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Abstract: In the current study, we investigate the possible existence of new wormhole solutions
within f (Q) gravity by using the conformal symmetry, where Q is a non-metricity scalar. Modified
versions of field equations within the scope of conformal symmetry with an anisotropic source of
matter are calculated using the variational approach. We consider two distinct approaches, namely
the linear equation of state and traceless fluid, in order to determine the exact form of the shape
function for wormhole geometry. In the context of the f (Q) modified theory of gravity, we present a
set of exact solutions for describing the existence of a relativistic wormhole. Further, the presence of
dark matter is checked through make a use of energy conditions. In conclusion, it is interesting to
mention that the presence of exotic matter is confirmed for both approaches, such as linear equation
of state and traceless fluid.

Keywords: wormhole; exotic matter; f (Q) gravity; energy conditions

1. Introduction

Wormhole research has recently emerged as one of the most attractive areas of modern
astronomy. Due to the wormhole’s distinctive geometric structure, it has captivated the
interest of many scientists across the globe. Flamm [1], a pioneer, proposed the concept
of this hypothetical structure in 1916. Einstein and Rosen [2] proposed a bridge-like
structure, now known as the Einstein–Rosen bridge, to stabilize the Flamm idea. Later,
the mathematically derived form by Morris and Thorne [3] confirmed that the wormhole
was humanly traversable because the structure disproved the existence of an event horizon.
Topological structures of this type violate energy conditions, specifically the null energy
condition (NEC). As a result, in order to achieve wormhole traversability in the realm of
GR, a specific type of hypothetical fluid disobeying NEC is required (as ordinary matter
agrees with the known laws of physics). In the framework of GR, the wormhole facilitated
with non-hypothetical fluid cannot be formulated. Accordingly, numerous endeavors took
place to reduce the usage of exotic matter [4–11]. The exotic matter problem, on the other
hand, was adequately addressed by modified theories. In modified teleparallel gravity that
obeys energy conditions, Böhmer et al. [12] constructed wormhole structures with specific
redshift and shape functions. Lobo and Oliveira [13] investigated traversable wormhole
geometries in the background of f (R) gravity. Capozziello et al. [14–21] investigated the
different structures of wormholes in extended theories of gravity. Recently, Capozziello
and his coauthor Nisha [22] explored the non-local gravity to obtaining new stable and
traversable wormhole structures.

The f (Q) gravity is a newly proposed non-metricity-based modified gravity pre-
sented by Jimenez et al. [23], where the non-metricity scalar Q drives the gravitational
field. Though it has been recently proposed, many intriguing works can be seen, such
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as energy conditions [24], the signature of f (Q) gravity [25], covariant formulation [26],
etc. Furthermore, it has successfully experienced different background and perturbation
observational data such as the Cosmic Microwave Background (CMB), Supernovae type Ia
(SNIa), Baryonic Acoustic Oscillations (BAO), etc., [27–30], and this conflict confirms that
the non-metricity Q could challenge the ΛCDM model [31]. Moreover, in [32], Harko et al.
have discussed the coupling matter in modified f (Q) gravity. Further, the growth index
of matter perturbations has been investigated in [33]. Furthermore, Solanki et al. have
investigated the accelerating expansion of the universe [34] and state-finder analysis [35]
in the context of f (Q) gravity. Moreover, we could also see the effect of f (Q) gravity in
astrophysical contexts. The idea of spherically symmetric static black hole solutions in f (Q)
gravity has been studied in [36]. The evolution of primordial black holes in f (Q) gravity
with non-linear EoS has also been investigated in [37]. Lin and Zhai [38] have examined
the application of the spherically symmetric configurations in f (Q) gravity by considering
the quadratic f (Q) = Q + Q2 model. Later, the authors of Ref. [39] studied the static and
spherically symmetric solutions with anisotropic fluid for general f (Q) gravity. Further-
more, Mustafa et al. have obtained wormhole solutions from Karmarkar conditions in f (Q)
gravity [40]. They provide the possibility of acquiring traversable wormholes fulfilling
the energy conditions. Recently, a class of static spherically symmetric vacuum solutions
in f (Q) gravity have been discussed in [41]. They examine local solutions in the form of
traversable wormholes and black holes with a constant non-metricity scalar. For more
studies on astrophysical objects, one may find articles on topics such as wormholes with
conformal symmetry [42], charge [43], and compact stars [44].

Symmetries are used to determine the relationship between geometry and matter by
using Einstein field equations. Killing vectors are one example of such symmetry. Because of
their dynamical properties, Conformal Killing Vectors (CKVs) have been used by many
researchers to develop viable solutions to Einstein field equations [35]. An interesting
study [45] introduces interior solutions for anisotropic stars that allow CKVs in higher-
dimensional non-commutative space-time. Das et al. [46] proposed explicit spherically
symmetric solutions for characterizing the interior of a realistic star using f (T) modified
gravity with a CKV field. Mustafa and his coauthors [47–50] explored some interesting
features and new solutions of wormhole geometry in the background of different modified
theories of gravity by using the concept of CKVs within the scope of conformal symmetry.
The recent study by Mustafa et al. [42] explored the different wormhole solutions in the
background of f (Q) gravity under the effect of conformal symmetry.

The following text includes the framework of a contemporary research article. Section 2
contains the field equations for modified f (Q) gravity, as well as formulations for energy
density and pressure components. The CKVs are used to construct the metric coefficients,
and the details of the proposed model as well as the constant parameters are defined in the
same section. Section 3 includes a physical examination of our model as well as a graphical
discussion of energy conditions within a linear equation of state. The following section
investigates the new wormhole solution via traceless fluid. The conclusion is discussed in
the final section.

2. Basic Field Equations in f (Q) Gravity

We considered the action for symmetric teleparallel gravity as [23]

S =
∫ 1

2
f (Q)

√
−g d4x +

∫
Lm
√
−g d4x , (1)

where f (Q) addresses the function form of Q, g is the determinant of the metric gµν, and Lm
is the matter Lagrangian density.

The non-metricity tensor and its traces can be written as

Qλµν = 5λgµν, (2)
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Qα = Qα
µ

µ, Q̃α = Qµ
αµ. (3)

Furthermore, the non-metricity tensor causes us to compose the superpotential as

Pα
µν =

1
4

[
−Qα

µν + 2Q(µ
α

ν) + Qαgµν − Q̃αgµν − δα
(µQν)

]
, (4)

where the trace of non-metricity tensor [23] has the form

Q = −Qαµν Pαµν. (5)

By definition, the energy–momentum tensor for the fluid depiction of the spacetime can be
expressed as

Tµν = − 2√−g
δ(
√−gLm)

δgµν . (6)

Now, by shifting the action (1) with respect to the metric tensor gµν one can compose the
equations of motion, which can be written as

2√−g
5γ

(√
−g fQ Pγ

µν

)
+

1
2

gµν f + fQ

(
Pµγi Qν

γi − 2 Qγiµ Pγi
ν

)
= −Tµν, (7)

where fQ = d f
dQ . One can also obtain the following relation by varying (1) with respect to

the connection,
5µ5ν

(√
−g fQ Pγ

µν

)
= 0. (8)

Here we built stellar structures by taking the spherically symmetric spacetime. This
spacetime is conventionally expressed as

ds2 = −eε(r)dt2 + eσ(r)dr2 + r2(dθ2 + sin2 θdΦ2), (9)

where

• ε(r) = 2Φ(r) where Φ(r) is a red-shift function.

• eσ(r) =
(

r+b(r)
r

)−1
, where b(r) is a shape function.

• The wormhole throat joins two asymptotic regions and is placed at the radial coordi-
nate r0, where b(r0) = r0.

• The flaring-out requirement, b(r)−rb′(r)
2b2(r) > 0, which should be valid at or near the throat,

must be satisfied by the shape function b(r). This reduces to b′(r0) < 1 near the
wormhole’s throat.

• The shape function should meet the condition 1− b(r)
r > 0 for the radial coordinates

r > r0 in order to maintain the proper signature of the metric.
• The metric functions must obey the requirements φ(r) and b(r)/r tend to zero as r ap-

proaches to ∞ in order to have asymptotically flat geometries. For non-asymptotically
flat wormholes, these criteria can obviously be relaxed.

For the current study, we consider the matter is depicted by an anisotropic stress–
energy tensor of the structure

Tν
µ = (ρ + pt)uµ uν − pt δν

µ + (pr − pt)vµ vν, (10)

where ρ and uµ are the density and the four-velocity vector, respectively and vµ is the
unitary space-like vector in the radial direction. pr is the radial pressure in the direction
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of uµ and pt is the tangential pressure orthogonal to vµ and both are functions of radial
co-ordinate r. For the metric (9),the trace of the non-metricity tensor Q is given below,

Q =
2
r

e−2 σ(r)
(

2 ε
′
(r) +

1
r

)
. (11)

In Equation (11), Q is totally depending on zero affine connections. Further, the equations
of motion from (7) for the anisotropic fluid (10) are as follows:

ρ =
f (Q)

2
− fQ(Q)

[
Q +

1
r2 +

e−σ

r
(ε′ + σ′)

]
, (12)

pr = −
f (Q)

2
+ fQ(Q)

[
Q +

1
r2

]
, (13)

pt = −
f (Q)

2
+ fQ(Q)

[Q
2
− e−σ

{ ε′′

2
+
( ε′

4
+

1
2r

)
(ε′ − σ′)

}]
, (14)

0 =
cotθ

2
Q′ fQQ(Q), (15)

where fQ(Q) = ∂ f (Q)
∂Q and fQQ(Q) = ∂2 f (Q)

∂Q2 . Jiménez and his coauthors [51] discussed
that Einstein’s gravity is equivalent to pure non-metricty and pure torsion cases. As a
consequence, the last Equation (15) is sufficient to impose the restrictions on the functional
form of f (Q) gravity. In this regard, [39] derived the suitable functional form for f (Q)
gravity within the anisotropic matter distribution. More generally, they have claimed that
the exact Schwarzschild solution would be exist only when fQQ(Q) = 0, while the new
solution calculated by taking nonmetricity scalar Q′ = 0 or Q = Q0, where Q0 is constant,
shows the deviation from the exact Schwarzschild solution. Finally, in order to solve the
system of of above equations in f (Q) gravity, the functional form of f (Q) can be derived
by taking only fQQ to be zero as

fQQ(Q) = 0 =⇒ fQ(Q) = α =⇒ f (Q) = α Q + β, (16)

where α and β should be considered as model parameters. Now, we discuss the compatibil-
ity of general static spherically symmetric spacetime in the background of coincident gauge,
if one assumes the affine connection to be zero and f (Q) gravity has vacuum solutions (i.e.,
Tµν = 0), then the off-diagonal component can be expressed as

cot θ

2
Q′ fQQ = 0, (17)

where Q is provided in Equation (11). As a result of the above Equation (16) it can
be assumed that f (Q) is linear, and the equations of motion automatically turn into
fQQ = 0 [26]. Further, we use the concept of conformal symmetry by using the vector field
Ψ which is expressed as:

L$gζη = gηη$
η
;λ + gζη$

η
;η = Ψ(r)gζη . (18)

where L represents the Lie derivative, with the CKVs $η , and vector field Ψ(r). Using
Equation (9), in Equation (18), we get the following three different expressions:

$1ζ
′
(r) = Ψ(r), $1 =

rΨ(r)
2

, $1η
′
(r) + 2$1

,1 = Ψ(r).

By solving the above system by using the spacetime Equation (9), we get the following
relations:

eε(r) = e2Φ(r) = C2
1 r2, eσ(r) =

(
r + b(r)

r

)−1

=
C2

2
(Ψ(r))2 , (19)
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where, C1 and C2 are considered integration constants. By using Equations (12)–(14) with
Equation (19), we get the following final version of field equations as:

ρ =
β

2
+

αΨ(r)2

C2
2 r2

+
2αΨ(r)Ψ′(r)
C2

2 r
− α

r2 , (20)

pr = − β

2
− 3αΨ(r)2

C2
2 r2

+
α

r2 , (21)

pt = − β

2
− αΨ(r)2

C2
2 r2

− 2αΨ(r)Ψ′(r)
C2

2 r
. (22)

3. Linear Equation of State and Wormhole

In the current study, the EoS is shown to be the source of a fluid in the background of
a rapidly accelerated phenomenon of universe expansion. The linear EoS is denoted as

pr = γρ, (23)

For the current analysis, we say this approach by Equation (23) as model-I. On solving the
above Equation (23) by using the Equations (20) and (21), we get the following solution as:

Ψ2(r) =
[
D1r−

γ+3
γ + C2

2

(
γ + 1
γ + 3

− βr2

6α

)]
, (24)

where D1 is a constant of integration. From the above Equation (24), one can find shape
function easily, which is defined as

b(r) =

r−
r
(
D1r−

γ+3
γ + C2

2

(
γ+1
γ+3 −

βr2

6α

))
C2

2

, (25)

By using the Equation (24), the field equations by Equations (20)–(22), which are calculated
as:

ρ =

 β

2
+

α

(
− (γ+3)D1r−

γ+3
γ −1

γ − βC2
2 r

3α

)
C2

2 r
+

α

(
D1r−

γ+3
γ + C2

2

(
γ+1
γ+3 −

βr2

6α

))
C2

2 r2
− α

r2

, (26)

pr =

− β

2
−

3α

(
D1r−

γ+3
γ + C2

2

(
γ+1
γ+3 −

βr2

6α

))
C2

2 r2
+

α

r2

, (27)

pt =

− β

2
−

α

(
− (γ+3)D1r−

γ+3
γ −1

γ − βC2
2 r

3α

)
C2

2 r
−

α

(
D1r−

γ+3
γ + C2

2

(
γ+1
γ+3 −

βr2

6α

))
C2

2 r2

. (28)

All the energy conditions for the linear equation of state case are calculated as:



Symmetry 2023, 15, 859 6 of 13

ρ + pr =


α

(
− (γ+3)D1r−

γ+3
γ −1

γ − βC2
2 r

3α

)
C2

2 r
−

2α

(
D1r−

γ+3
γ + C2

2

(
γ+1
γ+3 −

βr2

6α

))
C2

2 r2

, (29)

ρ− pr =

β +

α

(
− (γ+3)D1r−

γ+3
γ −1

γ − βC2
2 r

3α

)
C2

2 r
+

4α

(
D1r−

γ+3
γ + C2

2

(
γ+1
γ+3 −

βr2

6α

))
C2

2 r2
− 2α

r2

, (30)

ρ + pt =

−αr−
3(γ+1)

γ

(
3
(
γ2 + 2γ− 3

)
D1 + 4γ(γ + 1)C2

2 r
γ+3

γ

)
γ(γ + 3)C2

2
+

α

(
3D1r−3/γ

γC2
2
− (γ+1)r

γ+3

)
r3

, (31)

ρ− pt =

β +

2α

(
− (γ+3)D1r−

γ+3
γ −1

γ − βC2
2 r

3α

)
C2

2 r
+

2α

(
D1r−

γ+3
γ + C2

2

(
γ+1
γ+3 −

βr2

6α

))
C2

2 r2
− α

r2

, (32)

ρ + pr + 2pt =

−αr−
3(γ+1)

γ

(
3
(
γ2 + 2γ− 3

)
D1 + 4γ(γ + 1)C2

2 r
γ+3

γ

)
γ(γ + 3)C2

2

. (33)

4. Traceless Fluid and Wormhole

For the purposes of this analysis, we will now consider traceless matter. Traceless
matter is referred to as a special form of equation of state (EoS), which recently acquired
the special attention of the researchers [13,52,53], and it is written as

ρ− pr − 2pt = 0 (34)

For the current study, we say this approach by Equation (34) as model-II. On solving the
above Equation (34) by using the Equations (20)–(22), we get the following solution as:

Ψ2(r) =
[
D2

r2 +
1
6
C2

2

(
2− βr2

α

)]
, (35)

where D2 is a constant of integration. From the above Equation (35), one can find the shape
function easily, which is defined as

b(r) =

r−
r
(
D2
r2 + 1

6C2
2

(
2− βr2

α

))
C2

2

, (36)

Four important properties for the calculated shape functions for both model-I and
model-II under the effect of conformal symmetry are presented in Figure 1. Some important
insights of the calculated shape functions are discussed below:

• Both the calculated shape functions are seen as positive with increasing behavior, this
kind of behavior can be confirmed from the left penal of the first row of Figure 1.
The positive behavior of both the shape function confirms physically compatibility of
conformal symmetry with the linear equation of state and traceless fluid matter in the
background of f (Q) gravity.
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• Flaring out condition, i.e., derivative of the obtained shape functions with respect to
radial coordinate is seen less than one. The graphical behavior of db

dr < 1 can be seen
from the right part of the first row of Figure 1.

• It is noted from the left part of the second row of Figure 1 that the flatness condition is
satisfied for both investigated shape functions for model-I and model-II. The physical
behavior for flatness condition, i.e., b

r → 0 as r → ∞ is required for the wormhole
existence.

• It is verified that the difference of calculated shape functions for both the models (I-II)
with radial coordinate r, i.e., b(r)− r cut the x-axis and provide us the wormhole throat
location. It is realized r0 = 0.6 and r0 = 0.4 for model-I and model-II respectively.

1 2 3 4 5

0.5

1.0

1.5

2.0

2.5

r

b Hr L

Model-II

Model-I

1 2 3 4 5

-0.2

0.0

0.2

0.4

0.6

r

â b

â r

Model-II

Model-I

1 2 3 4 5

0.4

0.5

0.6

0.7

0.8

0.9

r

b

r

Model-II

Model-I

1 2 3 4 5

-3

-2

-1

0

1

2

r

b-r

Model-II

Model-I

Figure 1. Shows the structural properties of both the calculated shape functions with β = 0.5,
γ = −0.6, D1 = −0.003, D2 = −0.3, C2

2 = 2.9, and α = −0.5.

By using Equation (35), the field equations given by Equations (20)–(22) can be calcu-
lated as:

ρ =

 β

2
+

α

(
− 2D2

r3 −
βC2

2 r
3α

)
C2

2 r
+

α
(
D2
r2 + 1

6C2
2

(
2− βr2

α

))
C2

2 r2
− α

r2

, (37)

pr =

− β

2
−

3α
(
D2
r2 + 1

6C2
2

(
2− βr2

α

))
C2

2 r2
+

α

r2

, (38)

pt =

− β

2
−

α

(
− 2D2

r3 −
βC2

2 r
3α

)
C2

2 r
−

α
(
D2
r2 + 1

6C2
2

(
2− βr2

α

))
C2

2 r2

. (39)

Now, all the energy conditions for traceless matter case are calculated as:
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ρ + pr =

α

(
− 2D2

r3 −
βC2

2 r
3α

)
C2

2 r
−

2α
(
D2
r2 + 1

6C2
2

(
2− βr2

α

))
C2

2 r2

, (40)

ρ− pr =

β +

α

(
− 2D2

r3 −
βC2

2 r
3α

)
C2

2 r
+

4α
(
D2
r2 + 1

6C2
2

(
2− βr2

α

))
C2

2 r2
− 2α

r2

, (41)

ρ + pt =

 β

2
+

α

(
− 2D2

r3 −
βC2

2 r
3α

)
C2

2 r
+

α
(
D2
r2 + 1

6C2
2

(
2− βr2

α

))
C2

2 r2
− α

r2 −
β

2
−

α

(
− 2D2

r3 −
βC2

2 r
3α

)
C2

2 r

−
α
(
D2
r2 + 1

6C2
2

(
2− βr2

α

))
C2

2 r2

, (42)

ρ− pt =

β +

2α

(
− 2D2

r3 −
βC2

2 r
3α

)
C2

2 r
+

2α
(
D2
r2 + 1

6C2
2

(
2− βr2

α

))
C2

2 r2
− α

r2

, (43)

ρ + pr + 2pt =

α

(
− 2D2

r3 −
βC2

2 r
3α

)
C2

2 r
−

2α
(
D2
r2 + 1

6C2
2

(
2− βr2

α

))
C2

2 r2
+ 2

− β

2
−

α

(
− 2D2

r3 −
βC2

2 r
3α

)
C2

2 r

−
α
(
D2
r2 + 1

6C2
2

(
2− βr2

α

))
C2

2 r2

. (44)

Now we are going to provide a detailed discussion regarding energy conditions for both
models against both the calculated shape functions. Some important and required achieve-
ments from energy conditions under the current scenario are expressed as:

• It is well defined from Equation (16) that we are working with the linear model of
f (Q) gravity to get the exact form of the wormhole solutions. It is noticed from the
regional analysis of energy conditions the involved parameter α in Equation (16) has
an important role in this study.

• It can be checked from Figure 2 that energy density remains positive for the negative
values of parameter α and it remains negative for the positive values of parameter α.

• The graphical behavior of NEC, i.e., ρ + pr and ρ + pt is provided in Figures 3 and 4
respectively. It is noticed from both figures that NEC is violated for model-I and
model-II against the different ranges of parameter α. The negative values of ρ + pr
and ρ + pt confirm the presence of exotic matter, which is necessarily required for the
existence of a viable wormhole.

• In response of the other energy conditions besides ρ + pr and ρ + pt, ρ − |pr| and
ρ− |pt| also presented in Figures 5 and 6 respectively. Both conditions ρ− |pr| and
ρ− |pt| are observed violated for the different values of parameter α.

• Strong energy condition, i.e., ρ + pr + 2pt with graphical development is provide in
Figure 7. It is interesting to mention that, ρ + pr + 2pt is also violated in the current
analysis against the different ranges of parameter α under the effect of conformal
symmetry within the linear equation of state and traceless fluid.
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Figure 2. Shows the contribution of ρ for both models with β = 0.5, γ = −0.6, D1 = −0.003,
D2 = −0.3, and C2

2 = 2.9.
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Figure 3. Shows the contribution of ρ + pr for both models with β = 0.5, γ = −0.6, D1 = −0.003,
D2 = −0.3, and C2

2 = 2.9.
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Figure 4. Shows the contribution of ρ + pt for both models with β = 0.5, γ = −0.6, D1 = −0.003,
D2 = −0.3, and C2

2 = 2.9.
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Figure 5. Shows the contribution of ρ− |pr| for both models with β = 0.5, γ = −0.6, D1 = −0.003,
D2 = −0.3, and C2

2 = 2.9.
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Figure 6. Shows the contribution of ρ− |pt| for both models with β = 0.5, γ = −0.6, D1 = −0.003,
D2 = −0.3, and C2

2 = 2.9.
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Figure 7. Shows the contribution of ρ + pr + 2pt for both models with β = 0.5, γ = −0.6,
D1 = −0.003, D2 = −0.3, and C2

2 = 2.9.
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5. Final Remarks

We still do not know whether wormholes actually exist in the physical sense, but they
are fascinating hypothetical space-time structures. The scientific community has pros-
pered over the last few decades by exploring the nature of this geometric feature that is
accepted mathematically. In this regard, the current study investigated tideless traversable
wormholes in the framework of symmetric teleparallel gravity, specifically f (Q) gravity.
The following are a few of the investigation’s more intriguing and useful findings:

The left part in the first row of Figure 1 has confirmed that both of the calculated shape
functions exhibit positive with an increasing trend. The conformal symmetry with the
linear equation of state and the traceless fluid matter in the background of f (Q) gravity has
physically compatible, as shown by the positive behavior of both the shape function and
shape function. The graphical development of db

dr , which has described the condition that is
flaring out can be seen in the right portion of the first row of Figure 1. The physical required
behavior for flatness condition, i.e., b

r → 0 as r → ∞ has satisfied the wormhole existence.
The difference of calculated shape functions for both models (I-II) with radial coordinate
r, i.e., b(r)− r has been verified. It has depicted r0 = 0.6 and r0 = 0.4 for model-I and
model-II respectively.

It is clear from Figure 2 that energy density is seen as positive for the negative values of
parameter α and it has shown negative for the positive values of parameter α. The physical
discussion of NEC, i.e., ρ + pr and ρ + pt has provided in Figures 3 and 4 respectively
for both models by left and right apart. It has been depicted from both the figures that
NEC is violated for model-I and model-II within the different ranges of parameter α
through some regional plots. The negative trend of ρ + pr and ρ + pt has confirmed the
presence of exotic matter, which has necessarily required for the existence of a viable
and physically acceptable wormhole. Strong energy contribution, i.e., ρ + pr + 2pt with
graphical behaviour is provided in Figure 7. It is interesting to mention that, ρ + pr + 2pt
has also been violated in the current analysis against the different ranges of parameter α
under the effect of conformal symmetry within the linear equation of state and traceless
fluid. It is worth noting that the current explored results in the background symmetric
teleparallel gravity are physically viable. Consequently, it is abundantly clear from our
analysis that the conformal symmetry satisfies all requirements for a traversable wormhole.
With the aid of several other nonlinear models, it would be fascinating to investigate
wormhole solutions in the symmetric teleparallel gravity.
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15. Capozziello, S.; Pinčák, R.; Bartoš, E. Chern-Simons current of left and right chiral superspace in graphene wormhole. Symmetry

2020, 12, 774. [CrossRef]
16. Capozziello, S.; Francaviglia, M. Extended theories of gravity and their cosmological and astrophysical applications. Gen. Relativ.

Gravit. 2008, 40, 357–420. [CrossRef]
17. Capozziello, S.; Nojiri, S.i.; Odintsov, S.; Troisi, A. Cosmological viability of f (R)-gravity as an ideal fluid and its compatibility

with a matter dominated phase. Phys. Lett. B 2006, 639, 135–143. [CrossRef]
18. Capozziello, S.; Cardone, V.F.; Troisi, A. Reconciling dark energy models with f (R) theories. Phys. Rev. D 2005, 71, 043503.

[CrossRef]
19. Capozziello, S.; Stabile, A.; Troisi, A. Spherically symmetric solutions in f (R) gravity via the Noether symmetry approach. Class.

Quantum Gravity 2007, 24, 2153. [CrossRef]
20. Capozziello, S.; De Laurentis, M.; Odintsov, S.; Stabile, A. Hydrostatic equilibrium and stellar structure in f (R) gravity. Phys. Rev.

D 2011, 83, 064004.
21. Capozziello, S.; Luongo, O.; Mauro, L. Traversable wormholes with vanishing sound speed in f (R) gravity. Eur. Phys. J. Plus 2021,

136, 1–14.
22. Capozziello, S.; Godani, N. Non-local gravity wormholes. Phys. Lett. B 2022, 835, 137572. [CrossRef]
23. Jiménez, J.B.; Heisenberg, L.; Koivisto, T. Coincident general relativity. Phys. Rev. D 2018, 98, 044048. [CrossRef]
24. Mandal, S.; Sahoo, P.; Santos, J.R. Energy conditions in f (Q) gravity. Phys. Rev. D 2020, 102, 024057. [CrossRef]
25. Frusciante, N. Signatures of f (Q) gravity in cosmology. Phys. Rev. D 2021, 103, 044021. [CrossRef]
26. Zhao, D. Covariant formulation of f (Q) theory. Eur. Phys. J. C 2022, 82, 303. [CrossRef]
27. Soudi, I.; Farrugia, G.; Said, J.L.; Gakis, V.; Saridakis, E.N. Polarization of gravitational waves in symmetric teleparallel theories of

gravity and their modifications. Phys. Rev. D 2019, 100, 044008. [CrossRef]
28. Lazkoz, R.; Lobo, F.S.; Ortiz-Baños, M.; Salzano, V. Observational constraints of f (Q) gravity. Phys. Rev. D 2019, 100, 104027.

[CrossRef]
29. Ayuso, I.; Lazkoz, R.; Salzano, V. Observational constraints on cosmological solutions of f (Q) theories. Phys. Rev. D 2021,

103, 063505. [CrossRef]
30. Barros, B.J.; Barreiro, T.; Koivisto, T.; Nunes, N.J. Testing F(Q) gravity with redshift space distortions. Phys. Dark Universe 2020,

30, 100616. [CrossRef]
31. Anagnostopoulos, F.K.; Basilakos, S.; Saridakis, E.N. First evidence that non-metricity f (Q) gravity could challenge ΛCDM. Phys.

Lett. B 2021, 822, 136634. [CrossRef]
32. Harko, T.; Koivisto, T.S.; Lobo, F.S.; Olmo, G.J.; Rubiera-Garcia, D. Coupling matter in modified Q gravity. Phys. Rev. D 2018,

98, 084043. [CrossRef]
33. Khyllep, W.; Paliathanasis, A.; Dutta, J. Cosmological solutions and growth index of matter perturbations in f (Q) gravity. Phys.

Rev. D 2021, 103, 103521. [CrossRef]
34. Solanki, R.; De, A.; Mandal, S.; Sahoo, P. Accelerating expansion of the universe in modified symmetric teleparallel gravity. Phys.

Dark Universe 2022, 36, 101053. [CrossRef]
35. Esculpi, M.; Aloma, E. Conformal anisotropic relativistic charged fluid spheres with a linear equation of state. Eur. Phys. J. C 2010,

67, 521–532. [CrossRef]
36. Solanki, R.; Sahoo, P.K. Statefinder Analysis of Symmetric Teleparallel Cosmology. Ann. Der Phys. 2022, 534, 2200076. [CrossRef]
37. D’Ambrosio, F.; Fell, S.D.; Heisenberg, L.; Kuhn, S. Black holes in f (Q) gravity. Phys. Rev. D 2022, 105, 024042. [CrossRef]
38. Lin, R.H.; Zhai, X.H. Spherically symmetric configuration in f (Q) gravity. Phys. Rev. D 2021, 103, 124001. [CrossRef]

http://dx.doi.org/10.1119/1.15620
http://dx.doi.org/10.1007/JHEP12(2017)151
http://dx.doi.org/10.1007/JHEP02(2020)149
http://dx.doi.org/10.1103/PhysRevD.65.104010
http://dx.doi.org/10.1007/JHEP05(2010)095
http://dx.doi.org/10.1016/0550-3213(89)90100-4
http://dx.doi.org/10.1119/1.19206
http://dx.doi.org/10.1103/PhysRevD.85.044033
http://dx.doi.org/10.1103/PhysRevD.80.104012
http://dx.doi.org/10.1016/j.aop.2018.01.010
http://dx.doi.org/10.3390/sym12050774
http://dx.doi.org/10.1007/s10714-007-0551-y
http://dx.doi.org/10.1016/j.physletb.2006.06.034
http://dx.doi.org/10.1103/PhysRevD.71.043503
http://dx.doi.org/10.1088/0264-9381/24/8/013
http://dx.doi.org/10.1016/j.physletb.2022.137572
http://dx.doi.org/10.1103/PhysRevD.98.044048
http://dx.doi.org/10.1103/PhysRevD.102.024057
http://dx.doi.org/10.1103/PhysRevD.103.044021
http://dx.doi.org/10.1140/epjc/s10052-022-10266-4
http://dx.doi.org/10.1103/PhysRevD.100.044008
http://dx.doi.org/10.1103/PhysRevD.100.104027
http://dx.doi.org/10.1103/PhysRevD.103.063505
http://dx.doi.org/10.1016/j.dark.2020.100616
http://dx.doi.org/10.1016/j.physletb.2021.136634
http://dx.doi.org/10.1103/PhysRevD.98.084043
http://dx.doi.org/10.1103/PhysRevD.103.103521
http://dx.doi.org/10.1016/j.dark.2022.101053
http://dx.doi.org/10.1140/epjc/s10052-010-1273-y
http://dx.doi.org/10.1002/andp.202200076
http://dx.doi.org/10.1103/PhysRevD.105.024042
http://dx.doi.org/10.1103/PhysRevD.103.124001


Symmetry 2023, 15, 859 13 of 13

39. Wang, W.; Chen, H.; Katsuragawa, T. Static and spherically symmetric solutions in f (Q) gravity. Phys. Rev. D 2022, 105, 024060.
[CrossRef]

40. Mustafa, G.; Hassan, Z.; Moraes, P.; Sahoo, P. Wormhole solutions in symmetric teleparallel gravity. Phys. Lett. B 2021, 821, 136612.
[CrossRef]

41. Calzá, M.; Sebastiani, L. A class of static spherically symmetric solutions in f (Q)-gravity. Eur. Phys. J. C 2023, 83, 1–9. [CrossRef]
42. Mustafa, G.; Hassan, Z.; Sahoo, P. Traversable wormhole inspired by non-commutative geometries in f (Q) gravity with conformal

symmetry. Ann. Phys. 2022, 437, 168751. [CrossRef]
43. Sokoliuk, O.; Hassan, Z.; Sahoo, P.K.; Baransky, A. Traversable wormholes with charge and non-commutative geometry in the

f (Q) gravity. Ann. Phys. 2022, 443, 168968. [CrossRef]
44. Mandal, S.; Mustafa, G.; Hassan, Z.; Sahoo, P. A study of anisotropic spheres in f (Q) gravity with quintessence field. Phys. Dark

Universe 2022, 35, 100934. [CrossRef]
45. Bhar, P.; Rahaman, F.; Ray, S.; Chatterjee, V. Possibility of higher-dimensional anisotropic compact star. Eur. Phys. J. C 2015, 75, 190.

[CrossRef]
46. Das, A.; Rahaman, F.; Guha, B.; Ray, S. Relativistic compact stars in f (T) gravity admitting conformal motion. Astrophys. Space Sci.

2015, 358, 36. [CrossRef]
47. Mustafa, G.; Abbas, G.; Xia, T. Wormhole solutions in F(T, TG) gravity under Gaussian and Lorentzian non-commutative

distributions with conformal motions. Chin. J. Phys. 2019, 60, 362–378. [CrossRef]
48. Mustafa, G.; Waheed, S.; Zubair, M.; Xia, T.C. Non-commutative wormholes exhibiting conformal motion in Rastall gravity. Chin.

J. Phys. 2020, 65, 163–176. [CrossRef]
49. Mustafa, G.; Waheed, S.; Zubair, M.; Xia, T. Gaussian distributed wormholes exhibiting conformal motion in f (T) gravity. Int. J.

Geom. Methods Mod. Phys. 2019, 16, 1950143. [CrossRef]
50. Mustafa, G.; Maurya, S.; Hussain, I. Relativistic Wormholes in Extended Teleparallel Gravity with Minimal Matter Coupling.

Fortschritte der Physik 2023, 2200119. [CrossRef]
51. Jiménez, J.; Heisenberg, L.; Koivisto, T. The Geometrical Trinity of Gravity. Universe 2019, 5, 173. [CrossRef]
52. Saiedi, H.; Nasr Esfahani, B. Time-dependent wormhole solutions of f (R) theory of gravity and energy conditions. Mod. Phys.

Lett. A 2011, 26, 1211–1219. [CrossRef]
53. Sharif, M.; Rani, S. f (T) gravity and static wormhole solutions. Mod. Phys. Lett. A 2014, 29, 1450137. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1103/PhysRevD.105.024060
http://dx.doi.org/10.1016/j.physletb.2021.136612
http://dx.doi.org/10.1140/epjc/s10052-023-11393-2
http://dx.doi.org/10.1016/j.aop.2021.168751
http://dx.doi.org/10.1016/j.aop.2022.168968
http://dx.doi.org/10.1016/j.dark.2021.100934
http://dx.doi.org/10.1140/epjc/s10052-015-3375-z
http://dx.doi.org/10.1007/s10509-015-2441-1
http://dx.doi.org/10.1016/j.cjph.2019.05.025
http://dx.doi.org/10.1016/j.cjph.2020.02.008
http://dx.doi.org/10.1142/S0219887819501433
http://dx.doi.org/10.1002/prop.202200119
http://dx.doi.org/10.3390/universe5070173
http://dx.doi.org/10.1142/S0217732311035547
http://dx.doi.org/10.1142/S0217732314501375

	Introduction
	Basic Field Equations in f(Q) Gravity
	Linear Equation of State and Wormhole
	Traceless Fluid and Wormhole
	Final Remarks
	References

