016/j.ijleo.2019.05.065
http://dx.doi.org/10.1016/j.ijleo.2019.05.014
http://dx.doi.org/10.1103/PhysRevLett.27.1192
http://dx.doi.org/10.1007/s10013-015-0157-8
http://dx.doi.org/10.1090/S0002-9947-04-03726-2
http://dx.doi.org/10.1016/j.physleta.2007.02.077
http://dx.doi.org/10.1016/j.optcom.2006.03.037
http://dx.doi.org/10.1364/OL.20.000133
http://dx.doi.org/10.1016/j.ijleo.2022.168673
http://dx.doi.org/10.1016/j.ijleo.2018.11.114


Symmetry 2023, 15, 886 22 of 22

38. Kaur, L.; Wazwaz, A.M. Bright–dark optical solitons for Schrödinger-Hirota equation with variable coefficients. Optik 2019,
179, 479–484. [CrossRef]

39. Esen, H.; Secer, A.; Ozisik, M.; Bayram, M. Dark, bright and singular optical solutions of the Kaup–Newell model with two
analytical integration schemes. Optik 2022, 261, 169110. [CrossRef]

40. Ozdemir, N.; Secer, A.; Ozisik, M.; Bayram, M. Perturbation of dispersive optical solitons with Schrödinger–Hirota equation with
Kerr law and spatio-temporal dispersion. Optik 2022, 265, 169545. [CrossRef]

41. Cinar, M.; Secer, A.; Ozisik, M.; Bayram, M. Derivation of optical solitons of dimensionless Fokas-Lenells equation with
perturbation term using Sardar sub-equation method. Opt. Quantum Electron. 2022, 54, 402. [CrossRef]

42. Serkin, V.N.; Belyaeva, T.L. High-energy optical Schrödinger solitons. J. Exp. Theor. Phys. Lett. 2001, 74, 573–577. [CrossRef]
43. Dianov, E.M.; Nikonova, Z.; Prokhorov, A.M.; Serkin, V.N. Optimal compression of multisoliton pulses in fiber-optic waveguides.

Pisma Zhurnal Tekhnischeskoi Fiz. 1986, 12, 756–760.
44. Afanasyev, V.V.; Vysloukh, V.A.; Serkin, V.N. Decay and interaction of femtosecond optical solitons induced by the Raman

self-scattering effect. Opt. Lett. 1990, 15, 489–491. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.ijleo.2018.09.035
http://dx.doi.org/10.1016/j.ijleo.2022.169110
http://dx.doi.org/10.1016/j.ijleo.2022.169545
http://dx.doi.org/10.1007/s11082-022-03819-0
http://dx.doi.org/10.1134/1.1455063
http://dx.doi.org/10.1364/OL.15.000489

	Introduction
	Lie Symmetry Analysis
	INTEGRATION SCHEMES and OPTICAL SOLITONS
	Riccati Equation Method
	Improved Modified Extended Tanh-Function Method

	Conservation Laws
	Physical Interpretation
	Conclusions
	References

