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Abstract: This work is dedicated to the investigation of the superradiant stability of a rotating black
hole derived from the nonlinear Maxwell theory of gravity, f (R). The evaluation of stability and
instability in this study will be based on the absence and presence of the magnetic field, respectively,
when the magnetic field constant is c4 = 0 and c4 6= 0. For the black hole under discussion, analyses of
the greybody factors (GFs) and quasi-normal modes (QNMs) are also carried out. To this end, we first
consider the Klein–Gordon equation for the scalar waves propagating in the black hole’s geometry.
The resulting radial equation is then reduced to a one-dimensional Schrödinger-like wave equation
with effective potential energy. The effects of the nonlinear Maxwell f (R) gravity theory parameters
(q, c, and c4) on the effective potential, GFs, and QNMs are examined. The results demonstrate that,
although the parameters q, c, and c4 all influence the effective potential, they do not affect the GFs
and QNMs. All results are presented and summarized using appropriate graphics and tables.

Keywords: Hawking radiation; f (R) gravity; superradiant instability; greybody factor; effective
potential; Klein–Gordon equation

1. Introduction

Superradiance is a term used to describe a radiation amplification system that involves
a scattering mechanism. Superradiance plays a noteworthy role in the study of relativity,
astrophysics, quantum mechanics, and optics [1]. This phenomenon can be considered
a quantum aspect of black hole (BH) physics. In the context of quantum gravity phe-
nomenology, superradiance can play a crucial role in the study of BHs. For example, the
emission of Hawking radiation (HR) (or thermal/blackbody radiation) [2,3] from a BH
can be enhanced by the presence of surrounding matter, leading to a process known as
BH superradiance. This phenomenon has been proposed as a possible explanation for
observed properties of BH systems, such as the large amounts of energy emitted from the
centers of galaxies. Superradiance is influenced by the BH’s area theorem, tidal forces, the
Penrose process, and HR [4]. The concept of superradiance was first introduced by Dicke
in 1954 [5]. Subsequently, in 1971, Zel’dovich further developed this phenomenon during
his investigation of reflected wave amplification from a rotating BH (Kerr metric) [6,7].
Zel’dovich proved that if the frequency ω of the ingoing wave with a plane wave structure
of e−iΩt+imφ (where Ω represents the angular velocity, φ is the cyclic coordinate and m
denotes the magnetic quantum number) satisfies ω < mΩ, the scattered waves amplify in
such a way that the waves coming out of the BH become stronger than the ones entering it,
i.e., the dispersed wave is amplified.

The combination of superradiance with a confining procedure forces waves to consis-
tently interact with a black hole, resulting in an exponential increase known as the “BH
bomb” phenomenon [8]. This active area of study dates back to the 1970s [9]. One method
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of inducing instability in the system is by placing a mirror around the rotating body [10]. In
Ref. [11], it was suggested that this mirror can be detected by breeding a charged massive
scalar field in the Kerr–Newman spacetime. Additionally, spinning black holes can be
transformed into efficient particle detectors by imposing strong constraints on ultralight
bosons via superradiant instabilities. However, the formation of instability and whether its
nonlinear time evolution follows linear intuition remain poorly understood [12].

A Kerr black hole (BH) might be thought of as a strong candidate for superradiant
phenomena [13–15]. However, BHs in the Kerr form do not exhibit superradiant instabilities
with significant growth rates [10,16–18]. In fact, there are various methods for using
superradiance to extract energy from BHs, including: (1) BH fission [19], (2) BH bombs
(as mentioned above) [8,10], (3) accretion disks and tori [20], (4) BH bombs in anti-de
Sitter (AdS) spacetime [21,22], (5) massive fields, soft bombs, and particle physics [23–25],
(6) floating orbits [26], (7) generalized scalar-tensor theories [27], and superradiance [23,28],
and (8) ergoregion instability [29,30]. On the other hand, today there are various theories for
modified gravity, such as brane world gravity [31], Dvali–Gabadadze–Porrati gravity [32],
Einstein–Aether theory [33,34], tensor-vector-scalar theory [35], and f (R) gravity [36–39],
which have all attracted much attention in the literature. f (R) theories of gravity are
straightforwardly generated by replacing the Ricci scalar R in the Einstein–Hilbert action.
Namely, we have a generic action for f (R) as follows:

S =
1
2k

∫
d4x
√
−g f (R), (1)

where k = 8π represents the gravitational constant and g denotes the determinant of
metric. Throughout the paper, unless otherwise noted, we shall work in natural units with
cs = G = h̄ = 1. Since general relativity (GR) has had many unresolved problems, including
the existence of dark energy and dark matter, deflection from Einstein’s theory allows us
to estimate the fundamental matters and extension of GR (modified gravity). There are
three types of f (R) gravity models based on different formalisms: metric, Palatini, and
metric-affine [40–42]. The use of f (R) gravity in many contexts is significant; for example,
see its astrophysical perspective in [43–46], the cosmological models with f (R) in [47,48],
and the derivations of novel BH solutions in [49–52]. Moreover, we refer the reader to
the studies [53] for some good reviews about f (R). In particular, spherically symmetric
BH solutions in f (R) gravity have been receiving special attention (see for instance [54],
in which the exact static spherically symmetric solutions in f (R) gravity coupled with
nonlinear electrodynamics derived by Hollestein and Lobo [55]). Searching for alternative
gravitational theories to conventional Einstein’s general relativity (GR) is supported by
difficult challenges ranging from quantum gravity to dark energy and dark matter. Indeed,
there are a lot of unresolved problems with GR, such as singularities, the nature of dark
energy and dark matter. Furthermore, the possibility that f (R) gravity can be used to
explain cosmic tensions was recently discussed in Ref. [56]. These challenges motivate
researchers to modify GR to address the issues at the UV and IR scales [57]. However,
the obtained feasible modified/extended theories should be consistent with the present
observational/experimental restrictions. In light of these challenges, researchers have
conducted an ambitious study on the nonlinear Maxwell f (R) gravity [54]. By using
dynamical Ricci scalars that asymptotically converge to flat or (A)dS spacetimes, Nashed
and Saridakis [58] have derived a new charged rotating BH solutions, which will be our
main reference metrics in this study.

Due to the quantum effects, a BH can act as a blackbody object, which emits thermal
waves [2,3]. The mass of a BH decreases during its HR, which can lead to complete BH
evaporation. As a matter of course, the emitted particles are affected by an effective
potential originating from the curvature of the spacetime. As a result, although some waves
penetrate the potential barrier and extend to infinity, the remainder are reflected back to
the BH. Due to the structure of the effective potential, the radiation spectra are altered and
different from those near the event horizon. As a result, the term GF [59] refers to a quantity
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that measures the deviation of the radiation spectrum from the blackbody radiation. At the
event horizon, the BH emission rate [60] is defined as follows

γ(ω) =

(
d3k

8π3e
ω

TH

)
, (2)

by which ω represents the wave frequency, TH and k denote the Hawking temperature and
surface gravity, respectively. The relation between emission rate and GF is given by [61]

γ(ω) =

(
d3k
∣∣Al,m

∣∣2
8π3e

ω
TH

)
, (3)

where
∣∣Al,m

∣∣2 represents the GF. There are various methods of computing the GF, such as the
matching technique [61–63], WKB approximation [64–66], finding Bogoliubov coefficients
method [67–70], the Miller–Good transformation method [59,71], and rigorous bounds [72].

The Teukolsky equation [73] describes an oscillation system that naturally dissipates.
Such a system generates quasinormal modes (QNMs) instead of the classical normal mode
solution. Vishveshwara was the first to identify the QNMs of a black hole (BH) [74].
The QNMs are described by complex frequencies that carry characteristic information
about the BH spacetime, which is in the ringdown phase. The QNMs have a broad
literature in BH physics. Specifically, explicit superpositions of QNMs may be utilized to
estimate the gravitational wave frequencies in the gravitational wave phenomenon [75–78].
There are many rich and excellent investigations on the QNMs of various solutions of
black holes [79–83], which are considered seminal works of the subject [84–86]. In this
work, our main motivation is based on the following idea: studying the superradiant
instability/stability of a rotating BH in non-linear Maxwell f (R) gravity can provide
insights into the behavior of black holes in modified gravity theories and deepen our
understanding of the interplay between the electromagnetic and gravitational fields in
curved spacetimes. Moreover, since the GFs and QNMs are important quantities in the
study of BH physics, their analyses can also provide valuable insights into the properties
of black holes and their surroundings. Namely, calculating these values in the context of
a rotating BH in non-linear Maxwell f (R) gravity can assist us in identifying the impacts
of curvature modifications on the electromagnetic and gravitational fields, as well as the
black hole’s thermal and quantum properties.

The paper is organized as follows: In Section 2, we introduce the metric of the rotating
BH in nonlinear Maxwell f (R) gravity and demonstrate some of its physical features.
Section 3 is devoted to the Klein–Gordon equation (KGE) for charged massive scalar fields
in that rotating BH geometry. In this section, we show that the radial wave equation reduces
a one-dimensional Schrödinger-like wave equation with a corresponding effective potential.
We also study the behaviors of the obtained effective potential under the influence of charge
q and magnetic field constant c4. In Section 4, we examine the superradiant instability for
zero and non-zero c4 values. Sections 5 and 6 are reserved for the analysis of the greybody
radiation and QNMs, respectively. Our results are summarized and discussed in Section 7.
We follow the metric convention (+,−,−,−).

2. Rotating BHs in Nonlinear Maxwell f (R) Gravity

In this section, we briefly review new static and rotating black hole solutions obtained
in nonlinear Maxwell f (R) gravity [58]. The total action for these solutions is given by

St =
1
2k

∫ √
−g f (R)d4x +

∫ √
−gL(F )d4x, (4)

where k is a gravitational constant, which can be considered as k = 1 without loss of gener-
ality in this study. Moreover, L(F ) indicates a general gauge-invariant electromagnetic
Lagrangian where the usual antisymmetric Faraday tensor is F = 1

4FαβF αβ.
√−g repre-
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sents the determinant of the metric gµν. The corresponding gravitational field equations of
action (4) can be derived as follows

ξµν = Rµν fR −
1
2

gµν f (R)− 2gµνΛ + gµν∇α∇α fR −∇µ∇ν fR − 8π=nlem
µυ ≡ 0, (5)

by which =nlem
µυ denotes the energy-momentum tensor and f< ≡

d f (<)
d< . Using the following

ansatz for a spherically symmetric line element:

ds2 = H(r)dt2 − dr2

H(r)
− r2

(
dθ2 + sin2 θdϕ2

)
, (6)

in Equation (5), after making some tedious calculations, the following metric function was
finally obtained by Nashed and Saridakis [58]

H(r) =
c
2
− 2M

r
+

q2

r2 , (7)

where c is a positive constant that takes limited values: 0 < c ≤ 2. q and M represent the
charge and mass, respectively (referr to Ref. [58] for details). In Figure 1, we show the
behavior of the metric function H(r) under the influence of varying parameters q and c. It
is evident that the spacetime exhibits flatness at asymptotic distances, irrespective of the
values of q and c. In this scenario, the horizon radius can be calculated as follows

rh =
2M

c

(
1 +

√
1− cq2

2M2

)
. (8)

Hence, it will be a Schwarzschild black hole if we set c = 2 and q = 0. Furthermore, the
extremal limit is given by the following condition,

cq2 = 2M2. (9)

Figure 1. Schematic plots of H(r) versus r. Solid lines represent c = 0.5 and dash lines are for c = 1.5.
The physical parameters are chosen as M = 1 and a = 0.3.
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The rotating version of the BH solution can be derived by applying the following
transformations [87,88]

∼
φ = Ξφ + at,
∼
t = Ξt + aφ, (10)

to the static and spherically symmetric metric (6). In Equation (10), a is the rotating
parameter and Ξ =

√
1 + a2. Thus, we have

ds2 = [Ξ2H(r)− a2r2 sin2 θ]dt2 − dr2

H(r)
− r2dθ2−

[Ξ2r2 sin2 θ − a2H(r)]dφ2 + 2aΞ[H(r)− r2 sin2 θ]dtdφ, (11)

in which H(r) is provided by the static solution (7) previously derived. On the other hand,
the general gauge potential is defined by [58]

∼
V = [Ξq(r) + as(r)]d

∼
t + n(φ)dr + [aq(r) + Ξs(r)]d

∼
φ, (12)

where q(r), s(r), and n(φ) are three free functions generating the electric and magnetic
charges in the vector potential as follows

s(r) = c4r, n(φ) = c4φ, (13)

in which c4 represents the magnetic field constant. In the following sections, our investiga-
tion will consider cases in which the magnetic field constant does not exist (c4 = 0) and
exists (c4 6= 0).

3. Scalar Perturbation

In recent decades, perturbations of black holes and stars have emerged as one of the
main topics in relativistic astrophysics. Furthermore, perturbations are currently a hot
topic due to their role in gravitational waves. In this section, we use the charged Klein–
Gordon equation to derive the one-dimensional Schrödinger wave equation. The effective
potential obtained in this section is crucial for studying superradiance, greybody radiation,
and QNMs.

Let us consider the charged and massive KGE:

1√−g
(
∂µ − iQAµ

)(√
−ggµν

(
∂µ − iQAν

)
Ψ
)
= m2Ψ, (14)

where Q and m are the charge and mass of the scalar field (spin-0), respectively. Moreover,√−g represents the determinant of the metric. Here, for metric (11), we consider the
following ansatz for the spinor field

Ψ = e−iωteikφR(r)Y(θ), (15)

where ω represents the frequency of the wave and k is azimuthal quantum number. During
the derivation of the scalar wave equation, we will consider the dyonic case. Furthermore,
we set s(r) = n(φ) = 0 in Equation (12). Thus, the components of the vector potential read

A∼
t
= Ξq, and A∼

φ
= aq. (16)

Throughout the paper, for the sake of convenience in our calculations, and without loss of
generality, we will consider qQ→ q2. After substituting Equation (16) and the ansatz (15)
into the massive charged KGE (14), one can obtain
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(
2H
r

+ H′
)

R′(r) + HR′′(r)+

1
H

[
Ξ2ω2 + Ξ4q4 + 2q2ωΞ3 + 2aωΞk + 2aΞ2q2k− 2a2Ξ2q4−

2ωa2q2Ξ + a2k2 + a4q4 − 2kq2a3 + m2 + λ
]

R(r) = −λ, (17)

where λ is the eigenvalue whose value can be found with the help of the angular part:

cot θYθ(θ) + Yθθ(θ)−
(aω + Ξk)2

sin2 θ
Y(θ) = 0. (18)

In the meantime, throughout the paper, a prime (dash) symbol is used to denote the
derivative of a function with respect to its argument. By considering the definition of the
tortoise coordinate:

r∗ =
∫ dr

H(r)
, (19)

and in the sequel applying the transformation R(r) = U(r)
r to Equation (18), one can acquire

one-dimensional Schrödinger-like wave equation as follows:

d2U(r)
dr2∗

+
{

v2 −Ve f f

}
U(r) = 0, (20)

in which v2 = ω2(1 + a2) = ω2Ξ2 and the effective potential is given by

Ve f f = −2Ξ
(

q2 + ak
)

ω−
(

q2 + ak
)2

+
HH′

r
+

λH
r2 + m2H. (21)

The behaviors of the effective potential (21) when the charge parameter q is changed
for various values of c are depicted in Figure 2. As can be seen from the figure, potentials
have stable minima. It means that the system has reached a state of the lowest possible
energy, also known as its ground state. In this state, the system cannot release any further
energy as it has already reached its lowest possible energy level. Therefore, in this case,
there will not be any accumulation of energy in the system.

Figure 2. Plots of Ve f f versus r for the spin-0 particles in the case of zero magnetic constant. The
physical parameters are chosen as; M = m = 1, ω = 15, a = 0.3, and λ = 2.
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4. Superradiance Phenomenon
4.1. Case of Magnetic Field Absence: c4 = 0

We investigate the stability of a rotating black hole obtained from non-linear Maxwell
f (R) gravity. To do this, we follow the method described in Refs. [76,89]. After applying
the transformation U(r) = e−ivr∗ψ(r) to the Schrödinger Equation (20), we obtain the
following result:

d2ψ(r)
dr2∗

− 2iv
dψ(r)

dr∗
−Ve f f ψ(r) = 0. (22)

By replacing the tortoise coordinate (19) with the naive radial coordinate r, we obtain

d
dr

(
H

dψ

dr

)
− 2iv

dψ

dr
−

Ve f f

H
ψ = 0. (23)

Imposing H(r+) = 0 and ψ(∞) = 0, and multiplying Equation (23) by ψ∗, one can derive
the final differential equation by performing the well-known integration by parts method.
Thus, we obtain ∫ ∞

rh

dr

[
H
∣∣∣∣dψ

dr

∣∣∣∣2 + 2ivψ∗
dψ

dr
+

Ve f f

H
|ψ|2

]
= 0, (24)

where the second term of the integrand can be expanded to

2iv
dψ

dr
= vψ∗

dψ

dr
+
−
vψ

dψ∗

dr
. (25)

Therefore, Equation (24) recasts in

∫ ∞

rh

dr

[
H
∣∣∣∣dψ

dr

∣∣∣∣2 + Ve f f

H
|ψ|2

]
= −|v|

2|ψ(rh)|2

Im ω
. (26)

It is also possible to write Equation (26) as

∫ ∞

rh

dr

H
∣∣∣∣dψ

dr

∣∣∣∣2 +
∼
Ve f f

H
|ψ|2 −

(
q2 + ak

)2

H
|ψ|2 −

2Ξ
(
q2 + ak

)
ω

H
|ψ|2


= −|v|

2|ψ(rh)|2

Im ω
. (27)

In Equation (27),
∼
Ve f f stands for the potential terms without q parameter in Ve f f . In

addition, it is discovered that the final term of Equation (27) has almost no impact on

superradiance calculations and the sign of expression
∼
Ve f f

H |ψ|
2 − (q2+ak)

2

H |ψ|2 is critical for
evaluating the stability of the black hole. Meanwhile, the potential (21) is positive outside
the horizon, which means Im(ω) must be negative. Thus, in light of the Dirichlet boundary
conditions, one can conclude that the scalar field propagation will be stable. In order to
assess the superradiant instability of the rotating black hole in non-linear Maxwell f (r)
gravity in a more authentic form, we shall define the reflection/transmission coefficients
to determine the superradiant condition. To this end, we shall perform our computations
in three different regions. The first region (Region I) is the region that is close to the event
horizon (r ≈ rh), where the potential is approximated to

Ve f f ≈ −2Ξ
(

q2 + ak
)

ω−
(

q2 + ak
)2

, (28)

and correspondingly
∼
Ve f f �

(
ωΞ +

(
q2 + ak

))2
. (29)
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Thus, in Region I, the solution of the radial Equation (20) is obtained as

U1(r) = Ae−i(ωΞ+(q2+ak))r∗ . (30)

which is slightly away from the event horizon approximates to [89]

U1(r) ≈ A

(
1−

i
(
ωΞ +

(
q2 + ak

))
H′(rh)

ln(r− rh)

)
, (31)

where the near horizon tortoise coordinate is defined as r∗ =
∫ dr

H(r) ≈
1

H′(rh)
ln(r− rh).

Between the event horizon and the distant regions, Region II acts as an intermediate
zone and is defined as:

∼
Ve f f �

(
ωΞ +

(
q2 + ak

))2
. (32)

Therefore, the radial Equation (20) reads

d2U
dr2∗

= 0,⇒ U(r∗) = B + C
∫

dr∗. (33)

By comparing the solutions in the first and second regions, we define the constants as as
A = B, and C = −Ai

(
ωΞ +

(
q2 + ak

))
.

To find the solution in Region II, we take into consideration an asymptotic series for
tortoise coordinate, i.e., r � rh. Hence, we obtain

U2(r) = A

(
1−

i
(
ωΞ +

(
q2 + ak

))
4r4

∼
k

)
, (34)

where
∼
k = − 32

c2r5

{
32M3cq2 − 3Mc2q4 − 64M5

}
. (35)

The third region (Region III) is the asymptotic zone (r � rh,), where the conducting terms
of the effective potential become

Ve f f ≈ −2Ξ
(

q2 + ak
)

ω−
(

q2 + ak
)2

+
m2c

2
. (36)

Thus, one can obtain the Region III solution as

U3(r) = D1 + D2e−i
√
(ωΞ+(q2+ak))2

+ m2c
2 r∗ . (37)

Then, after matching the solution of Region II with the solution of Region III, we obtain

D2 = Ae
i
∼
k

4r4 η , (38)

where

η =
m2c

4(ωΣ + (q2 + ak))
. (39)

The above Dirichlet boundary conditions were applied using information from Chan-
drasekhar’s famous monograph “Mathematical Theory of Black Holes” [90] and references
therein. To obtain the reflection coefficient and the GFs, and to complete our assessment of
superradiant stability/instability, we employ the following flux expression:

F =

√−ggrr

2i
(U∗∂rU −U∂rU∗), (40)
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where the ∗ symbol over a quantity denotes the complex conjugation. Therefore, one can
obtain the near-horizon flux as

Fhor ∝ −A2
(

ωΞ +
(

q2 + ak
))

. (41)

Similarly, the asymptotic flux at spatial infinity becomes

F∞ ∝ −ξ

[
1 +

D1

2

(
D2e−iξ + D∗2 eiξ

)]
, (42)

where ξ =
√
(ωΞ + (q2 + ak))2 + m2c

2 . By considering D1 = D̂1 + D̂2 and D2 = i(D̂2− D̂1),
the asymptotic incoming and outgoing fluxes (42) can be written as follows

F∞−in ∝ −ξ
[
1− i | D2 |2 sinh(iξ)

]
, (43)

and
F∞−out ∝ −ξ

[
1 + i | D1 |2 sinh(iξ)

]
. (44)

By employing the definition of the reflection coefficient and GF, we obtain

R =| F∞−out

F∞−in
|=
(

1 + iA2
1 sinh(iξ)

1− iA2
1 sinh(iξ)

)
, (45)

and

γ =
Fhor

F∞−in
=

A2(ωξ + (q2 + ak)
)

ξ
(
1− iA2

1 sinh(iξ)
) . (46)

Now, based on Equations (45) and (46), we are able to determine the superradiant condition.
To this end, either the reflection coefficient should be greater than 1 or the GF should
be negative:

ω ≤ −(q
2 + ak)
ξ

. (47)

By taking into account superradiant instability conditions, in the relevant sub-cases, we now
review the behavior of the effective potential in Figure 2. It is obvious from Figure 2 that
the potential does not contain wells and hence there are no bound states, which can prevent
the accumulation of energy that might cause the instability. This indicates that the rotating
BH in non-linear Maxwell f (R) gravity can readily absorb the charged scalar wave and
whence the associated background becomes stable under the charged scalar perturbations.

4.2. Case of Magnetic Field Presence

In this sub-section, our aim is to evaluate the superradiant stability/instability of the
stationary BH found in the non-linear Maxwell f (R) gravity with a case of c4. However, we
shall choose the magnetic field constant to be infinitesimally small to facilitate calculations.
Moreover, we shall determine the effective potential with the aid of Equation (22), not from
the Schrödinger equation as in the previous sub-section. So, following the same steps as
earlier, we obtain

d
dr

(H(r)
dΨ
dr

)− 2iω̄
dΨ
dr
−

Ve f f

H(r)
Ψ = 0, (48)

where ω̄ = H(ω + qc4φ) and the effective potential is determined as a complex expression.
In Region 3, its real part can be expressed as

Re[Ve f f ] ≈ −H2ω2 +
HH′

r
− 2qc4φH2ω + (ωΞ + (q2 + ak))2 − H(

λ

r2 −m2), (49)
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and its imaginary part reads
Im[Ve f f ] ≈ −ωH′H. (50)

In Equations (49) and (50), the terms including c2
4 and c4

r2 are ignored. In addition,
our analysis has shown us that it is reasonable to consider only the real component of the
effective potential.

The wave solutions of Regions 1 and 2 for the existing magnetic fields of the BH are
the same as the absent magnetic field cases, Equations (30) and (34), but the wave solution
of Region 3 (r >> rh) with c4 6= 0 is different than the c4 = 0 one:

U3(r) = D1 + D2 exp

−i
√

Ve f f (3)

∼
k

4r4

r∗, (51)

where

Ve f f (3) = −
ω2c4

4
− 1

2
(qc4φc2ω−m2c) + (ωΞ + (q2 + ak))2, (52)

and
∼
k is nothing but Equation (29). Comparing Equation (51) with the solution obtained

for Region 2
(
Equation (34)

)
, one can determine the unknown constants as D1 = A and

D2 = A exp
(

i
∼
k

4r4
∼
η

)
, (53)

in which
∼
η =

2m2c− 2qc4φc2ω−ω2c4

8
(
ωΞ + (q2 + ak)

) . (54)

To determine the flux expressions at the horizon and spatial infinity, we apply the same
method followed in the previous sub-section. Thus, we have

Fhor ∝ −(ωΞ + (q2 + ak))|A|2, (55)

and

F∞ ∝ −
(

1 +
D1

2
(D2e−iβ + D∗2 eiβ)

)
, (56)

where

β =
√

Ve f f (3)

∼
k

4r4 . (57)

By substituting D1 = D̂1 + D̂2 and D2 = i(D̂2 − D̂1) in Equation (56), one can obtain

F∞−in ∝ −β(1− i|D̂2|2 sinh(iβ)), (58)

F∞−out ∝ −β(1 + i|D̂1|2 sinh(iβ)). (59)

Therefore, the reflection coefficient of the rotating BH with small c4 reads

|R| = | F∞−out

F∞−in
| =

(
1 + i|D̂1|2 sinh(iβ)
1− i|D̂2|2 sinh(iβ)

)
, (60)

and the corresponding GF becomes

γ =
Fhor
F∞in

=
(ωΞ + (q2 + ak))|A|2

β
(
1 + i|D̂1|2 sinh(iβ)

) . (61)
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Since the result is almost the same as in Equation (46) and there is no explicit well in the
effective potential behavior shown in Figure 3, the interpretation for the stability in the
presence of a magnetic field will be similar to that for a nonexistent one.

Figure 3. Plots of Ve f f versus r for the spin-0 particles and non-zero c4,. The solid lines represent the
effective potential for q = 3 and the dashed ones stand for q = 2. The physical parameters are chosen
as; M = m = c = 1, ω = 10, a = 0.1, and λ = 2.

5. Semi-Analytical Greybody Radiation

In this section, we shall follow the method which was reviewed in [59] (and the
references therein) to analyze the greybody radiation for both cases of cs = 0 and c4 6= 0.

The general semi-analytic bounds for GFs are given by [91]

σl(ω) > sec h2
{∫ ∞

−∞
℘dr∗

}
, (62)

where σl represents the GF and ℘ is formulated as follows

℘ =

√
(h′)2 + [ω2 −V − h2]

2

2h
, (63)

where h is a positive function that satisfies the following condition: h(−∞) = h(+∞) = ω.
Normally, one follows the method of replacing the V parameter with the potential obtained
in Equation (36) and then employs the tortoise coordinate to evaluate the GF (62). On
the other hand, that method is not always the best course of action to take. In fact, this
method also fails in our situation. So, to overcome this discrepancy, we set h =

√
ω2 −V in

Equation (63). This allows us to rewrite the expression for GF (62) as

σl(ω) > sec h2
{

1
2

∫ ∞

−∞

∣∣∣∣h′h
∣∣∣∣dr∗

}
, (64)

which corresponds to
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σl(ω) > sec h2
{

ln
(hpeak

h∞

)}
= sec h2

ln


√

ω2 −Vpeak

ω

. (65)

One can immediately observe that Equation (65) is valid for ω2 > Vpeak, the peak
value of the potential [59]. Besides, Equation (65) can be rewritten as

σl(ω) >
4ω2

(
ω2 −Vpeak

)
(

2ω2 −Vpeak

)2 . (66)

To find the maximum or peak of the potential, first, we derive the rpeak from the
effective potential equations by taking the derivative with respect to r. As is well-known,
one should find where the graph shifts from increasing to decreasing. To find out the rate
at which the graph shifts from increasing to decreasing, we look at the second derivative
and see when the value changes from positive to negative. Depending on the values of
Vpeak, the GFs are obtained. For instance, by setting M = m = 1 and λ = 2, in relation to
the variables q and c, the Vpeak expression is given by

Vpeak ≈ 0.00757c− (0.08987c + 2.0257)q2 + 1.18115− 1.05389q4. (67)

By substituting Equation (67) into Equation (66), we first compute the GFs of the rotating
black hole in non-linear Maxwell- f (R) gravity with c4 = 0 for various values of c and q.
The behavior of the obtained GFs for c4 = 0 is illustrated in Figure 4. It is worth noting
that although c values are constrained to 0 < c < 2 according to Ref. [58], we have used
values of c above this limit to better reveal differences in GF behavior. This exaggeration
is intentional, as the differences in GF behavior are nearly indistinguishable within the
theoretical limit of 0 < c < 2. Figure 4 shows that, with q = 0.5, the GF increases as the c
factor increases, but this trend is reversed with increasing charge q.

Figure 4. Plots of σl(ω) versus ω for scalar particles.The physical parameters are chosen as;
M = m = 1, a = 0.1 and λ = 2.
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In a same circumstance, for an infinitesimal c4 case, the Vpeak is found to be

Vpeak ≈ −A2(100 + 62.80qc4) + 0.2493046A(0.1243055− 0.0309899q2)+

(10.150 + q2)2 + 0.439065 + 0.054427q2, (68)

where A = 0.501391 + 0.0621528q2. After substituting Equation (68) in Equation (66),
the obtained greybody radiation is depicted in Figure 5, which shows that the greybody
radiation explicitly increases with the magnetic field parameter c4.

Figure 5. Plots of σl(ω) versus ω for scalar particles. The dotted lines are represented for q = 3 and
solid lines for q = 2. The physical parameters are chosen as; M = m = k = 1, a = 0.1, and λ = 2.

6. QNMs

QNMs are important in the study of BH perturbations because they provide a method
of understanding the behavior of a BH in the presence of external perturbations, such
as scalar, electromagnetic, and gravitational fields. When a BH is perturbed, it responds
by emitting gravitational waves with a characteristic frequency known as the QNM. The
QNM is determined by the properties of the BH, such as its mass, charge, and spin, and is
characterized by complex numbers. The complex frequency of a QNM has a real part that
represents the oscillatory frequency of the mode, and an imaginary part that represents the
rate of decay or growth of the mode. By observing the QNMs in gravitational waves, we
can learn about the physical characteristics of the object that produced the waves.

In this section, for the scalar perturbations, we consider a semi-analytical approach to
derive the frequencies of the QNMs of the charged rotating BHs in nonlinear Maxwell f (R)
gravity. To this end, we employ the WKB (Wentzel–Kramers–Brillouin) approximation,
which is a mathematical method used to solve differential Equations (DEs) with a large-
scale parameter. This approximation allows for a simplified solution to the differential
equation and provides an estimate of the energy levels (frequency) within a certain accuracy.
Conventionally, the WKB approach is based on the assumption that the solutions can be
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expressed as an exponential power series, where the coefficients of the series are determined
by solving a set of recursive equations:

Ψ(r) ≈ exp

[
1
ε

∞

∑
n=0

εnSn(r)

]
. ε→ 0 (69)

The DE has a general form as

d2Ψ(r)
dr2 = Q(r)Ψ(r), (70)

where Q(r) = V(r)− ω2, which contains two turning points. The boundary condition
of waves is chosen to be Ψ(r) = ZoutΨ(r)out for outgoing waves such as r∗ → +∞ and
Ψ(r) = ZinΨ(r)in for incoming waves while r∗ → −∞. First, Mashhoon [92] invented
this approach and applied it to the BHs in 1983. Then it was developed by [64,65]. The
WKB approximation can be extended from the third to sixth order. The sixth-order WKB
approximation, also known as the Konoplya approximation, is a method used to approxi-
mate the solutions of differential equations with complex potentials. The sixth-order WKB
approximation by Konoplya can be found in his seminal papers [86,93]. The Konoplya
approximation uses a series expansion of the solution to the DE in powers of the small
parameter ε, which is the wavelength of the solution. The Konoplya approximation for
obtaining the complex frequencies of the QNMs is given by the following expression [86]:

ω2 =

[
V0 +

√
−2V′′0 Λ(n)− i

(
n +

1
2

)√
−2V′′0 (1 + Ω(n))

]
, (71)

where

Λ(n) =
1√
−2V′′0

[
1
8

(
V(4)

0
V′′′0

)(
1
4
+ α2

)
− 1

288

(
V′′′0
V′′0

)2(
4 + 60α2

)]
, (72)

and

Ω(n) =
1(

−2V′′0
)[ 5

6912

(
V′′′0
V′′0

)4(
77 + 188α2

)
−

1
384

(
V′′′0

2V(4)
0

V′′0
(3)

)(
51 + 100α2

)
+

1
2304

(
V(4)

0
V′′0

)2(
67 + 68α2

)
+

1
288

(
V′′′0 V(5)

0

V′′0
(2)

)(
19 + 28α2

)
− 1

288

(
V(6)

0
V′′0

)(
5 + 4α2

)]
. (73)

In Equations (71)–(73), the primes and superscripts (4, 5, 6; for the higher order deriva-
tives) denote the differentiation with respect to r∗ and α = n + 1

2 , where n denotes the tone
number. By considering the effective potentials of both solutions, the results are tabulated
in Tables 1 and 2 for the zero and non-zero magnetic field constants, respectively.

The behaviors of the QNMs for c4 = 0 are illustrated in Figure 6. One can observe that
both parts (real and imaginary) of the QNMs decrease by increasing the charge parameter,
q. Moreover, for n = 0, QNMs increase by growing the c parameter and then start to
decrease. In addition, when n = 1 and q increases, the oscillation frequency increases and
the damping mode decreases.

On the other hand, for the case of c4 6= 0, both parts of the QNMs decrease by
increasing the magnetic field constant. The corresponding behaviors are depicted in
Figures 7 and 8.
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Table 1. Bosonic QNMs of rotating BH in non-linear Maxwell f (R) gravity for the zero magnetic
field parameter c4 = 0.

l n c q ωBosons n q ωBosons

1 0 1.9 1.5 0.3531092772–0.4070157966i 1 1.5 0.4628156990–0.8165375596i
1.6 0.3481646244–0.3984431959i 1.6 0.4939092271–0.7872487864i
1.7 0.3419910035–0.3882796385i 1.7 0.5140501121–0.7543542970i
1.8 0.3344221195–0.3764501224i 1.8 0.5242699290–0.7181651739i
1.9 0.3252048163–0.3627849969i 1.9 0.5254316095–0.6791172459i
2 0.3139459780–0.3469628546i 2 0.5180125636–0.6375332598i

1.8 1.5 0.4171149837–0.4733886692i 1.5 0.4883526041–0.9338811423i
1.6 0.4079913458–0.4593160345i 1.6 0.5382395015–0.8962742366i
1.7 0.3965522968–0.4425772439i 1.7 0.5699039647–0.8530833387i
1.8 0.3822146829–0.4227292265i 1.8 0.5845200557–0.8033010248i
1.9 0.3639735647–0.3989634900i 1.9 0.5823209373–0.7458662456i
2 0.3398557041–0.3697577443i 2 0.5612257904–0.6787904390i

1.7 1.5 0.3852295784–0.445685725i 1.5 0.4230520984–0.9161599009i
1.6 0.3780735086–0.4337333922i 1.6 0.4903805959–0.8746300965i
1.7 0.3690969050–0.4195188351i 1.7 0.5318064233–0.8285691459i
1.8 0.3581027910–0.4029669396i 1.8 0.5522314188–0.7775780030i
1.9 0.3446888390–0.3837822213i 1.9 0.5553476661–0.7223112093i
2 0.3281070990–0.3613035399i 2 0.5432743870–0.6634326053i

Figure 6. Plots of QNMs of the rotating BH with c4 = 0 under varying charge parameter q. The
dotted line represents c = 1.9 and the dashed line stands for c = 1.7, both for n = 0 (left). The solid
line is for c = 1.9 and the dotted line stands for c = 1.7, both for n = 1 (right).
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Table 2. Bosonic QNMs of rotating BH in non-linear Maxwell f (R) gravity for an infinitesimal
magnetic field parameter c4.

l n q c4 ωBosons n c4 ωBosons

1 0 1 0.01 0.5689309522–0.5679607840i 1 0.01 0.9833280391–0.9857933522i
0.011 0.5676889204–0.5667273000i 0.011 0.9811788557–0.9836281427i
0.012 0.5664589707–0.5655057950i 0.012 0.9790776944–0.9815108377i
0.013 0.5652237736–0.5642789170i 0.013 0.9769537380–0.9793708001i
0.014 0.5639890661–0.5630524167i 0.014 0.9748305274–0.9772315143i
0.015 0.5627548196–0.5618262697i 0.015 0.9727080152–0.9750929361i
0.016 0.5615210087–0.5606004477i 0.016 0.9705861561–0.9729550175i
0.017 0.5602875984–0.559374939322i 0.017 0.9684648987–0.9708177181i
0.018 0.5590545741–0.5581496853i 0.018 0.9663442042–0.9686809854i

2 0.01 0.7806931526–0.7847869409i 1 0.01 1.348548830–1.362771574i
0.011 0.7850205043–0.7891179837i 0.011 1.356111851–1.370209477i
0.012 0.7891946437–0.7932951529i 0.012 1.363406512–1.377383600i
0.013 0.7932235382–0.7973263608i 0.013 1.370446745–1.384307536i
0.014 0.7971145023–0.8012189424i 0.014 1.377245378–1.390993848i
0.015 0.8008742877–0.8049796989i 0.015 1.383814279–1.397454164i
0.016 0.8045091827–0.8086149183i 0.016 1.390164462–1.403699260i
0.017 0.8080250159–0.8121304478i 0.017 1.396306156–1.409739150i
0.018 0.8114272287–0.8155317201i 0.018 1.402248881–1.415583157i

c
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c
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c

c

Figure 7. Plots of QNMs of the rotating BH under varying c4 values and fix charge q = 1; for the
tones of n = 0 (left) and n = 1 (right).
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Figure 8. Plots of QNMs of the rotating BH under varying c4 values and fix charge q = 2; for the
tones of n = 0 (left) and n = 1 (right).

7. Conclusions

In this paper, we have studied the superradiant instability/stability of a rotating BH
in non-linear Maxwell f (R) gravity under the influences of q, c, and c4. To examine the
(in)stability in this spacetime under the Dirichlet boundary condition, we have expanded
the solutions into three different regions—near the event horizon (Region 1), intermediate
(Region 2), and asymptotic (Region 3) regions. We next used the semi-analytic method
outlined in Section 5 to determine the GFs of the BH. To this end, we have followed a
less problematic method and replaced the expression h =

√
ω2 −V with Equation (63) to

reach Equation (65) or Equation (66). Then by defining the Vpeak, the GFs of the rotating
BH in non-linear Maxwell f (R) gravity with/without a magnetic field constant have been
computed. The results obtained have been depicted in Figures 4 and 5 to reveal the effects
of the q and c parameters on the GFs. The supreme point in the GFs’ behavior belongs to
the c = 1 and q = 0.5 thereafter by increasing the values of both c and q the GFs decrease.

To analyze the QNMs originating from the scalar perturbations of the rotating BH in
non-linear Maxwell f (R) gravity with/without magnetic field constant, we have considered
the 6th order WKB approximation or the so-called Konoplya approximation. The results
obtained have been both tabulated and illustrated in Figures 7 and 8. Thus, we have
shown the influence of q and c parameters on the QNMs. According to the relevant results,
the QNMs with the n = 0 case have more stability than the n = 1 state. Similar to
the real part of the QNMs, which decrease when the charge parameter is increased, the
damping rate component (imaginary part) of the QNMs exhibits almost the same behavior,
as illustrated in Figures 7 and 8. In addition, the obtained QNMs have been presented
in Tables 1 and 2 under different physical parameter changes which show that the results
support Figures 7 and 8.

In our findings, we have discovered that all unstable modes exhibit superradiance and
all stable modes do not, consistent with the superradiant condition (47). This means that
scalar waves can experience superradiant amplification by extracting charge from the BH,
indicating that the BH geometry is unstable. Additionally, superradiance can also be used
to probe the fundamental principles of quantum gravity, such as the behavior of quantum
particles in the presence of strong gravitational fields, because the strong gravitational field
can cause the particles to synchronize their behavior and emit a burst of radiation, which
is more intense than the radiation that individual particles would emit. Thus, through
the study of superradiance, researchers can gain a better understanding of the interplay
between quantum mechanics and general relativity, leading to new insights into the nature
of space, time, and gravity. It may be better understood if one considers black hole thermal
fluctuations [94]. Finally, we would like to state that we plan to extend this study to the
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fermionic perturbations of the rotating BH of the non-linear Maxwell f (R) gravity in the
near future.
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