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Abstract: Time-varying materials bring an extra degree of design freedom compared to their con-
ventional time-invariant counterparts. However, few discussions have focused on the underlying
physical difference between spatial and temporal boundaries. In this letter, we thoroughly investigate
those differences from the perspective of conservation laws. By doing so, the building blocks of
optics and electromagnetics such as the reflection law, Snell’s law, and Fresnel’s equations can be
analogously derived in a temporal context, but with completely different interpretations. Further-
more, we study the unique features of temporal boundaries, such as their nonconformance to energy
conservation and causality.
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1. Introduction

There has been a long history of research interest in methodologies for artificially
controlling electromagnetic (EM) wave propagation [1–4]. The rapid development of
metamaterials in recent years has provided an unprecedented flexibility for manipulating
EM waves. With carefully tailored electric and/or magnetic responses, such metamaterials
may be engineered to exhibit extreme values of permittivity ε and/or permeability µ [5–7].

The control over EM waves in the vast majority of metamaterials has been accom-
plished via the spatial distribution of the effective material properties. Reconfigurable and
active metamaterials, however, are enabled by the time-variation in their material proper-
ties, which are unachievable by conventional materials [8–12]. This class of metamaterials
with time-varying properties opens a new realm of possibilities for tailoring EM waves.
To be more specific, in addition to considering the spatial distribution of the constituent
materials (i.e., ε(x,y,z)), one could explore the desired functionalities with greater flexibility
by introducing the additional dimension of “time”, i.e., ε(x,y,z,t) [2]. In recent years, re-
searchers have extensively explored these novel “4-D” material systems, with a particular
focus on their time-varying aspect. It was found that when an EM wave travels through
a medium whose material properties (i.e., ε or µ) change suddenly, the wave will split
into two waves propagating in opposite directions [13]. This phenomenon is the temporal
dual of wave propagation through spatial boundaries, where a wave meets the boundary
between two different materials. Since then, many well-known concepts and applications
such as homogenization, cloaks, aiming, photonic band gaps, polarization conversion, and
quarter-wave transformers have been studied in the temporal domain [14–18].

While temporal boundaries have been researched widely, several fundamental ques-
tions still remain unanswered. For example, a temporal version of Fresnel’s equation has
been developed in [13]. Why are the reflection and transmission coefficients different from
its spatial counterpart? As a building block in electromagnetics, does Snell’s law also have
a temporal equivalent? In [17], the authors found that the wave energy of the proposed
temporal system is not constant, and attribute it to external energy sources. Is there another
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perspective for interpreting this energy conservation enigma? Finally, some researchers
have pointed out that causality plays an important role in time-varying systems. So, what
role does causality play in an actual EM system? Moreover, how does causality shed light
on the asymmetry between space and time?

In this paper, we attempt to answer the above questions by comparing the differences
between spatial and temporal boundaries. Specifically, we consider two cases: a conven-
tional spatial boundary in a time-invariant system, and a temporal boundary in a spatially
invariant system. From Noether’s theorem, these two cases correspond to energy and
momentum conservation, respectively. First, we compared the momentum conservation
between the two cases, and derive the temporal version of the reflection law and Snell’s law.
Then we revisit Fresnel’s equations in the spatial domain and Morgenthaler’s equations [19]
in the time domain. Furthermore, we discuss the energy conservation issue and causality,
which are unique to temporal systems.

2. Momentum Conservation (Reflection Law, Snell’s Law)

Here we reexamine the momentum conservation law and establish a framework for
how it leads to different conclusions in spatial and temporal systems. Specifically, we
consider two scenarios: The first one considers a time-invariant 2D space, whose refractive
index is n1 and n2 for the region z > z0 and z < z0, respectively. The second one involves an
unbounded and homogeneous system where the medium undergoes a sudden permittivity
or permeability change at t = t0. The electric field of the incidence wave is defined as
→
E = E0e−j(

→
k ·→r −ωt), where ω = 2π/T is the angular frequency, and

→
k is the wave vector

whose magnitude
∣∣∣∣→k ∣∣∣∣= 2π/λ is the wavenumber (i.e., spatial frequency). Here we do not

specify the polarization of the wave because the system is assumed to be isotropic. The
angular frequency and wave vector are closely related to the wave energy and momentum
through the Planck-Einstein equation and the de Broglie relation, respectively [20].

For the first scenario, the frequency remains constant because of photon energy con-

servation. Considering
→
v = ω/

→
k and

∣∣∣→v ∣∣∣ = c/n, we have:


n1∣∣∣∣→k r

∣∣∣∣ =
n1∣∣∣∣→k in

∣∣∣∣
n2∣∣∣∣→k t

∣∣∣∣ =
n1∣∣∣∣→k in

∣∣∣∣
, (1)

where
→
k in,

→
k t, and

→
k r represent the wave vector of the incident, transmitted, and reflected

wave of angle θin, θt, and θr, respectively. The magnitude of the wave vector is a function of
the refractive index change. To further define the direction of the wave vector, its tangential
components are taken into consideration:

∣∣∣∣→k r

∣∣∣∣sin(θr) =

∣∣∣∣→k in

∣∣∣∣sin(θin)∣∣∣∣→k t

∣∣∣∣sin(θt) =

∣∣∣∣→k in

∣∣∣∣sin(θin)
. (2)

Accordingly, Equations (1) and (2) together comprise the reflection law and Snell’s law in
the spatial domain.

On the other hand, for the second scenario, the wave vector
→
k is constant due to the

momentum conservation. In this case it is the frequency that depends on the refractive
index change: {

n2ωb = −n1ωin
n2ω f = n1ωin

, (3)
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where ωin, ω f , and ωb represent the angular frequency of the incident, forward, and
backward wave. It is worth noting that the backward and forward waves have negative
and positive frequencies, respectively. This is because the velocity of the forward wave
is in the same direction as the incident wave, while that of the backward wave is in the
opposite direction.

The different expressions for Snell’s law manifest the fundamental asymmetry in
electromagnetics between space and time. In the first scenario, the incident and reflected
waves appear in the same medium. Therefore, it is the reflection angle that is equal to the
incidence angle. On the other hand, in the second scenario, the forward and backward
waves exist in the same medium. Consequently, the magnitude of the backward wave
velocity is equal to that of the forward wave, rather than the incident wave.

Moreover, Equation (1) in the first scenario is a vector equation. To determine the
direction of the wave vector, its tangential components are considered in Equation (2).
On the contrary, Equation (3) in the second scenario is a scalar equation. The direction of
velocity is decided by the plus or minus sign of the frequency. The medium is spatially
homogeneous, allowing the forward and backward waves to propagate in the same (or
opposite) direction as the incident wave. In other words, the incident wave is always
geometrically normal to the temporal boundary, which is a consequence of the fact that the
temporal boundary is perpendicular to all three spatial directions.

3. Transmission and Reflection (Fresnel Equations)

Besides Snell’s law, Fresnel’s equations represent another important set of rules govern-
ing EM waves. In the case of normal incidence, and considering the spatial boundary con-
ditions at z = z0, the transmission and reflection coefficients (tandr) can be expressed as:

t =

∣∣∣∣→E
t

∣∣∣∣∣∣∣∣→E
inc

∣∣∣∣ =
2Z2

Z2 + Z1
, (4)

r =

∣∣∣∣→E
r

∣∣∣∣∣∣∣∣→E
inc

∣∣∣∣ =
Z2 − Z1

Z2 + Z1,
(5)

where Z1 and Z2 are the wave impedances in medium n1 and n1. This yields the following condition:

1 + r = t (6)

This expression not only reveals that the boundary condition is implicit in Fresnel’s equa-
tions, but also indicates that the incidence and reflection appear on the same side of the
spatial boundary, while the transmission is on the opposite side.

For a temporal boundary (the second scenario), the field continuity conditions can be
expressed as [13,19]:

→
D = ε1

→
E in = ε2

(→
E f +

→
Eb

)
, (7)

→
B = µ1

→
Hin = µ2

(→
H f −

→
Hb

)
. (8)

Notice that the existence of a temporal boundary does not break the spatial translational

symmetry. Therefore, all three components of
→
D and

→
B are conserved. Hence, it can be

shown that [19]:

τ =

→
E f
→
E in

=
1
2

(
ε1

ε2
+

√
µ1ε1√
µ2ε2

)
, (9)
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ρ =

→
Eb
→
E in

=
1
2

(
ε1

ε2
−
√

µ1ε1√
µ2ε2

)
, (10)

where τ and ρ are defined as transmission and reflection in the temporal scenario.
Equations (7)–(10) were first derived by Morgenthaler [19], and have been widely used to
analyze the transmission and reflection of EM waves passing through a temporal boundary.
They can be viewed as the analog of Fresnel’s equations in the temporal domain.

Interestingly, Equations (9) and (10) can be rewritten in a more suggestive form:

τ =
ε1

ε2

(
Z2 + Z1

2Z2

)
, (11)

ρ =
ε1

ε2

(
Z2 − Z1

2Z2

)
. (12)

Notice that the first term on the right side of Equations (11) and (12) is equal to∣∣∣∣→D
f

∣∣∣∣∣/
∣∣∣∣→D

in

∣∣∣∣∣ and
∣∣∣∣→D

b

∣∣∣∣/∣∣∣∣→D
in

∣∣∣∣ respectively. By defining the transmission and reflection

coefficients in terms of
→
D instead of

→
E , allows them to be rewritten in an expression very

similar to Equations (4) and (5):

τd =

→
D f
→
Din

=
Z2 + Z1

2Z2
, (13)

ρd =

→
Db
→
Din

=
Z2 − Z1

2Z2
. (14)

These two equations lead to:
τd + ρd = 1. (15)

It can be clearly observed that there is a similarity between Equations (6) and (15).
In short, the temporal form of Fresnel’s equations is different from their spatial coun-

terparts, which is partly due to the different boundary conditions employed for the two
scenarios. However, there are deeper reasons for this difference. First, the forward and
backward waves exist after the temporal boundary, while the incident wave appears before

it (notice that this difference also plays a key role in the previous section). Second, it is
→
D,

rather than
→
E , that is continuous, but the reflection and transmission coefficients are still

expressed in terms of electric fields by convention. This difference provides a complete ex-
planation for why in temporal scenarios things become more complicated. That is, we need
two independent parameters (ε,µ) to determine the transmission and reflection behavior
(see Equations (9) and (10)). While in the spatial scenario, t and r are only a function of the
impedance Z.

4. Energy Conservation

Energy conservation is implicit in all time-invariant systems. When a wave propagates
through a spatial boundary, the total energy is conserved (i.e., T + R = t2·Z1/Z2 + r2

= 1),
which can be derived from Equations (4) and (5). On the other hand, the existence of
temporal boundaries breaks the time translation symmetry, and wave energy conservation
can no longer be guaranteed.

This raises the following questions: does the energy change after a wave meets a
temporal boundary? If so, where does the energy change come from? Let us first analyze



Symmetry 2023, 15, 858 5 of 8

this problem from the wave perspective of light. The total power intensity of the forward
and backward waves can be defined using the Poynting vector:

I f

I1
=

∣∣∣∣→E f ×
→
H f

∣∣∣∣∣∣∣∣→E
in
×
→
Hin

∣∣∣∣ (16)

Ib
I1

=

∣∣∣∣→Eb ×
→
Hb

∣∣∣∣∣∣∣∣→E
in
×
→
Hin

∣∣∣∣ (17)

Adding Equations (16) and (17) together, while taking into consideration Equations (9) and (10),
we find that:

I2 = I f + Ib =

(
n1

n2

)2
I1 (18)

where I1 and I2 represent the total wave power intensities before and after the temporal
boundary. The power intensity decreases if n1 < n2, and increases if n1 > n2.Then, from
the particle perspective of light, we recognize that the power intensity of EM waves is also
defined as the total amount of energy passing through a surface per unit area A, and per
unit time t: I = Nh̄ω/At, where N is the number of photons. It further goes as:

I = dh̄ω
∣∣∣→v ∣∣∣ (19)

where d is the photon density (number of photons per unit volume).
According to the Plank-Einstein relation, the energy of each photon is proportional to

the angular frequencyω. Then by considering Equations (3) and (19), we can deduce that
when a wave passes through a temporal boundary, the energy and speed of each photon
change simultaneously, and each of them contributes n1/n2 times to the total energy change.
On the other hand, the photon density ρ remains the same.

5. Causality

Causality is a unique property relative to the time domain. An interesting example
demonstrating how causality plays a role in the time domain is to consider stacking two
boundaries. As in the previous section, we consider two scenarios featuring spatial and
temporal boundaries respectively. Figure 1a demonstrates the multi-reflection process
when a wave encounters a stacked boundary in the spatial domain. The EM wave bounces
back and forth between the two boundaries, and will continue this process ad infinitum if a
lossless system is considered [1].
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Figure 1. Schematics showing the transmission and reflection process when there are two boundaries.
(a) The spatial case. Notice that multi-reflections occur at the interface between the two boundaries.
(b) The temporal case. The backward and forward waves are represented by ρ and τ. The incident
wave splits into two waves (τ21 and ρ21), and together they form the first future light cone (the
white region). Those two waves further split into four waves after encountering the second temporal
boundary, and create two more future light cones (the blue and green regions). The latter light cones
are inside of the former light cone.



Symmetry 2023, 15, 858 6 of 8

On the contrary, as Figure 1b shows, there are no “bouncing” waves between two
temporal boundaries, because causality forbids the waves from propagating ‘backwards’
in time. To be more specific, the first temporal boundary causes the incident wave to split
into a forward (τ21) and backward (ρ21) term. After a period of time, these two waves
propagating in opposite directions encounter the second temporal boundary, and each of
them simultaneously splits into two waves (i.e., four waves in total).

Comparing with the temporal case, the total transmission in the spatial case is com-
posed of many extra reflection terms, as depicted in the red circle in Figure 1a. An additional
180◦ phase change is brought about by this extra reflection, which is not present in the
temporal case due to causality. Therefore, the transmission coefficients in the spatial and
temporal cases are different: it increases in the former case while decreasing in the latter.

Now, let us validate the above physical interpretation in detail. First, we analyzed a
specific system involving impedance matching. In practice, the two spatial boundaries can
be separated by a distance: ∆x = nλ/4(n = 1, 2, 3 . . .), as depicted in Figure 1a. The total
transmission and reflection can be expressed as:

ttotal = t21t32∑∞
m=0

(
r23r21ejπ

)m
(20)

rtotal = r12 + t21t12r23ejπ∑∞
m=0

(
r21r23ejπ

)m
(21)

where tij = 2Zj/
(
Zj + Zi

)
and rij =

(
Zj − Zi

)
/
(
Zj + Zi

)
(i, j = 1, 2, 3) is the impedance of

the medium with corresponding refractive index ni.The total transmission and reflection can
be decomposed into an infinite sum of terms

(
r21r23ejπ)m, for which all of them are positive.

Therefore, all the partial transmission terms have the same phase, while the partial reflection
terms possess a 180°phase difference relative to the first reflection term (r12). Consequently,
one can maximize the transmission while minimizing the reflection. This is the mechanism
behind the well-known quarter-wavelength impedance matching technique.

The temporal analog of this technique, (i.e., antireflection temporal coatings (ATCs))
was studied in [15,21,22]. The incident wave will split into four components after encoun-
tering two temporal boundaries, as shown in Figure 1b. For simplicity, here we assume that
µ1 = µ2 = µ3. By letting the time duration between the two temporal boundaries satisfy
the relation ∆t = t2 − t1 =

nTeq
4 , the forward and backward waves can be expressed as:

τtotal = τ21τ32 + ρ21ρ32ejπ (22)

ρtotal = ρ21τ32 + τ21ρ32ejπ (23)

where ρij = 1/2
(
εi/εj −

√
εi/εj

)
and τij = ρij = 1/2

(
εi/εj +

√
εi/εj

)
. Both terms

τ21τ32 and ρ21ρ32 are forward, while ρ21τ32 and τ21ρ32 are backward. Hence, the phase
difference of the total forward and backward waves is solely determined by the optical path
difference ejπ . Consequently, with the antireflection temporal coating, both the reflection
and transmission will be minimized.

The total transmission with and without the ATCs can be derived as:

τw/ATC =

(
ε1

ε3

)3/4
(24)

τw/oATC =
1
2

(
ε1

ε3
+

√
ε1

ε3

)
(25)

Obviously, the following condition τw/ATC < τw/oATC is met if ε1 6= ε3. This result again
indicates that the introduction of ATCs will reduce the total transmission.
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Causality forbids the waves from propagating in a time-reversed direction, and con-
sequently will not play a role in time-invariant systems. This subtle distinction partly
explains why, although the quarter-wave transformer and its temporal counterpart can
both eliminate reflection, the transmission behavior is very different. The example also
supports our claim in the energy conservation section. For the spatial case, the total wave
energy is conserved (transmission increases and reflection decreases). However, for the
temporal case, the total wave energy is not conserved (both the transmission and reflection
are reduced).

6. Conclusions

Temporal boundaries in EM seem to be a perfect dual of spatial boundaries in many
ways. However, there are some fundamental differences underlying the perceived similari-
ties. Our work has investigated and summarized several important distinctions between
spatial and temporal EM boundaries, from several different perspectives. First, it has
been shown that spatial and temporal symmetry correspond to momentum and energy
conservation, respectively. Second, there are some unique properties in temporal systems,
such as causality, that differ from spatial systems. We found that many rules governing
the spatial domain (i.e., time-invariant systems) cannot be simply employed directly in
the time domain, which sometimes justifies that a more in-depth investigation be carried
out. Our findings provide profound insight into the asymmetry between space and time in
fundamental EM systems. This work also serves as a guide to designing EM systems that
operate solely in the space-invariant scenario, which are analogous to but different from
the traditional time-invariant systems.

Author Contributions: Conceptualization & writing, W.M.; Review & editing, J.X.; Review & funding
acquisition, D.H.W. All authors have read and agreed to the published version of the manuscript.

Funding: Penn State MRSEC, Center for Nanoscale Science (NSF DMR-1420620), and DARPA/DSO
Extreme Optics and Imaging (EXTREME) Program (HR00111720032).

Data Availability Statement: Data underlying the results presented in this paper are not publicly
available at this time but may be obtained from the authors upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pozar, D. Microwave Engineering, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2005.
2. Engheta, N. Metamaterials with high degrees of freedom: Space, time, and more. Nanophotonics 2020, 10, 639–642. [CrossRef]
3. Mai, W.; Zhu, D.; Gong, Z.; Lin, X.; Chen, Y.; Hu, J.; Werner, D.H. Broadband transparent chiral mirrors: Design methodology and

bandwidth analysis. AIP Adv. 2019, 9, 045305. [CrossRef]
4. Mai, W.; Kang, L.; Jenkins, R.; Zhu, D.; Mao, C.; Werner, P.L.; Chen, Y.; Werner, D.H. A knotted metamolecule with axisymmetric

strong optical activity. Adv. Opt. Mater. 2020, 8, 2000948. [CrossRef]
5. Liberal, I.; Engheta, N. Near-zero refractive index photonics. Nat. Photonics 2017, 11, 149–158. [CrossRef]
6. Valentine, J.; Zhang, S.; Zentgraf, T.; Ulin-Avila, E.; Genov, D.A.; Bartal, G.; Zhang, X. Three-dimensional optical metamaterial

with a negative refractive index. Nature 2008, 455, 376–379. [CrossRef]
7. Dani, K.M.; Ku, Z.; Upadhya, P.C.; Prasankumar, R.P.; Brueck, S.R.J.; Taylor, A.J. Subpicosecond optical switching with a negative

index metamaterial. Nano Lett. 2009, 9, 3565–3569. [CrossRef]
8. Ullah, Z.; Witjaksono, G.; Nawi, I.; Tansu, N.; Khattak, M.I.; Junaid, M. A review on the development of tunable Ggaphene

nanoantennas for terahertz optoelectronic and plasmonic applications. Sensors 2020, 20, 1401. [CrossRef]
9. Guo, X.; Ding, Y.; Duan, Y.; Ni, X. Nonreciprocal metasurface with space–time phase modulation. Light Sci. Appl. 2019, 8, 123.

[CrossRef] [PubMed]
10. Zhang, L.; Chen, X.Q.; Shao, R.W.; Dai, J.Y.; Cheng, Q.; Castaldi, G.; Galdi, V.; Cui, T.J. Breaking reciprocity with space-time-coding

digital metasurfaces. Adv. Mater. 2019, 31, 1904069. [CrossRef] [PubMed]
11. Nagulu, A.; Dinc, T.; Xiao, Z.; Tymchenko, M.; Sounas, D.L.; Alu, A.; Krishnaswamy, H. Nonreciprocal components based on

switched transmission lines. IEEE Trans. Microw. Theory Tech. 2018, 66, 4706–4725. [CrossRef]
12. Taravati, S.; Chamanara, N.; Caloz, C. Nonreciprocal electromagnetic scattering from a periodically space-time modulated slab

and application to a quasisonic isolator. Phys. Rev. B 2017, 96, 165144. [CrossRef]

http://doi.org/10.1515/nanoph-2020-0414
http://doi.org/10.1063/1.5025560
http://doi.org/10.1002/adom.202000948
http://doi.org/10.1038/nphoton.2017.13
http://doi.org/10.1038/nature07247
http://doi.org/10.1021/nl9017644
http://doi.org/10.3390/s20051401
http://doi.org/10.1038/s41377-019-0225-z
http://www.ncbi.nlm.nih.gov/pubmed/31871675
http://doi.org/10.1002/adma.201904069
http://www.ncbi.nlm.nih.gov/pubmed/31420926
http://doi.org/10.1109/tmtt.2018.2859244
http://doi.org/10.1103/PhysRevB.96.165144


Symmetry 2023, 15, 858 8 of 8

13. Xiao, Y.; Maywar, D.; Agrawal, G. Reflection and transmission of electromagnetic waves at a temporal boundary. Opt. Lett. 2014,
39, 574–577. [CrossRef] [PubMed]

14. Pacheco-Peña, V.; Engheta, N. Effective medium concept in temporal metamaterials. Nanophotonics 2019, 9, 379–391. [CrossRef]
15. Pacheco-Peña, V.; Engheta, N. Antireflection temporal coatings. Optica 2020, 7, 323. [CrossRef]
16. Pacheco-Peña, V.; Engheta, N. Temporal aiming. Light Sci. Appl. 2020, 9, 129. [CrossRef] [PubMed]
17. Xu, J.; Mai, W.; Werner, D.H. Complete polarization conversion using anisotropic temporal slabs. Opt. Lett. 2021, 46, 1373–1376.

[CrossRef] [PubMed]
18. Ramaccia, D.; Toscano, A.; Bilotti, F. Light propagation through metamaterial temporal slabs: Reflection, refraction, and special

cases. Opt. Lett. 2020, 45, 5836. [CrossRef] [PubMed]
19. Morgenthaler, F. Velocity modulation of electromagnetic waves. IEEE Trans. Microw. Theory Tech. 1958, 6, 167–172. [CrossRef]
20. Shankar, R. Principles of Quantum Mechanics; Springer: Berlin/Heidelberg, Germany, 1994.
21. Mai, W.; Xu, J.; Werner, D.H. Antireflection temporal coatings: Comment. Optica 2021, 8, 824. [CrossRef]
22. Pacheco-Peña, V.; Engheta, N. Antireflection temporal coatings: Reply. Optica 2021, 8, 826. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1364/OL.39.000574
http://www.ncbi.nlm.nih.gov/pubmed/24487869
http://doi.org/10.1515/nanoph-2019-0305
http://doi.org/10.1364/OPTICA.381175
http://doi.org/10.1038/s41377-020-00360-1
http://www.ncbi.nlm.nih.gov/pubmed/32704362
http://doi.org/10.1364/OL.415757
http://www.ncbi.nlm.nih.gov/pubmed/33720190
http://doi.org/10.1364/OL.402856
http://www.ncbi.nlm.nih.gov/pubmed/33057297
http://doi.org/10.1109/TMTT.1958.1124533
http://doi.org/10.1364/OPTICA.410990
http://doi.org/10.1364/OPTICA.425916

	Introduction 
	Momentum Conservation (Reflection Law, Snell’s Law) 
	Transmission and Reflection (Fresnel Equations) 
	Energy Conservation 
	Causality 
	Conclusions 
	References

