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Abstract: In this paper, the uniform approximations of the Apostol–Frobenius–Genocchi polynomials
of order α in terms of the hyperbolic functions are derived through the saddle-point method. More-
over, motivated by the works of Corcino et al., an approximation with enlarged region of validity
for these polynomials is also obtained. It is found out that the methods are also applicable for
the case of the higher order generalized Apostol-type Frobenius–Genocchi polynomials and Apostol–
Frobenius-type poly-Genocchi polynomials with parameters a, b, and c. These methods demonstrate
the techniques of computing the symmetries of the defining equation of these polynomials. Graphs
are illustrated to show the accuracy of the exact values and corresponding approximations of these
polynomials with respect to some specific values of its parameters.

Keywords: Apostol–Frobenius–Genocchi polynomials; generalized Apostol-type Frobenius–Genocchi
polynomials; Apostol–Frobenius-type poly-Genocchi polynomials; Genocchi polynomials; asymptotic
approximation

1. Introduction

The development of special functions involving the generalizations, extensions, and com-
binations of other special functions has become a flourishing area in mathematics. The estab-
lished properties and identities of these special functions have relevant applications arising
in mathematics and other fields of knowledge. A particular kind of these special functions
is the Apostol-type polynomials, which have been mixed or combined with other classical
polynomials to define new special polynomials. An interesting result in the combination of
these polynomials is the construction of Apostol–Frobenius–Genocchi polynomials of order a
denoted by Gα

n(z; λ; u), which are defined by the generating function (see [1,2]),(
(1− u)w
λew − u

)α

ezw =
∞

∑
n=0
Gα

n(z; u; λ)
wn

n!
, |w| <

∣∣∣ log
(

λ

u

)∣∣∣ (1)

where λ, u ∈ C with λ 6= 0, u 6= 1 and α ∈ Z.
On setting λ = 1, (1) gives the Frobenius–Genocchi polynomials of order α, which

were introduced by Yasar and Özarslan by means of following generating function [3]:(
(1− u)w

ew − u

)α

ezw =
∞

∑
n=0
Gα

n(z; u)
wn

n!
, |w| < | log(u)|. (2)
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When u = −1, (1) gives the Apostol–Genocchi polynomials of order α defined by this
generating function [4](

2w
λew + 1

)α

ezw =
∞

∑
n=0
Gα

n(z; λ)
wn

n!
, |w| < |πi− log(λ)|. (3)

When α = 1 in (1) and (2), G1
n(z; u; λ) = Gn(z; u; λ) and G1

n(z; u) = Gn(z; u), where
Gn(z; u; λ) and Gn(z; u) are called the Apostol–Frobenius–Genocchi polynomials and
Frobenius–Genocchi polynomials, respectively [5].

The Apostol–Frobenius–Genocchi polynomials of order α are λ extensions of the Frobenius–
Genocchi polynomials. The Frobenius–Genocchi polynomials are formed by mixing the defi-
nitions of the two classical polynomials, namely the Frobenius polynomials and the Genocchi
polynomials. The Frobenius polynomials and numbers can be traced back to the works of
the great German mathematician Ferdinand Georg Frobenius, who studied the context of these
polynomials in number theory and the relation of its divisibility properties with the Stirling
numbers of the second kind [6]. On the other hand, the Genocchi polynomials, which were
named after Angelo Genocchi, have been studied extensively because of their relevant combina-
torial relations and properties in number theory, complex analytic number theory, homotopy
theory, quantum physics, etc. [7].

The Apostol-type polynomials have various forms which are generalizations of the Ap-
pell family [8]. In sciences and engineering, special polynomials associated with the Ap-
pell polynomial sequences are essential to solve problems involving differential equations.
The solutions satisfying these equations may be expressed using special functions. Genocchi
polynomials, Bernoulli polynomials and Euler polynomials are typical examples of Appell
polynomial sequences. The applications of these sequences are important in other branches of
mathematics to obtain polynomial expansions and approximation formulas both in analytic
number theory and numerical analysis [9]. This motivates the present authors to investigate
the further generalization of these polynomials and their asymptotic approximations.

Corcino et al. produced related studies on asymptotic approximations of some
special polynomials in terms of hyperbolic functions (see [10–12]). It is observed that
there is a resemblance in the generating function of the Apostol-tangent polynomials
in [10] and the Apostol–Frobenius–Euler polynomials. However, the approximation of
the Apostol–Frobenius–Genocchi polynomials parallel to the results of Corcino et al. re-
mains to be unexplored in other related studies. In this study, the uniform approximation
of the Apostol–Frobenius–Genocchi polynomials of order α for large n valid in some un-
bounded region of the complex variable z are derived using the saddle-point method.
Using the technique of the contour integration in [10], an approximation with an en-
larged region of validity is also obtained. Moreover, the same methods are applied to
obtain the approximations for the case of the generalized Apostol-type Frobenius–Genocchi
polynomials of order α with parameters a, b, and c denoted by G(α)n (z; u; a, b, c, λ) and
Apostol–Frobenius-type poly-Genocchi polynomials of order α with parameters a, b, and c
denoted by G(µ,α)

n (z; λ, u, a, b, c, ). Corresponding asymptotic formulas of other special
polynomials are given as corollaries. It is worth mentioning that the methods used in deriv-
ing the asymptotic formulas demonstrate the techniques of computing the symmetries of
the defining equations of Apostol–Frobenius–Genocchi polynomials of order α as well as
their generalizations G(α)n (z; u; a, b, c, λ) and G(µ,α)

n (z; λ, u, a, b, c, ).

2. Uniform Approximation

In this section, the uniform approximation of the Apostol–Frobenius–Genocchi poly-
nomials of order α is explored using the saddle-point method. The following theorem gives
the said approximation.
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Theorem 1. For n, α ∈ Z+, u, λ ∈ C \ {0, 1}, and z ∈ C \ {0} such that |Im z−1| < 2π −
Arg

(
λ
u

)
or |z−1| < |z−1 − (2πi − δ)|, the Apostol–Frobenius–Genocchi polynomials of order

α satisfy

Gα
n

(
nz +

α

2
; u; λ

)
=

(nz)n(1− u)α cschα
(

δz+1
2z

)
(2z
√

λu)α

[
1− α

(2nz2)

{
z2(α− 1)− αz coth

(
δz + 1

2z

)

+
(α + 1) coth2

(
δz+1

2z

)
− 1

4

}
+ O

(
1
n2

)]
. (4)

where δ = log
(

λ
u

)
and the logarithm is taken to be the principal branch.

Proof. Applying the Cauchy Integral formula to (1),

Gα
n(z; u; λ) =

n!
2πi

∫
C

(1− u)α

uα

wαezw

(eδ+w − 1)α

dw
wn+1 , (5)

where C is a circle about 0 with radius lesser than
∣∣∣2π − log

(
λ
u

)∣∣∣ and δ = log
(

λ
u

)
is

a logarithm taken to be the principal branch.

With
(
eδ+w − 1

)α
=
(

2e
δ+w

2 sinh
(

δ+w
2

))α
, it follows from shifting z→ z + α/2 that

Gα
n

(
z +

α

2
; u; λ

)
=

n!
2πi

(1− u)α

(2
√

λu)α

∫
C

f (w)ezw dw
wn+1 , (6)

where f (w) = wα

sinhα( δ+w
2 )

. Note that f (w) is a meromorphic function with simple poles of

order α at the zeros of sinhα
(

δ+w
2

)
, which are given by wj = 2jπ − δ, j = ±1,±2, · · · .

By taking z→ nz and letting nz→ ∞ with fixed z in (6),

Gα
n

(
nz +

α

2
; u; λ

)
=

n!
2πi

(1− u)α

(2
√

λu)α

∫
C

f (w)en(zw−log w) dw
w

. (7)

Note that on the saddle-point method, the main contribution of the integrand to
the integral in (7) originates at the saddle-point of the argument of the exponential [13].
Thus, if the point w = z−1 is not a pole, then the approximations of Gα

n
(
nz + α

2 ; u; λ
)

can
be obtained by expanding f (w) around the point. From Lemmas 1 and 2, and Theorem 1
of [14], it follows that

Gα
n

(
nz +

α

2
; u; λ

)
= (nz)n (1− u)α

(2
√

λu)α

∞

∑
k=0

f (k)(z−1)

k!
pk(n)
(nz)k , (8)

where pk(n) are the polynomials

p0(n) = 1, p1(n) = 0, p2(n) = −n, p(3) = 2n, (9)

pk(n) = (1− k)pk−1(n) + npk−2(n), k ≥ 3.

Computing the derivatives f (k)(z−1) for k = 0, 1, 2 gives

f (0)(z−1) =
cschα

(
δz+1

2z

)
zα

,
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f (1)(z−1) =
α cschα

(
δz+1

2z

)
zα

z−
coth

(
δz+1

2z

)
2

, and

f (2)(z−1) =
α cschα

(
δz+1

2z

)
zα

{
z2(α− 1)− αz coth

(
δz + 1

2z

)
+

(α + 1) coth2
(

δz+1
2z

)
− 1

4

}
.

Expanding the sum in (8) and keeping only the first three terms gives

Gα
n

(
nz +

α

2
; u; λ

)
=

(nz)n(1− u)α

(2
√

λu)α

[
f (0)(z−1)

0!
+

f (1)(z−1)

1!
p1(n)

nz
+

f (2)(z−1)

2!
p2(n)
(nz)2 + O

(
1
n2

)]

=
(nz)n(1− u)α

(2
√

λu)α

[
cschα

(
δz+1

2z

)
zα

−
α cschα

(
δz+1

2z

)
zα(2nz2)

{
z2(α− 1)− αz coth

(
δz + 1

2z

)

+
α coth2

(
δz+1

2z

)
+ csch2

(
δz+1

2z

)
4

}
+ O

(
1
n2

)]

=
(nz)n(1− u)α cschα

(
δz+1

2z

)
(2z
√

λu)α

[
1− α

(2nz2)

{
z2(α− 1)− αz coth

(
δz + 1

2z

)

+
α coth2

(
δz+1

2z

)
+ csch2

(
δz+1

2z

)
4

}
+ O

(
1
n2

)]
.

Figure 1 shows the accuracy of the approximation obtained in Theorem 1. The follow-
ing corollaries give the uniform approximations of the Frobenius–Genocchi polynomials of
order α, Apostol–Genocchi polynomials of order α and Genocchi polynomials of order α.

Figure 1. (a) n = 9, α = 8, u = 4, and λ = 5. (b) n = 8, α = 7, u = 4, and λ = 6. Solid lines represent
the Apostol–Frobenius–Genocchi polynomials of order α Gα

n(nz + α
2 ; u; λ) for several values of n,

whereas dashed lines represent the right hand side of (4) with z ≡ x, both normalized by the factor
(1 + | xσ |n)−1 where we choose σ = 0.5.

Corollary 1. For n, α ∈ Z+, u ∈ C \ {0, 1}, and z ∈ C \ {0} such that |Im z−1| < 2π −
Arg

(
1
u

)
or |z−1| < |z−1 − (2πi + ν)|, the Frobenius–Genocchi polynomials of order α satisfy

Gα
n

(
nz +

α

2
; u
)
=

(nz)n(1− u)α cschα
(

1−zν
2z

)
(2z
√

u)α

[
1− α

(2nz2)

{
z2(α− 1)− αz coth

(
1− zν

2z

)

+
(α + 1) coth2

(
1−zν

2z

)
− 1

4

}
+ O

(
1
n2

)]
(10)
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where ν = log(u) and the logarithm is taken to be the principal branch.

Proof. This follows from Theorem 1 by taking λ = 1.

Corollary 2. For n, α ∈ Z+, λ ∈ C \ {0, 1}, and z ∈ C \ {0} such that |Im z−1| < π− Arg(λ)
or |z−1| < |z−1 − (πi− τ)|, the Apostol–Genocchi polynomials of order α satisfy

Gα
n

(
nz +

α

2
; λ
)
=

(nz)n(1− u)α sechα
(

1+zτ
2z

)
(z
√

u)α

[
1− α

(2nz2)

{
z2(α− 1)− αz tanh

(
1 + zτ

2z

)

+
(α + 1) tanh2

(
1+zτ

2z

)
− 1

4

}
+ O

(
1
n2

)]
(11)

where τ = log(λ) and the logarithm is taken to be the principal lunch.

Proof. This follows from Theorem 1 by taking u = −1.

Corollary 3. For n, α ∈ Z+ and z ∈ C \ {0} such that |Im z−1| < π or |z−1| < |z−1 − π|,
the Genocchi polynomials of order α satisfy

Gα
n

(
nz +

α

2

)
=

(nz)n sechα
(

1
2z

)
zα

[
1− α

(2nz2)

{
z2(α− 1)− αz tanh

(
1
2z

)

+
(α + 1) tanh2

(
1
2z

)
− 1

4

}
+ O

(
1
n2

)]
(12)

Proof. This follows from Theorem 1 by taking λ = 1 and u = −1.

Remark 1. Taking α = 1 in (12), approximation for the classical Genocchi polynomials Gn

(
nz + 1

2

)
is obtained similar with that of Corcino et al. (see Theorem 2.5, [11]).

The graphs in Figure 2, Figure 3, and Figure 4 show the accuracy of the asymptotic
formulae obtained in Corollary 1, Corollary 2, Corollary 3, respectively.

Figure 2. (a) n = 8, α = 5, and u = 2. (b) n = 7, α = 6, and u = 3. Solid lines represent the Frobenius–
Genocchi polynomials of order α Gα

n(nz+ α
2 ; u) for several values of n, whereas dashed lines represent

the right hand side of (10) with z ≡ x, both normalized by the factor (1 + | xσ |n)−1, where we choose
σ = 0.5.
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Figure 3. (a) n = 10, α = 7, and λ = 11. (b) n = 8, α = 6, and λ = 9. Solid lines represent
the Apostol–Genocchi polynomials of order α Gα

n(nz + α
2 ; λ) for several values of n, whereas dashed

lines represent the right-hand side of (11) with z ≡ x, both normalized by the factor (1 + | xσ |n)−1

where we choose σ = 0.5.

Figure 4. (a) n = 7 and α = 5. (b) n = 8 and α = 6. Solid lines represent the Genocchi polynomials of
order α Gα

n(nz + α
2 ) for several values of n, whereas dashed lines represent the right hand side of (12)

with z ≡ x, both normalized by the factor (1 + | xσ |n)−1, where we choose σ = 0.5.

3. Enlarged Region of Validity

The validity of the approximations obtained from the previous section using the saddle-
point method is valid in the region |z−1| < |z−1 − wj| with poles wj = 2jπ − δ, j = ±1,
±2, · · · . In this section, approximation with an enlarged region of validity is derived
by isolating the contribution of the poles. Motivated by the study of Corcino et al. [10],
the approximation uses the method of contour integration, which introduces the incomplete
gamma function in the formula. The following theorem describes the said approximation.

Theorem 2. For λ, u ∈ C \ {0, 1}, α ∈ Z+ and z ∈ C such that |z−1| < |z−1 − wk| for all
k = l + 1, l + 2, · · · , the Apostol–Frobenius–Euler polynomials of order α satisfy

Gα
n

(
nz +

α

2
; u; λ

)
=

(1− u)α

(2
√

λu)α

{
l

∑
k=1

α

∑
j=1

ewknzrkj

[
n

∑
s=0

(
n
s

)
(−1)(j−1)〈j− 1〉s(wk)

−(j−1+s)

(
(n− s)!
wn−s+1

k

− Γ(n− s + 1, wknz)
wn−s+1

k

)
+

(−1)j〈j〉n
wj+n

k

]
+ (nz)n

∞

∑
k=0

f (k)(z−1)− h(k)l (z−1)

k!
pk(n)
(nz)k

}
(13)

where the polynomials pk(n) are given in (9), hk
l is the kth derivative of the function hl(w) given

by (21) and
m

∑
j=1

rkj

(w− wk)
j
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are the given principal parts of the Laurent series corresponding to the poles wk = 2kπ − δ, where
δ = log

(
λ
u

)
is a logarithm taken to be the principal branch. The entire function hl(w) is determined

by f (w) = wα cschα
(

δ+w
2

)
.

Proof. Using the Mittag–Leffler theorem ([15,16]), write f (w) = wα/ sinhα
(

δ+w
2

)
as

f (w) =
l

∑
k=1

[
m

∑
j=1

rkj

(w− wk)
j + qk(w)

]
+ g(w) =

l

∑
k=1

α

∑
j=1

rkj

(w− wk)
j + fl(w), (14)

where

fl(w) =
l

∑
k=1

qk(w) + g(w), (15)

qk(w) is a polynomial of w, rkj
are residues at wk, k = 1, 2, · · · , l. With this, fl(w) has no

poles inside the disk |w| < |wm+1|. Substituting (14) to (7) gives

Gα
n

(
nz +

α

2
; u; λ

)
=

n!
2πi

(1− u)α

(2
√

λu)α

∫
C

(
l

∑
k=1

α

∑
j=1

rkj

(w− wk)
j + fl(w)

)
ewnz dw

wn+1 (16)

= Xn,α
l (z) + Yn,α

l (z) (17)

where

Xn,α
l (z) =

n!
2πi

(1− u)α

(2
√

λu)α

∫
C

fl(w)ewnz dw
wn+1 , (18)

Yn,α
l (z) =

(1− u)α

(2
√

λu)α

∫
C

n!
2πi

l

∑
k=1

α

∑
j=1

rkj

(w− wk)
j ewnz dw

wn+1 . (19)

To evaluate (18), repeat the process from the last section using the saddle-point method
to expand fl(w) around the saddle-point w = z−1 instead of f (w). It follows from Lemmas
1 and 2 and Theorem 1 of [14] that (18) may be expanded as the infinite sum

Xn,α
l (z) = (nz)n (1− u)α

(2
√

λu)α

∞

∑
k=0

f (k)l (z−1)

k!
pk(n)
(nz)k , (20)

where pk(n) are the polynomials in (9). Note that (20) is valid for α ∈ Z+, z ∈ C \ {0}
such that |z−1| < |z−1 − wj| for j = l + 1, l + 2, · · · , . . . given the first 2l poles of f (w).
From (14), the kth derivative of fl(w) is

f (k)l (w) = f (k)(w)− h(k)l (w),

where

hl(w) = −
l

∑
k=1

α

∑
j=1

rkj

(w− wk)
j . (21)

Thus, the expansion of (18) is

Xn,α
l (z) = (nz)n (1− u)α

(2
√

λu)α

∞

∑
k=0

f (k)l (z−1)− h(k)l (z−1)

k!
pk(n)
(nz)k (22)

valid for |z−1| < |z−1−wj|, j = l + 1, l + 2, · · · and z 6= 0. The expansion’s range of validity
is larger than that of the expansion in Theorem 1.
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On the other hand, similar computations are employed from the methods of Corcino
et al. (see [10]) to derive an expansion for Yn,α

l (z). The technique involves shifting of
the integration contour by w = wk + t in each integral in (19). Consequently, dw = dt and

Yn,α
l (z) =

(1− u)α

(2
√

λu)α

l

∑
k=1

α

∑
j=1

ewknzrkj

n!
2πi

∫
C′

etnz

tj
dt

(wk + t)n+1 , (23)

where C′ : t = −wk + Reiθ ,−π < θ ≤ π is a circle with radius R and center at −wk. Note
that 0 is not on the w′ks. This C′ is the image of C : w = Reiθ through the shift w = wk + t.
To proceed, observe that

etnz

tj =
∫ nz

0

etx

tj−1 +
1
tj . (24)

Substituting (24) to (23) gives

Yn,α
l (z) =

(1− u)α

(2
√

λu)α

l

∑
k=1

α

∑
j=1

ewknzrkj

n!
2πi

∫
C′

(∫ nz

0

etx

tj−1 +
1
tj

)
dw

(wk + t)n+1 , (25)

The proceeding part of the computations is expositions from [10]. Note that when
j = 1,

n!
2πi

∫
C′

etx

tj−1
dw

(wk + t)n+1 =
dn

dtn etxt−(j−1)

∣∣∣∣∣
t=−wk

. (26)

is xn. For j ≥ 1, using the Leibniz rule for differentiation, it becomes

dn

dtn etxt−(j−1) =
n

∑
s=0

(
n
s

)
xn−setx ds

dts t−(j−1)

∣∣∣∣∣
t=−wk

=
n

∑
s=0

(
n
s

)
xn−se−wkx(−1)(j−1)〈j− 1〉s(wk)

−(j−1+s) (27)

where 〈j − 1〉s denote the rising factorial of j − 1 with increment s. Thus, (26) can be
written as

n!
2πi

∫
C′

etx

tj−1
dw

(wk + t)n+1 =
n

∑
s=0

(
n
s

)
xn−se−wkx(−1)(j−1)〈j− 1〉s(wk)

−(j−1+s). (28)

It can also be evaluated that

n!
2πi

∫
C′

t−j dw
(wk + t)n+1 =

dn

dtn (t
−j)

∣∣∣∣∣
t=wk

=
(−1)j〈j〉n

wj+n
k

. (29)

Now, consider the incomplete gamma function

Γ(n− s + 1, wkz) =
∫ ∞

wkz
e−ttn−sdt. (30)

Let η = t
wk

. Then t = ηwk and wkdη = dt. Moreover, t = ∞⇐⇒ η = ∞; t = wkz⇐⇒
η = z. Thus, (30) becomes

Γ(n− s + 1, wkz) =
∫ ∞

z
e−wkη(wkη)n−swkdη. (31)
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It can be shown that taking z 7→ nz,∫ nz

0
e−wkηηn−sdη =

∫ ∞

0
e−wkηηn−sdη − Γ(n− s + 1, wknz)

wn−s+1
k

. (32)

Substituting (28) and (29) to (25) gives

Yn,α
l (z) =

(1− u)α

(2
√

λu)α

l

∑
k=1

α

∑
j=1

ewknzrkj

[
n

∑
s=0

(
n
s

)
(−1)(j−1)〈j− 1〉s(wk)

−(j−1+s)

( ∫ nz

0
xn−se−wkx

)
dx

]
+

(−1)j〈j〉n
wj+n

k

]
. (33)

Moreover, substituting (32) into (33), and noting that for n ≥ s,∫ ∞

0
tn−se−wktdt =

(n− s)!
wn−s+1

k

, (34)

results in

Yn,α
l (z) =

(1− u)α

(2
√

λu)α

l

∑
k=1

α

∑
j=1

ewknzrkj

[
n

∑
s=0

(
n
s

)
(−1)(j−1)〈j− 1〉s(wk)

−(j−1+s)

(
(n− s)!
wn−s+1

k

− Γ(n− s + 1, wknz)
wn−s+1

k

)
+

(−1)j〈j〉n
wj+n

k

]
. (35)

Using the values of (22) and (35) in (17) gives

Gα
n

(
nz +

α

2
; u; λ

)
=

(1− u)α

(2
√

λu)α

{
l

∑
k=1

α

∑
j=1

ewknzrkj

[
n

∑
s=0

(
n
s

)
(−1)(j−1)〈j− 1〉s(wk)

−(j−1+s)

(
(n− s)!
wn−s+1

k

− Γ(n− s + 1, wknz)
wn−s+1

k

)
+

(−1)j〈j〉n
wj+n

k

]
+ (nz)n

∞

∑
k=0

f (k)(z−1)− h(k)l (z−1)

k!
pk(n)
(nz)k

}

valid for α ∈ Z+, z ∈ C \ {0} such that |z−1| < |z−1 − wk| for all k = l + 1, l + 2, ·, where
where the polynomials pk(n) are given in (9) and h(k)l is the kth derivative of hl(w) given
by (21).

The accuracy of the asymptotic formula obtained in (4) and (13) is shown in Figure 5.
The following corollary gives the approximation with enlarged region of validity for

the Frobenius–Genocchi polynomials.
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Figure 5. Solid lines in (a,b) represent Gα
n(nz + α

2 ; u; λ) whereas dashed lines in (a,b) represent
the right hand side of (4) and (13) for n = 3, α = 2, u = 9 and λ = 6, respectively, with z ≡ x, both
normalized by the factor (1 + | xσ |n)−1 where we choose σ = 0.5. When the solid and dashed lines in
the subfigures (a,b) did not coincide, it indicates that the corresponding normalized values of z are
located outside the specified range of validity.

Corollary 4. For u ∈ C \ {0, 1}, α, n ∈ Z+ and z ∈ C such that |z−1| < |z−1 − wk| for all
k = l + 1, l + 2, · · · , the Frobenius–Genocchi polynomials of order α satisfy

Gα
n

(
nz +

α

2
; u
)
=

(1− u)α

(2
√

u)α

{
l

∑
k=1

α

∑
j=1

ewknzrkj

[
n

∑
s=0

(
n
s

)
(−1)(j−1)〈j− 1〉s(wk)

−(j−1+s)

(
(n− s)!
wn−s+1

k

− Γ(n− s + 1, wknz)
wn−s+1

k

)
+

(−1)j〈j〉n
wj+n

k

]

+ (nz)n
∞

∑
k=0

f (k)(z−1)− h(k)l (z−1)

k!
pk(n)
(nz)k

}

where the polynomials pk(n) are given in (9), hk
l is the kth derivative of the function hl(w) given

by (21), and
m

∑
j=1

rkj

(w− wk)
j

are the given principal parts of the Laurent series corresponding to the poles wk = 2πi + ν, where
ν = log(u) is a logarithm taken to be the principal branch. The entire function hl(w) is determined
by f (w) = wα cschα(w−ν

2
)
.

Proof. This follows from Theorem 2 by taking λ = 1.

4. Generalized Apostol-Type Frobenius–Genocchi Polynomials

Khan and Srivastasa [17] introduced the generalized Apostol-type Frobenius–Genocchi
polynomials of order a, denoted by G(α)n (z; u; a, b, c, λ) by means of the following generat-
ing function

(
(aw − u)w
λbw − u

)α

czw =
∞

∑
n=0
Gα

n(z; u; a, b, c, λ)
wn

n!
, |w| <

∣∣∣∣∣∣
log
(

λ
u

)
ln(b)

∣∣∣∣∣∣, (36)

for parameters λ, u ∈ C, u 6= λ and a, b, and c ∈ R+ with a 6= b.
Setting a = 1 and b = c = e immediately reduces (36) to the Apostol–Frobenius–

Genocchi polynomials defined in (1).
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When a = 1, b = em, c = e, and λ = 1 in (36), this results in the generalized Frobenius–
Genocchi polynomials of order α with parameter m, denoted by Gα

n(z; u; m), defined by
Belbachir and Souddi [18] by means of the following generating function:(

(1− u)w
emw − u

)α

ezw =
∞

∑
n=0

Gα
n(z; u; m)

wn

n!
, |w| <

∣∣∣∣ log(u)
m

∣∣∣∣. (37)

When a = 1, b = em, c = e, u = −1, and λ = 1 in (36), this results in the generalized
Genocchi polynomials of order α with parameter m, denoted by Gα

n(z; α), defined by
the generating function [18](

2w
emw + 1

)α

ezw =
∞

∑
n=0

Gα
n(z; m)

wn

n!
, |w| < π

m
. (38)

In this section, the approximations of the generalized Apostol-type Frobenius–Genocchi
polynomials of order α with parameters a, b, and c are obtained using the methods applied
in Theorems 1 and 2. Approximations for the generalized Frobenius–Genocchi polynomials
and generalized Genocchi polynomials of order α with parameter m are given as corollaries.

4.1. Uniform Approximations

Using the saddle-point method, uniform approximations for the generalized Apostol-
type Frobenius–Genocchi polynomials are derived. The following theorem describes
the said approximation:

Theorem 3. For n, α ∈ Z+, a, b, c ∈ R+, u, λ ∈ C \ {0, 1}, and z ∈ C \ {0} such that

|Im z−1| < 2π−Arg( λ
u )

Arg(b) or |z−1| <
∣∣∣z−1 −

(
2πi−δ

β

)∣∣∣, the generalized Apostol-type Frobenius–
Genocchi polynomials of order α satisfy

Gα
n

(
nz
γ

+
α

2
; u; a, b, c, λ

)
=

(nz)n( c
b
) α

2z (a1/z − u)α(
2z
√

λu
)α

sinhα
(

zδ+β
2z

)[1− α

2nz2

{
α

(
log
( c

b
)

2

+
a1/z log(a)

a1/z − u
+ z− β

2
coth

(
zδ + β

2z

))2

+
(a1/z − u)a1/z log2(a)− (a1/z log(a))2

(a1/z − u)2 − z2

+
β2

4
csch2

(
zδ + β

2z

)}
+ O

(
1
n2

)]
(39)

where δ = log
(

λ
u

)
and the logarithm is taken to be the principal branch.

Proof. Applying the Cauchy integral formula to (36),

Gα
n(z; u; a, b, c, λ) =

n!
2πi

∫
C

1
uα

((aw − u)w)α

(eδ+wβ − 1)α
ezwγ dw

wn+1 , (40)

where C is a circle 0 with radius lesser than
∣∣∣ 2πi−δ

β

∣∣∣ and δ = log
(

λ
u

)
, β = log(b), and

γ = log(c) are logarithms taken to be the principal branch.

With
(

2
√

λ
u

)α

(
√

b)αw sinhα
(

δ+wβ
2

)
=
(
eδ+wβ − 1

)α, (40) becomes

Gα
n(z; u; a, b, c, λ) =

n!
2πi

∫
C

1(
2
√

λu
)α

((aw − u)w)α

(
√

b)αw sinhα
(

δ+wβ
2

) ezwγ dw
wn+1 . (41)
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Shifting the variable z→ z
γ + α

2 in (41) gives

Gα
n

(
z
γ
+

α

2
; u; a, b, c, λ

)
=

n!
2πi

1(
2
√

λu
)α

∫
C

f (w)ezw dw
wn+1 (42)

where

f (w) =
( c

b

) αw
2 ((aw − u)w)α

sinhα
(

δ+wβ
2

) (43)

is a meromorphic function with simple poles of order α at the zeros of sinhα
(

δ+wβ
2

)
which

are given by wj =
2jπi−δ

β , j = ±1,±2, · · · . Now taking z → nz and letting nz → ∞ with
fixed z,

Gα
n

(
nz
γ

+
α

2
; u; a, b, c, λ

)
=

n!
2πi

1(
2
√

λu
)α

∫
C

f (w)en(zw−log w) dw
w

. (44)

With the used of the saddle-point method from Section 2, it can be noted that the main
value of the integrand to the integral in (44) originates from the saddle-point of the argu-
ment of the exponent. Thus, the approximations Gα

n

(
nz
γ + α

2 ; u; a, b, c, λ
)

are obtained by

expanding f (w) around the saddle-point w = z−1. It follows from Lemmas 1 and 2 and
Theorem 1 of [14] that

Gα
n

(
nz
γ

+
α

2
; u; a, b, c, λ

)
=

(nz)n(
2
√

λu
)α

∞

∑
k=0

f (k)(z−1)

k!
pk(n)
(nz)k , (45)

where pk(n) are the polynomials in (9). Computing the derivatives f (k)(z−1) for k = 0, 1, 2
gives

f (0)(z−1) = f (z−1) =
( c

b

) α
2z (a1/z − u)α

zα sinhα
(

zδ+β
2z

) ,

f (1)(z−1) =
α
( c

b
) α

2z
(

a1/z − u
)α

zα sinhα
(

zδ+β
2z

) {
log
( c

b
)

2
+

a1/z log(a)
a1/z − u

+ z− β

2
coth

(
zδ + β

2z

)}
, and

f (2)(z−1) =
α
( c

b
) α

2z
(

a1/z − u
)α

zα sinhα
(

zδ+β
2z

) {
α

(
log
( c

b
)

2
+

a1/z log(a)
a1/z − u

+ z− β

2
coth

(
zδ + β

2z

))2

+
(a1/z − u)a1/z log2(a)− (a1/z log(a))2

(a1/z − u)2 − z2 +
β2

4
csch2

(
zδ + β

2z

)}
.

Expanding the sum in (45) and keeping only the first three terms give

G(α)n

(
nz
γ

+
α

2
; u; a, b, c, λ

)
=

(nz)n(
2
√

λu
)α

[
f (0)(z−1)

0!
+

f (1)(z−1)

1!
p1(n)

nz
+

f (2)(z−1)

2!
p2(n)
(nz)2 + O

(
1
n2

)]

=
(nz)n(

2
√

λu
)α

[( c
b

) α
2z (a1/z − u)α

zα sinhα
(

zδ+β
2z

) − α
( c

b
) α

2z
(

a1/z − u
)α

2nzα+2 sinhα
(

zδ+β
2z

)×
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{
α

(
log
( c

b
)

2
+

a1/z log(a)
a1/z − u

+ z− β

2
coth

(
zδ + β

2z

))2

+
(a1/z − u)a1/z log2(a)− (a1/z log(a))2

(a1/z − u)2 − z2

+
β2

4
csch2

(
zδ + β

2z

)}
+ O

(
1
n2

)]

=
(nz)n( c

b
) α

2z (a1/z − u)α(
2z
√

λu
)α

sinhα
(

zδ+β
2z

)[1− α

2nz2

{
α

(
log
( c

b
)

2
+

a1/z log(a)
a1/z − u

+ z− β

2
coth

(
zδ + β

2z

))2

+
(a1/z − u)a1/z log2(a)− (a1/z log(a))2

(a1/z − u)2 − z2

+
β2

4
csch2

(
zδ + β

2z

)}
+ O

(
1
n2

)]
.

Remark 2. Taking a = 1, b = e and c = e, Theorem 3 gives a uniform approximation, which is
similar with that obtained in Theorem 1 for the Apostol–Frobenius–Genocchi polynomials of order α.

The graphs in Figure 6 show the accuracy of the asymptotic formula obtained in
Theorem 3.

Figure 6. (a) n = 5, α = 4, u = 2, a = 2, b = 3, c = 4 and λ = 3. (b) n = 7, α = 5, u = 3,
a = 4, b = 2, c = 3 and λ = 4. Solid lines represent the generalized Apostol-type Frobenius–Genocchi
polynomials of order α Gα

n(
nz
γ + α

2 ; u; a, b, c, λ) for several values of n, whereas dashed lines represent
the right hand side of (3) with z ≡ x, both normalized by the factor (1 + | xσ |n)−1, where we choose
σ = 0.5.

The following corollaries give the uniform approximations for the generalized Frobenius–
Genocchi polynomials and generalized Genocchi polynomials of order α with parameter m.

Corollary 5. For n, α ∈ Z+, m ∈ R+, u ∈ C \ {0, 1}, and z ∈ C \ {0} such that |Im z−1| <
2π+Arg(u)

m or |z−1| < |z−1 − (2πi+ν)
m |, the generalized Frobenius–Genocchi polynomials of order α

with parameter m satisfy

Gα
n

(
nz +

α

2
; u; m

)
=

(nz)n(e1−m) α
2z (1− u)α(

2z
√

u
)α sinhα(m−zν

2z
) [1− α

2nz2

{
α

(
(1−m)

2
+ z− m

2
coth

(
m− zν

2z

))2
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− z2 +
m2

4
csch2

(
m− zν

2z

)}
+ O

(
1
n2

)]
(46)

where ν = log(u) and the logarithm is taken to be the principal branch.

Proof. This follows from Theorem 3 by taking a = 1, b = em, c = e and λ = 1.

Corollary 6. For n, α ∈ Z+, m ∈ R+ and z ∈ C \ 0 such that |Im z−1| < π
m or |z−1| <

|z−1 − π
m |, the generalized Genocchi polynomials of order α with parameter m satisfy

Gα
n

(
nz +

α

2
; m
)

=
(nz)n(e1−m) α

2z

zα
sech

(m
2z

){
1− α

2nz2

{
α

(
(1−m)

2
+ z− m

2
tanh

(m
2z

))2

− z2 − m2

4
sech2

(m
2z

)}
+ O

(
1
n2

)]
(47)

Proof. This follows from Theorem 3 by taking a = 1, b = em, c = e, u = −1 and λ = 1.

The graphs in Figures 7 and 8 show the approximations of Corollaries 5 and 6,
respectively.

Figure 7. (a) n = 8, α = 5 and u = 2. (b) n = 7, α = 6 and u = 3. Solid lines represent the generalized
Frobenius–Genocchi polynomials of order α with parameter m Gα

n(nz + α
2 ; u; m) for several values

of n, whereas dashed lines represent the right hand side of (46) with z ≡ x, both normalized by
the factor (1 + | xσ |n)−1 where we choose σ = 0.5.

Figure 8. (a) n = 10, α = 7 and λ = 11. (b) n = 8, α = 6 and λ = 9. Solid lines represent
the generalized Genocchi polynomials of order α with parameter m Gα

n(nz + α
2 ; m) for several values

of n, whereas dashed lines represent the right hand side of (6) with z ≡ x, both normalized by
the factor (1 + | xσ |n)−1 where we choose σ = 0.5.
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4.2. Enlarged Region of Validity

In Section 4.1, the use of the saddle-point method resulted in an approximation valid
in the region |z−1| < |z−1 − wj| with poles wj =

2jπ−δ
β , j = ±1,±2, · · · . In this subsec-

tion, an approximation with enlarged region of validity for the generalized Apostol-type
Frobenius–Genocchi polynomials of order α with parameters a, b and c is obtained following
the process used in Section 3. The following theorem contains the said approximation.

Theorem 4. For n, α ∈ Z+, a, b, and c ∈ R+, λ, u ∈ C \ {0, 1}, α ∈ Z+ and z ∈ C such that
|z−1| < |z−1 − wk| for all k = l + 1, l + 2, · · · , the generalized Apostol-type Frobenius–Genocchi
polynomials of order α with parameters a, b, and c satisfy

Gα
n

(
nz
γ

+
α

2
; u; a, b, c, λ

)
=

1
(2
√

λu)α

{
l

∑
k=1

α

∑
j=1

ewknzrkj

[
n

∑
s=0

(
n
s

)
(−1)(j−1)〈j− 1〉s(wk)

−(j−1+s)

(
(n− s)!
wn−s+1

k

− Γ(n− s + 1, wknz)
wn−s+1

k

)
+

(−1)j〈j〉n
wj+n

k

]

+ (nz)n
∞

∑
k=0

f (k)(z−1)− h(k)l (z−1)

k!
pk(n)
(nz)k

}
(48)

where the polynomials pk(n) are given in (9), hk
l is the kth derivative of the function hl(w)given

by (21) and
m

∑
j=1

rkj

(w− wk)
j

are the given principal parts of the Laurent series corresponding to the poles wk = 2kπ−δ
β where

δ = log
(

λ
u

)
, β = log(b) and log(c) are logarithms taken to be the principal branch. The entire

function hl(w) is determined by f (w) =
( c

b
) αw

2 ((aw − u)w)α cschα
(

δ+wβ
2

)
.

Proof. Recall the generalized Apostol-type Frobenius–Genocchi polynomials of order α
with parameters a, b, and c in (44)

Gα
n

(
nz
γ

+
α

2
; u; a, b, c, λ

)
=

n!
2πi

1(
2
√

λu
)α

∫
C

f (w)en(zw−log w) dw
w

. (49)

where

f (w) =
( c

b

) αw
2 ((aw − u)w)α

sinhα
(

δ+wβ
2

) (50)

and δ = log
(

λ
u

)
, γ = log(c), and β = log(b) are logarithms taken to be the principal

branch. Substituting the Mittag–Leffler expansion of f (w) in (14) to (49) gives

Gα
n

(
nz
γ

+
α

2
; u; a, b, c, λ

)
= Sn,α

l (z) + Tn,α
l (z). (51)

where
Sn,α

l (z) =
n!

2πi
1

(2
√

λu)α

∫
C

fl(w)ewnz dw
wn+1 , (52)

Tn,α
l (z) =

1
(2
√

λu)α

∫
C

n!
2πi

l

∑
k=1

α

∑
j=1

rkj

(w− wk)
j ewnz dw

wn+1 . (53)
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To determine (52), repeat the process of the saddle-point method in Section 3 to expand
fl(w) around the saddle-point z−1. The expansion is given as

Sn,α
l (z) = (nz)n 1

(2
√

λu)α

∞

∑
k=0

f (k)l (z−1)− h(k)l (z−1)

k!
pk(n)
(nz)k (54)

valid for |z−1| < |z−1−wj|, j = l + 1, l + 2, · · · and z 6= 0. The expansion’s range of validity
is larger than that of the expansion in Theorem 3.

On the other hand, an expansion for Tn,α
l (z) can be derived by performing the method

of contour integration used in Section 3 to evaluate the integral Yn,α
l (z) in. Thus, the expan-

sion is given as

Tn,α
l (z) =

1
(2
√

λu)α

l

∑
k=1

α

∑
j=1

ewknzrkj

[
n

∑
s=0

(
n
s

)
(−1)(j−1)〈j− 1〉s(wk)

−(j−1+s)

(
(n− s)!
wn−s+1

k

− Γ(n− s + 1, wknz)
wn−s+1

k

)
+

(−1)j〈j〉n
wj+n

k

]
. (55)

Substituting the values of (54) and (55) to (51) gives

Gα
n

(
nz
γ

+
α

2
; u; a, b, c, λ

)
=

1
(2
√

λu)α

{
l

∑
k=1

α

∑
j=1

ewknzrkj

[
n

∑
s=0

(
n
s

)
(−1)(j−1)〈j− 1〉s(wk)

−(j−1+s)

(
(n− s)!
wn−s+1

k

− Γ(n− s + 1, wknz)
wn−s+1

k

)
+

(−1)j〈j〉n
wj+n

k

]

+ (nz)n
∞

∑
k=0

f (k)(z−1)− h(k)l (z−1)

k!
pk(n)
(nz)k

}

valid for α ∈ Z+, z ∈ C \ {0} such that |z−1| < |z−1 − wk| for all k = l + 1, l + 2, ·,
where the polynomials pk(n) are given in (9) and h(k)l is the kth derivative of hl(w) given
by (21).

The accuracy of the asymptotic formula obtained in (39) and (48) is shown in Figure 9.

Figure 9. Solid lines in (a,b) represent Gα
n

(
nz
γ + α

2 ; u; a, b, c, λ
)

whereas dashed lines in (a,b) represent
the right-hand side of (39) and (48), respectively, for n = 3, α = 2, u = 2, a = 5, b = 3, c = 4 and
λ = 3 with z ≡ x, both normalized by the factor (1 + | xσ |n)−1, where we choose σ = 0.5. When the
solid and dashed lines in the subfigures (a,b) did not coincide, it indicates that the corresponding
normalized values of z are located outside the specified range of validity.
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5. Apostol–Frobenius-Type Poly-Genocchi Polynomials of Order α with Parameters a,
b, and c

Kim et al. [19] introduced the poly-Genocchi polynomials, which are a generalization
of the Genocchi numbers formed by mixing these numbers with the following definition of
polylogarithm Liµ(z)

Liµ(z) =
∞

∑
n=0

zn

nµ , µ ∈ Z. (56)

In the study of Corcino et al. [20], the definitions of Apostol and Frobenius polynomials
were mixed, leading to the construction of a new variation of poly-Genocchi polynomials
called the Apostol–Frobenius-type poly-Genocchi polynomials of order α with parameters
a, b, and c, denoted by G(µ,α)

n (z; λ, u, a, b, c), defined as follows:

∞

∑
n=0
G(µ,α)

n (z; λ, u, a, b, c)
wn

n!

=

(
Liµ(1− (ab)−(1−u)w)

λbw − ua−w

)α

czw, |t| <

√(
log
(

λ
u

))2
+ 4π2

| log(a) + log(b)| . (57)

Using the fact that
Liµ(z) = − log(1− z),

when µ = 1, (57) gives

∞

∑
n=0
G(α)n (z; λ, u, a, b, c)

wn

n!
=

(
(1− u)w log(ab)

λbw − ua−w

)α

czw (58)

where the polynomials G(α)n (z; λ, u, a, b, c) = G(1,α)
n (z; λ, u, a, b, c) are called the Apostol–

Frobenius-type Genocchi polynomials of order α with parameters a, b, and c.
Setting a = 1, b = c = e, (57) yields

∞

∑
n=0
G(µ,α)

n (z; λ, u, 1, e, e)
wn

n!
=

(
Liµ(1− e−(1−u)w)

λew − u

)α

ezw (59)

where the polynomials G(µ,α)
n (z; λ, u, 1, e, e) = G(µ,α)

n (z; λ, u) are called the Apostol–Frobenius-
type poly-Genocchi polynomials of order α. When µ = 1, (59) gives the Apostol–Frobenius–
Genocchi polynomials of order α equation defined in (1).

In this section, approximations for the Apostol–Frobenius-type poly-Genocchi polynomi-
als of order α with parameters a, b, and c are obtained using the methods in Theorems 1 and 2.

5.1. Uniform Approximations

Using the saddle-point method, uniform approximations for the Apostol–Frobenius-
Type poly-Genocchi polynomials of order a with parameters a, b, and c are derived. The fol-
lowing theorem satisfies the said approximation.

Theorem 5. For n, α ∈ Z+, µ ∈ Z, a, b, c ∈ R+, u, λ ∈ C \ {0, 1}, and z ∈ C \ {0} such that

|Im z−1| < 2π−Arg( λ
u )

Arg(ab) or |z−1| <
∣∣∣z−1 −

(
2πi−δ

ψ

)∣∣∣, the Apostol-type Frobenius poly-Genocchi
polynomials of order α with parameters a, b, and c satisfy

G(µ,α)
n

(
nz
γ

+
α

2
; λ, u, a, b, c

)

=
(nz)n( ac

b
) α

2z (Liµ(1− (ab)−(1−u)/z))α(
2
√

λu
)α

sinhα
(

zδ+ψ
2z

) [
1− 1

2nz2

{(
α log

( ac
b
)

2
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+
α(1− u) log(ab)(ab)−(1−u)/zLiµ−1(1− (ab)−(1−u)/z)

(1− (ab)−(1−u)/z)Liµ(1− (ab)−(1−u)/z)

− βψ

2
coth

(
zδ + ψ

2z

))2

+
1

((1− (ab)−(1−u)/z)Liµ(1− (ab)−(1−u)/z))2
×{

α(1− u)2(log(ab))2(ab)−(1−u)/z

(
− (ab)−(1−u)/z

(
Liµ−1(1− (ab)−(1−u)/z)

)2

+ Liµ(1− (ab)−(1−u)/z)

(
(ab)−(1−u)/zLiµ−2(1− (ab)−(1−u)/z)

− Liµ−1(1− (ab)−(1−u)/z)

))}
+

αψ2

4
csch2

(
zδ + ψ

2z

)}
+ O

(
1
n2

)]
(60)

where δ = log
(

λ
u

)
, γ = log(c), and ψ = log(ab) are logarithms taken to be the principal branch.

Proof. Applying the Cauchy integral formula to (57),

G(µ,α)
n (z; λ, u, a, b, c) =

n!
2πi

∫
C

1
uα

(aw)α(Liµ(1− (ab)−(1−u)w))α

(eδ+ψw − 1)α
ezwγ dw

wn+1 (61)

where C is a circle 0 with radius lesser than
∣∣∣ 2πi−δ

ψ

∣∣∣ and δ = log
(

λ
u

)
, ψ = log(ab) and

γ = log(c) are logarithms taken to be the principal branch.

With
(

2
√

λ
u

)α

(
√

ab)αw sinhα
(

δ+wψ
2

)
=
(
eδ+ψw − 1

)α, (61) becomes

G(µ,α)
n (z; λ, u, a, b, c) =

n!
2πi

∫
C

1
(2
√

λu)α

( a
b
) wα

2 (Liµ(1− (ab)−(1−u)w))α

sinhα
(

δ+wψ
2

) ezwγ dw
wn+1 (62)

From (62), the shifting of z→ z
γ + α

2 results in

G(µ,α)
n

(
z
γ
+

α

2
; λ, u, a, b, c

)
=

n!
2πi

1(
2
√

λu
)α

∫
C

f (w)ew dw
wn+1 (63)

where

f (w) =

( ac
b
) wα

2 (Liµ(1− (ab)−(1−u)w))α

sinhα
(

δ+wψ
2

) (64)

is a meromorphic function with simple poles of order α at the zeros of sinhα
(

δ+wψ
2

)
which

are given by wj =
2jπi−δ

ψ , j = ±1,±2, · · · .
Note that taking z→ nz and letting nz→ ∞ with fixed z,

G(µ,α)
n

(
nz
γ

+
α

2
; λ, u, a, b, c

)
=

n!
2πi

1(
2
√

λu
)α

∫
C

f (w)en(zw−log w) dw
w

. (65)

Using the saddle-point method, it can be similarly observed that the approximations
of (65) can be derived by expanding f (w) around the saddle- point w = z−1. Thus,
it follows from Lemmas 1 and 2 and Theorem 1 of [14] that

G(µ,α)
n

(
nz
γ

+
α

2
; u; a, b, c, λ

)
=

(nz)n(
2
√

λu
)α

∞

∑
k=0

f (k)(z−1)

k!
pk(n)
(nz)k , (66)
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where pk(n) are the polynomials in (9). Solving the derivatives f (k)(z−1) for k = 0, 1, 2 gives

f (0)(z−1) = f (z−1) =
( ac

b

) α
2z (Liµ(1− (ab)−(1−u)/z))α

sinhα
(

zδ+ψ
2z

) ,

f (1)(z−1) =

( ac
b
) α

2z (Liµ(1− (ab)−(1−u)w))α

sinhα
(

zδ+ψ
2z

) {
α log

( ac
b
)

2

+
α(1− u) log(ab)(ab)−(1−u)/zLiµ−1(1− (ab)−(1−u)/z)

(1− (ab)−(1−u)/z)Liµ(1− (ab)−(1−u)/z)
− αψ

2
coth

(
zδ + ψ

2z

)}
,

f (2)(z−1) =

( ac
b
) α

2z (Liµ(1− (ab)−(1−u)w))α

sinhα
(

zδ+ψ
2z

) {(
α log

( ac
b
)

2

+
α(1− u) log(ab)(ab)−(1−u)/zLiµ−1(1− (ab)−(1−u)/z)

(1− (ab)−(1−u)/z)Liµ(1− (ab)−(1−u)/z)
− αψ

2
coth

(
zδ + ψ

2z

))2

+
1

((1− (ab)−(1−u)/z)Liµ(1− (ab)−(1−u)/z))2
×{

α(1− u)2(log(ab))2(ab)−(1−u)/z

(
− (ab)−(1−u)/z

(
Liµ−1(1− (ab)−(1−u)/z)

)2

+ (ab)−(1−u)/zLiµ(1− (ab)−(1−u)/z)Liµ−2(1− (ab)−(1−u)/z)

− Liµ(1− (ab)−(1−u)/z)Liµ−1(1− (ab)−(1−u)/z)

)}
+

αψ2

4
csch2

(
zδ + ψ

2z

)}
.

Expanding the sum in (66) and keeping only the first three terms give

G(µ,α)
n

(
nz
γ

+
α

2
; λ, u, a, b, c

)
=

(nz)n(
2
√

λu
)α

[
f (0)(z−1)

0!
+

f (1)(z−1)

1!
p1(n)

nz
+

f (2)(z−1)

2!
p2(n)
(nz)2 + O

(
1
n2

)]

=
(nz)n( ac

b
) α

2z (Liµ(1− (ab)−(1−u)/z))α(
2
√

λu
)α

sinhα
(

zδ+ψ
2z

) [
1− 1

2nz2

{(
α log

( ac
b
)

2

+
α(1− u) log(ab)(ab)−(1−u)/zLiµ−1(1− (ab)−(1−u)/z)

(1− (ab)−(1−u)/z)Liµ(1− (ab)−(1−u)/z)

− αψ

2
coth

(
zδ + ψ

2z

))2

+
1

((1− (ab)−(1−u)/z)Liµ(1− (ab)−(1−u)/z))2
×{

α(1− u)2(log(ab))2(ab)−(1−u)/z

(
− (ab)−(1−u)/z

(
Liµ−1(1− (ab)−(1−u)/z)

)2

+ (ab)−(1−u)/zLiµ(1− (ab)−(1−u)/z)Liµ−2(1− (ab)−(1−u)/z)

− Liµ(1− (ab)−(1−u)/z)Liµ−1(1− (ab)−(1−u)/z)

)}

+
αψ2

4
csch2

(
zδ + ψ

2z

)}
+ O

(
1
n2

)]
.
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The following corollary gives the uniform approximations for the Apostol–Frobenius-
type poly-Genocchi polynomials of order α.

Corollary 7. For n, α ∈ Z+, µ ∈ Z, u, λ ∈ C \ {0, 1}, and z ∈ C \ {0} such that |Imz−1| <
2π − Arg

(
λ
u

)
or |z−1| <

∣∣∣z−1 − (2πi− δ)
∣∣∣, the Apostol–Frobenius-type poly-Genocchi polyno-

mials of order α satisfy

G(µ,α)
n

(
nz +

α

2
; λ, u

)
=

(nz)n(Liµ(1− e−(1−u)/z))α(
2
√

λu
)α

sinhα
(

zδ+1
2z

) [
1

− 1
2nz2

{(
α(1− u)e−(1−u)/zLiµ−1(1− e−(1−u)/z)

(1− e−(1−u)/z)Liµ(1− e−(1−u)/z)
− α

2
coth

(
zδ + 1

2z

))2

+
1

((1− e−(1−u)/z)Liµ(1− e−(1−u)/z))2

{
α(1− u)2e−(1−u)/z

(
− e−(1−u)/z

(
Liµ−1(1− e−(1−u)/z)

)2

+ Liµ(1− e−(1−u)/z)

(
e−(1−u)/zLiµ−2(1− e−(1−u)/z)− Liµ−1(1− e−(1−u)/z)

))}

+
α

4
csch2

(
zδ + 1

2z

)}
+ O

(
1
n2

)]
(67)

where δ = log
(

λ
u

)
and the logarithm is taken to be the principal branch.

The graphs in Figures 10 and 11 show the approximations of Theorem 5 and Corollary 7,
respectively.

Figure 10. (a) n = 6, α = 4, λ = 2, u = 7, a = 3, b = 4, c = 3, and µ = 2. (b) n = 5, α = 4, λ = 2,
u = 4, a = 3, b = 4, c = 3, and µ = 2. Solid lines represent the Apostol-Frobenius-type poly-Genocchi

polynomials of order α with parameters a, b, and c G(µ,α)
n

(
nz
γ + α

2 ; λ, u, a, b, c
)

for several values of n,
whereas dashed lines represent the right hand side of (60) with z ≡ x, both normalized by the factor
(1 + | xσ |n)−1 where we choose σ = 0.5.
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Figure 11. (a) n = 6, α = 4, λ = 2, u = 8, and µ = 2. (b) n = 7, α = 5, λ = 2, u = 4, and µ = 2. Solid

lines represent the Apostol–Frobenius-type poly-Genocchi polynomials of order α G(µ,α)
n (nz + α

2 ; λ, u)
for several values of n, whereas dashed lines represent the right hand side of (67) with z ≡ x, both
normalized by the factor (1 + | xσ |n)−1, where we choose σ = 0.5.

5.2. Enlarged Region of Validity

In this subsection, an approximation with enlarged region of validity for the Apostol–
Frobenius-type poly-Genocchi polynomials of order α with parameters a, b, and c is ob-
tained following the method of contour integration employed and discussed in Section 3.
The following theorem contains the said approximation.

Theorem 6. For n, α ∈ Z+, a, b, and c ∈ R+, λ, u ∈ C \ {0, 1}, α ∈ Z+ and z ∈ C such
that |z−1| < |z−1 − wk| for all k = l + 1, l + 2, · · · , the Apostol–Frobenius-type poly-Genocchi
polynomials of order α with parameters a, b, and c satisfy

G(µ,α)
n

(
nz
γ

+
α

2
; λ, u, a, b, c

)
=

1
(2
√

λu)α

{
l

∑
k=1

α

∑
j=1

ewknzrkj

[
n

∑
s=0

(
n
s

)
(−1)(j−1)〈j− 1〉s(wk)

−(j−1+s)

(
(n− s)!
wn−s+1

k

− Γ(n− s + 1, wknz)
wn−s+1

k

)
+

(−1)j〈j〉n
wj+n

k

]

+ (nz)n
∞

∑
k=0

f (k)(z−1)− h(k)l (z−1)

k!
pk(n)
(nz)k

}
(68)

where the polynomials pk(n) are given in (9), hk
l is the kth derivative of the function hl(w) given

by (21), and
m

∑
j=1

rkj

(w− wk)
j

are the given principal parts of the Laurent series corresponding to the poles wk = 2kπ−δ
ψ where

δ = log
(

λ
u

)
, γ = log(c), ψ = log(ab) are logarithms taken to be the principal branch. The entire

function hl(w) is determined by f (w) =
( c

b
) αw

2 (Liµ(1− (ab)−(1−u)w))α cschα
(

δ+wψ
2

)
.

Proof. Recall the Apostol–Frobenius-type poly-Genocchi polynomials of order α with
parameters a, b, and c in (65)

G(µ,α)
n

(
nz
γ

+
α

2
; λ, u, a, b, c

)
=

n!
2πi

1(
2
√

λu
)α

∫
C

f (w)en(zw−log w) dw
w

. (69)
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where

f (w) =
( c

b

) αw
2 (Liµ(1− (ab)−(1−u)w))α

sinhα
(

δ+wψ
2

) (70)

and δ = log
(

λ
u

)
, γ = log(c), and ψ = log(ab). Substituting the expansion of f (w) in (14)

to (65) gives

Gα
n

(
nz
γ

+
α

2
; u; a, b, c, λ

)
= Un,α

l (z) + Vn,α
l (z). (71)

where
Un,α

l (z) =
n!

2πi
1

(2
√

λu)α

∫
C

fl(w)ewnz dw
wn+1 , (72)

Vn,α
l (z) =

1
(2
√

λu)α

∫
C

n!
2πi

l

∑
k=1

α

∑
j=1

rkj

(w− wk)
j ewnz dw

wn+1 . (73)

To evaluate (72), repeat the process of the saddle-point method in Section 3 to expand
fl(w) around the saddle-point z−1. This gives the expansion of

Un,α
l (z) = (nz)n 1

(2
√

λu)α

∞

∑
k=0

f (k)l (z−1)− h(k)l (z−1)

k!
pk(n)
(nz)k , (74)

valid for |z−1| < |z−1−wj|, j = l + 1, l + 2, · · · and z 6= 0. The expansion’s range of validity
is larger than that of the expansion in Theorem 5.

On the other hand, perform the technique of contour integration discussed in Section 3
to derive the expansion of Vn,α

l (z). Thus, the expansion is given as

Vn,α
l (z) =

1
(2
√

λu)α

l

∑
k=1

α

∑
j=1

ewknzrkj

[
n

∑
s=0

(
n
s

)
(−1)(j−1)〈j− 1〉s(wk)

−(j−1+s)

(
(n− s)!
wn−s+1

k

− Γ(n− s + 1, wknz)
wn−s+1

k

)
+

(−1)j〈j〉n
wj+n

k

]
. (75)

Substituting the values of (74) and (75) to (71) gives

G(µ,α)
n

(
nz
γ

+
α

2
; λ, u, a, b, c

)
=

1
(2
√

λu)α

{
l

∑
k=1

α

∑
j=1

ewknzrkj

[
n

∑
s=0

(
n
s

)
(−1)(j−1)〈j− 1〉s(wk)

−(j−1+s)

(
(n− s)!
wn−s+1

k

− Γ(n− s + 1, wknz)
wn−s+1

k

)
+

(−1)j〈j〉n
wj+n

k

]

+ (nz)n
∞

∑
k=0

f (k)(z−1)− h(k)l (z−1)

k!
pk(n)
(nz)k

}

valid for α ∈ Z+, z ∈ C \ {0} such that |z−1| < |z−1 − wk| for all k = l + 1, l + 2, ·,
where the polynomials pk(n) are given in (9) and h(k)l is the kth derivative of hl(w) given
by (21).

The accuracy of the asymptotic formula obtained in (60) and (68) is shown in Figure 12.
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Figure 12. Solid lines in (a,b) represent G(µ,α)
n

(
nz
γ + α

2 ; λ, u, a, b, c
)

whereas dashed lines in (a,b)
represent the right hand side of (60) and (68), respectively, for n = 3, α = 2, u = 4, a = 3, b = 4,
c = 3, λ = 2 and µ = 2 with z ≡ x, both normalized by the factor (1 + | xσ |n)−1 where we choose
σ = 0.5.

6. Conclusions

Uniform approximations for the Apostol–Frobenius–Genocchi polynomials of order
α in terms of the hyperbolic functions are obtained using the saddle-point method of
Lopez and Temme in [14]. In addition, another approximation with enlarged region of
validity is also obtained for these polynomials using the technique of contour integration
of Corcino et al. in [10]. Moreover, these methods have shown to provide approximations
for the generalized Apostol-type Frobenius–Genocchi polynomials and Apostol–Frobenius-
type poly-Genocchi polynomials of order α with parameters a, b, and c. By considering
the different values of the parameters, corollaries are established as corresponding special
cases of these polynomials. These corollaries can be used as check formulas of the general
cases. It is interesting to further explore the applicability of these methods with other special
polynomials arising from combinations and generalizations of other classical polynomials.
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