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Abstract: Many properties of special polynomials, such as recurrence relations, sum formulas, and
symmetric properties have been studied in the literature with the help of generating functions
and their functional equations. In this paper, using the (p, 4)-Fibonacci polynomials, (p, q)-Lucas
polynomials, and Changhee numbers, we define the (p, q)-Fibonacci-Changhee polynomials and
(p, q)-Lucas-Changhee polynomials, respectively. We obtain some important identities and rela-
tions of these newly established polynomials by using their generating functions and functional
equations. Then, we generalize the (p, )-Fibonacci-Changhee polynomials and the (p, q)-Lucas-
Changhee polynomials called generalized (p, q)-Fibonacci-Lucas—Changhee polynomials. We derive
a determinantal representation for the generalized (p, q)-Fibonacci-Lucas—Changhee polynomials
in terms of the special Hessenberg determinant. Finally, we give a new recurrent relation of the
(p, q)-Fibonacci-Lucas—Changhee polynomials.

Keywords: (p,q)-Fibonacci polynomials; (p, q)-Lucas polynomials; Changhee numbers; generating
function; Hessenberg determinant

MSC: 05A19; 11B37; 11B39; 11B83; 11C20; 11Y55

1. Introduction

Special polynomials and numbers with special cases of these polynomials have been
studied by many mathematicians. In particular, with the help of the generating functions
of these polynomials, some identities, sum formulas, and symmetric identities containing
these polynomials have been obtained. Special functions and numbers are frequently
used in many branches of mathematics, especially in areas such as mathematical physics,
mathematical modeling, and analytical number theory. Moreover, a large number of studies
on families of generalized polynomials and their various applications in the solution of
differential equations and approximation theory have appeared in the literature. For more
details on special polynomials and some of their applications, please see [1-9].

Horadam [10] defined the sequence {W,(r,s;u,v)},~ or, in brief, {W;},~, by the
recurrence relation - -

Wp=uWy 1+oWy 2, n>2

where 7, s,u,v € Z with the initial values YW, = r and W; = s. For different values 7, s, u
and v, some special cases of the Horadam numbers W, (r, s; u, v) are as shown in Table 1:
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Table 1. Special cases of the Horadam sequence.

r s u v Sequence

0 1 1 1 Fibonacci; F;

2 1 1 1 Lucas; L,

0 1 2 1 Pell; P,

2 2 2 1 Pell-Lucas; PL,

0 1 k 1 k-Fibonacci; F ,,
2 k k 1 k-Lucas; Ly ,

0 1 1 2 Jacobsthal; [,

2 1 1 2 Jacobsthal-Lucas; ji

In addition to these numbers, polynomials containing these numbers and which have
the same names as these numbers have also attracted the attention of mathematicians from
the past to the present. For ¢y, c1, ¢2, c3 are constants and d = 0 or 1. In [11], Horadam
defined the following polynomial sequence W;(¢) as

Wn(‘:) = p(‘:)wn—l (‘g) +‘7(§)Wn72(‘:)/ n>2

where

Wo(£) = co, Wi(§) = 18, p(€) = c22?, q(&) = 52"
With special choices of p(&), q(¢), Wo(¢), and Wy (&), the W, (&) polynomials become
important polynomials mentioned in the following Table 2:

Table 2. Special cases of the W, (&) polynomials.

p(&) aq@) Wo(@) Wi(?) Polynomial

¢ 1 0 1 Fibonacci; f,,(¢)

é 1 2 I Lucas; 1, (&)
27 1 0 1 Pell; P, (¢)
27 1 2 é Pell-Lucas; PL,({)

1 27 0 1 Jacobsthal; [, ()

1 2¢ 2 é Jacobsthal-Lucas; j, (&)

3¢ -2 0 1 Fermat; F,(¢)

3¢ -2 2 ¢ Fermat Lucas; F L, (&)

2¢ -1 0 1 Chebyshev polynomials of the second kind; Uy (¢)
2¢ -1 2 ¢ Chebyshev polynomials of the first kind; wy ()

Next, Nalli and Haukkanen [12] defined the h(&)—-Fibonacci polynomials /(&)-Lucas
polynomials including the Fibonacci polynomials, Pell polynomials, Lucas polynomials,
and Pell-Lucas polynomials given in Table 2. In [13] Lee and Asci considered the (p,q)-
Fibonacci polynomials and (p, g)-Lucas polynomials, as follows:

Fpgn(C) = p(&)Fpgn-1(8) +q(&)Fpgn—2(Z),

and

Lp,q,n (‘:) = p(‘:)Lp,q,n—l (g) + q(g)Lp,q,n72 (g)r

with the initial values FM,O(@) =0, Fp,q,l(C) =1, Lp,qfo(é) = 2 and Lp,q,l(é) = p(Q),
respectively. Here, p(¢) and (&) are polynomials with real coefficients. They derived the
generating functions of the (p, g)-Fibonacci polynomials and (p, 4)-Lucas polynomials as

w

1 p@w—g@)w?’

;) Fpgn (&)w"
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and

- w" = 2— P(é)w
,;JLP"”"(@ 1—p(@&)w — q(&)w?

Very recently, Simsek [14] defined the general forms of ordinary generating functions
for special numbers and polynomials involving Fibonacci-type numbers and polynomials,
Lucas numbers, and polynomials. The new classes of multiple variables polynomials are
defined by means of the following generating functions as

y # VYot — 1
”gOYn(P(ém))w LI B(g)w)

and

o 3 S Ko Qi(E)w
’;)Sn (P(‘:m>/Q(Ck>>w = 1+]Z;11]Pjé€j)wjl

where P(&x) = (P(&1), Pa(&2), -+ Pu(En)), Q(&) = (Q1(&1), Qa(E2), -, Qe(E0)),

d c
Pi(&) = Y a0l Qu(&) = Y bl
v=0 v=0

and ¢, d, k,m € Ny, 0 <] < kand 0 < j < m. For more details related to the above
numbers and polynomials, please see [14-18]. Another well-known polynomial is the
Euler polynomial. The classical Euler polynomials E, (¢) are defined with the help of the
following generating function as [19]

2 > "

eV = 2 En(é)%, lw| < 7. 1)

n=0

ev+1

Note that for & = 0, E,(0) = E, are called the Euler numbers. In [20], Pathan and Khan
defined the h(&)-Fibonacci-Euler and /(¢)-Lucas—Euler polynomials and numbers and
derived some important identities for these types of polynomials. For n > 0, the Stirling
numbers of the second kind are defined by (see, [19])

i
¢" =3 S2(n,9)(8)g, 2
q=0
where (§); = ¢(&—1)...(¢ — g+ 1). By virtue of (2), the Stirling numbers of the second
kind can be expressed as follows:
=1 = Y Sa(nn)
e = 2(n,r)—
The Changhee polynomials are defined with the help of the following generating function

2 Gtw)f=Y Ch(@®Y. 3)

2+w =0 n!
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Substituting ¢ = 0 into (3), Ch,,(0) = Chy,, Changhee numbers are obtained. Replacing
w by ¥ — 1in (3), we can write (see [21])

2
Cw
ev +1e

I
ngk:
Q
=
3
o

3
g

[
hgk
Q
=

3
o
]
S
s
g

3
Il
S
3
Il
3

(4)

[
[7e
=
0
=
3
o
NE
=
2
‘S

)
Il
o
3
Il
o

Using (1) and (4), we can get (see [22])

™=

Ex(§) = ). Chm(&)Sa2(n,m).

3
Il
<)

In [23] Kim et al. defined the modified Changhee-Genocchi polynomials defined by

2w = w"

2+7w(1+w)€_gocc”(é>ﬁ' ©)

Setting ¢ = 0 into (5), CG,(0) = CGy, are called the modified Changhee-Genocchi
numbers. For more details related to Stirling numbers of the second kind, the Changhee
polynomials, and the modified Changhee-Genocchi polynomials, please see [23-25].

Our main purpose in this article is to define a new polynomial family with the help of
(p, q)-Fibonacci polynomials, (p, q)-Lucas polynomials, and the Changhee number. In the
second and third parts of our article, we define (p, g)-Fibonacci-Changhee polynomials
and (p,q)-Lucas—Changhee polynomials with the help of the generating functions of
these polynomials and their functional equations, and we derive many new and interesting
identities and relations related to these classes of these numbers and polynomials. In the last
section, we define a new polynomial containing the (p, g)-Fibonacci-Changhee and (p, q)-
Lucas—Changhee polynomials. With the help of the generating function of this polynomial,
we give the determinant expression for this polynomial. Based on this determinant, we
give a new recurrence relation for this polynomial using the lower Hessenbeg matrix.

2. The (p, q)-Fibonacci-Changhee Numbers and Polynomials

In this part of the paper, we introduce the (p, g)-Fibonacci-Changhee numbers and
polynomials, denoted by ¢, F4,,(¢), and we derive some properties of these polynomials
using their generating functions.

Definition 1. Let p(¢) and q(C) be polynomials with real coefficients. The (p, q)—Fibonacci—
Changhee polynomials c,Fy q,n(G) are defined by the generating function as follows:

o) n

w 2 w
=) chFpgn(%)
=0

1-pQw—ql)w?2+w [

(6)

F .
Remark 1. The (p, q)-Fibonacci-Changhee polynomials can be expressed as

chFpgn(8) =Sn(1/2—p(Z), —(q(¢) +p(£)/2),—q(£)/2;0,1).
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2w

2+w
©0 n
Y. CGuy
=0 n.
00 n
Y. CGuoy
=0 n:

Using (6), we find that
2w B . "
- p@w—q@w)2+w) goch pan(©)-r

Comparing the coefficients of w”" on both sides of the above equation, we obtain

Chy,
Cth,q,n(’: ) =n! 2 Epgn— m(8)—— R

Theorem 1. Forn > 1, we have

CGn =ch Fpgn(G) — p(&)n chFpgn-1(8) —q(8)(n)y cnFpgn—2(S), )

where (n), = n(n —1).

Proof. Using (5) and (6), we have

(1 —p(Q)w— )wz) Z Cth,q,n(é)w

n+1 n+2
ZCthqn ZChFPWl ZCthqn Tl
};)Chpp,q,n@)% - n;]p(é) F p.gn— l 1), - :L;:Oq(‘:)Cth,q,n—Z@) (nu_) 2)!-

Comparing the coefficients of w" on both sides of the above equation, we get the
desired result (7). O

Theorem 2. For n > 1, we get

Fp,q,n(é) = %(Cth,q,n(g) + < P Cthqn 1(‘:))

Proof. Equation (6) can be written as

2w =) w"
T @0 q@w ~ T L@y

2 Z Fp,q,n(‘:)wn = 2 Z Cth,q,n(‘:)
n=0 n=0

2 ZO Fp,q,n(@)

n 00 le+1

w
) + ZOCth,q,n(C)T
n=

n

[ee] w (e}
n _
w" = ZYEOCth,q,ﬂ<g)F+n§]Cth,q,nfl(§) CESE

Comparing the coefficients of w" on both sides of the above equation, we get the
desired results. [

Theorem 3. Forn > 1, we have

oEpan(@ =t 3 i ( ’1)(C’”1"ﬂpm—2f—1<s>qi<a>

= n—m)!

where |p(&)w + q(&)w?| < 1.
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Proof. From (6), we obtain

w 2 2 0 ;
T e @@ 2w~ Czrw L POR T
2 = < n n—i 1
= wrry L1 () ke @)
= 515 L 1 (7)o i@y

w 2 _ 2 &
1-p(&w—q(@w?2+w  2+w

(" pM”(a)q"(a)] o

(" p’““@)q%c)] W

Next, we n by n — m and compare the coefficients of w" on both sides of the above
equation, and thus obtain our assertion. [J

n

(e )
ZU
; thqn 1’T

007100[
R S

Theorem 4. The Representation of Changhee numbers in terms of (p, q)—Fibonacci-Changhee
polynomials is

Fpan
Chy = < p,q,n+1(‘§7) = P(8) cnFpgn(§) —q(E)n cnFpgn-1(8), n=1. ®
Proof. Using (6), we find that
2 ) wnfl
2+rw (1_P(g)w_4(§)w2)1;)Cth,q,n(€)T
[} n (o) n—1
Y Chuyr = (1= p@w=0(@)w) L anFan@(6)

Comparing the coefficients of w" on both sides of the above equation, we obtain the
result (8). O

Theorem 5. For n > 0, we have

n k ;
Z Z (Z) Fm,p/q(g)m!52(k,7ﬂ)En—k = Z Cth,q,m(C)S2(7’l,m). )
k=

0m=0 m=0

Proof. Replacing w by e — 1in (6), we find that

ew —1 2 B 00 (ew . 1)m
(1—p@ (e —1)—q(@)(e —1)2)ev +1 mZ::O cnFpgm(8)
= ¥ afn(® ¥ Sa(m,m) 2
= Z ( Z Chﬂ;/q,m(é)Sg(l’l,?ﬂ)) ZZ—T (10)
n=0 = .

On the other hand, we have
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ew 1 2 B o w 1)m 0o W
(1—p@)(ev—1)—q(&)(e* —1)2) e +1 ZFm,p,q(é‘)m' ,;E"F

k oo n

_ Z ZFmpq ym!Sy (k, m)%ZEnW.

* n=0 :

So, we find that right hand-side of the above equation as
wl’l
2 Z 2 ( )Fm,,q )ym!Sa(k,m)E, | —. (11)
=0m=0 n:
Therefore, according to (10) and (11), we obtain the desired result (9). O

Theorem 6. For n > 0, we have
" /n
cnFae—10(8) = ) <m> U (§)m!Chy—m, (12)

m=0

where Uy, (&) are the Chebyshev polynomials of the second kind.
Proof. On setting p(¢) = 2¢ and q(¢) = —1in (6), we obtain

i E wf” B w 2
o CHT2m 1 n!  1-2w+wi2+w

_ g U (&)™ Z Chn%

_ i(f ( ) m'.Chn m)i‘; (13)

Comparing the coefficients of w" on both sides of the above equation, we obtain (12). O

3. The (p, g)-Lucas—-Changhee Numbers and Polynomials

Now, in this part of the our paper, the (p, g)-Lucas—Changhee numbers and poly-

nomials, denoted by ¢j,Ly 4,1 (¢), are defined, and certain properties of these polynomials
are obtained.

Definition 2. Let p(¢) and q(&) be a polynomial with real coefficients. We define (p, q)—Lucas—
Changhee polynomials c,Lp,q,1 (&) by the generating function

2 p(&)w "
1—P(C)w—q(€)w22+w ZC” pan(€)3r 14

n=

Remark 2. The (p, q)-Lucas—Changhee polynomials can be expressed as

cnlpgn(€) = Su(1/2 = p(), =(q(8) + p(£)/2), —q(5) /2,2, —p(Z))-

We may now rewrite (14) as

wm
m!’

ZChLPW' ZLPq”

Chy,

3
gmg

We replace n by n — m in the right hand-side and compare the coefficients of w” to
obtain the following representation for (p, q)-Lucas—Changhee polynomials
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Chyy,
Cth,q,n(g ) =n! 2 qun m(8)——- -

Theorem 7. For n > 1, we have

2Chy, 1 1
= p(‘:)Cth,q,n(‘:)a + Cth,q,n(‘:)a

—p(Q) [P(C)Cth,q,nl(g)m_ll)! + Cth'q’nfl(g) (n —1 1)!}

n!

00 | PO Fran-2O) g5y + calpan2@ gy | 09)

and 11 1
Lp,q,n(‘:) - Cthqn(‘:) 2Cthqn 1(€)m

Proof. Using Equation (14), we can write

2 2 0 w" o0 w"
1— P(C:.()ZU _ q(g)w2 24w = P(C) n;)Cth,q,n(g)ﬁ + ,;::OCP’LP"””(@F
2 d n o n S "

1-— p(é)w — q(g)uﬂ ng()Chn% = p(C) n;OCth,q,n(g)% + EC}ZLP'WZ(E)W

Thus, we have

2 Z Chn% = (1- P@)w - q(‘:)wz Z) Z Cth,q,n(C)% + Z Cth,q,n(‘:)ZZ,‘|
n=0 : n=0 : n=0 :
Z;JChnw, = P(g) ;)Chppqn(g + ZCthqn(@%

- [ ZChth +ZCthqn('§)zZ;.1]

w” w'"
F + nZO Cth,q,n (g) n'] .

n=0

7q(§)wz |f(‘§) Z Cth,q,n(‘:)

Comparing the coefficients of w", we have the result (15).
Again, we rewrite Equation (14) as

le

2-p(Qw _ =
T @@~ T ;ChL’”’"
w" wn+1

2 Z Lp,q,n(é)wn = 2 Z Cth,q,n(g)ﬁ + Z chLpgn (@T
n=0 n=0 n=0
Comparing the coefficients of w", we get the result (16). O

Theorem 8. For n > 0, we have

m=0

53 (1) boan@SalkmEsint = ¥ oubpan@Sanm). @)

Proof. Replacing w with e — 1in (14), we get
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2—p(&)(e” 1) 2 - e’ — 1"
TR (o e e S SR e U
[} e8] wn
= Z Cthqm(‘:) 2 Sz(ﬂ/m)ﬁ
m=0 n=m :
[e¢] n n
= ) ( Y cnlpgm(§)S2(n m)) — (18)
n=0 \m=0 :
On the other hand, we have
2 p(@)(e” ~1) 2 S (@ -)" &
L [P E =
1— p(E)(e® —1) —q(&)(e¥ —1)2e® +1 m; pam (&) =0y n; "l
m [ee]
= Z Lp,q,m({,‘) Z Sy (k, m) m'— Z
k=0 k=m
From the above equation, we get
[e0) n m wi’l
= Z 2 2 ( >qum )So(k, m)E,,_jm! e (19)
n=0 \k=0k= :
In view of (18) and (19), we obtain the result (17). O
Theorem 9. For n > 0, we have
ChL2§,7ln =2 Z < ) m'Chn ms (20)

where wy, (&) are the Chebyshev polynomials of the first kind.

Proof. On taking p(¢) = 2¢ and g(&) = —1in (14), we get

0 w" 1—6?/0 2
[ -
’;)Ch 2,-11(8) 5 1—2;‘w+w22+w
wm o wn
w?l
= 2 | h .
z( >:( ont@michn )

Comparing the coefficients of w", we get the result (20). O

4. Some Applications of the Generalized (p, g)-Fibonacci-Lucas-Changhee
Polynomials in Matrices

In this section, firstly, we define a polynomial including the (p, 4)-Fibonacci-Changhee
polynomials and the (p, g)-Lucas—Changhee polynomials that we defined in Sections 2 and 3.
We define this newly established polynomial with the help of the following generating
function as follows.

Let (p,q) be a polynomial with real coefficients. The generalized (p, q)-Fibonacci—
Lucas—Changhee polynomials ChPZjlq’/n (¢) are defined by the following generating function

pQw) 2
qQw?)2+w

_aw+b(2—
- (=pQw-

Z Chpp q, n( (21)
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Ch Pz:g,n (¢) =

on+l

Remark 3. The (p, q)-Fibonacci—Lucas—Changhee polynomials can be expressed as

Py (@) = Su(1/2 = p(E), —(q(2) + p(2)/2), —q(§) /2;2b,a — p(2)).

Setting 2 = 1 and b = 0 into (21), we obtain the (p, q)-Fibonacci-Changhee polynomi-
als defined by (6). Setting 2 = 0 and b = 1 into (21), we obtain the (p, g)-Lucas—-Changhee
polynomials defined by (14).

Secondly, we present a closed formula for the generalized (p, q)-Fibonacci-Lucas—
Changhee polynomials ChP;;g,n (&), in terms of the following determinant. For more de-
tails related to determinantal expressions for special polynomials and numbers, please
see [26-31].

Theorem 10. The generalized (p,q)—Fibonacci-Lucas—Changhee polynomials ChP;;Z,n((f) for
n > 0 can be expressed as following determinant

4b -2 0 0
2a—2bp(8)  (2p(5) —1)(p) 0 0
0 (49(2) +2p() () 0 0
0 6q(2)(3) 0 0 (22)
0 0 . 2 0
0 0 e 2@ -1 2
0 0 (490 +2p(0)(, ) 2p(@) - 1)(,")

Proof. We recall that a general and fundamental formula for derivatives of a ratio of two
differential functions ([32], page 40, Exercise 5). Let y(w) and é(w) # 0 be differentiable
functions, let U, 1)1 (w) be an (n + 1) x 1 matrix whose elements 7,1 (w) = =1 (w)
for1 <k <mn+1,andletV 1),,(w)bean (n+1) x n matrix whose elements

i—1 .

=1\ s (w), im0
5,(w) = (11) @), i=]

0, i—ji<0

for1 <i<n+land1 <j<mn, andlet W, 1), (,11)(¢) denote the lower Hessenberg
determinant of the (n + 1) x (n + 1) lower Hessenberg matrix

w(n+1)><(n+1)(w) = [u(n+1)><1(w) V(n+1)><n(w)}'

Then, the nth derivative of the ratio % can be computed by

W(n+1)>< (n+1) (w) ‘

on+l (w) (23)

Using (21) and (23), we find that
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d" [ aw+b(2—p(lw) 2
dw™ | (1 - p(&w—q(d)w?)2+w
_ (="
(1 - p(@)w — g(&)w?) (2 +w)]"
¥(w) d(w) 0 0 0
7 (w) &' (w) 8(w) 0 0
Y'(w) & (w) (3)8' (w) 0 0
X : :
(=2 (w) 52 (w) ("7?)8(3) (w) 5(w) 0
"D (@) 60 D(w) (7182 (w) ("Ho'(w)  6(w)
YW @w)  sM(w) (oD (w (,"2)8" (w) (" )8 (w)

So, we find the right hand-side above equation

4b -2 0 0
2a—2bp(§)  (2p(&) —1)(p) 0 0

0 (2p(8) +44(8)) () 0 0

Lo 6q(2)(5) 0 0

on+1 : : : : ’
0 0 -2 0
0 0 (2p(0) = 1) (3 ) -2
0 0 (2p(8) +44(2)) (%)  (2p(2) —1)(,%y)
as w — 0 for n > 0. Therefore, we have,
0 o, dr aw +b(2 — p(&)w) 2
WPian®) = I G [T perw - a@w) 21w

4b -2 0 0
20 -2bp(¢)  (2p(&) —1)(}) 0 0
0 (2p(&) +49(8) () 0 0
_ 2n1+1 0 6q<§><8> 0 0
0 0 ) 0
0 0 e (2p@® -1 -2
0 0 e (2p(8) +49(8) (") 2p(©) = 1)(,")

Thus, the proof is completed. [

Remark 4. By choosing a = 1 and b = 0 in Theorem 10, we can find the determinantal expression
for the (p, q)—Fibonacci-Changhee polynomials. Similarly, taking a = 0 and b = 1 in Theorem 10,
we can get the determinantal expression for the (p, q)—Lucas—Changhee polynomials.

Remark 5. Equality (22) can be obtained using a different method. For nice and short proofs, please
see [33-36].

Now, in the following theorem, we give a new recurrent relation for the generalized
(p, q)-Fibonacci-Lucas—-Changhee polynomials ¢, szg,n ().
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Theorem 11. For n > 3, we have the recurrent relation

(m)54(8) crPpg-(€) + (m2(p(@) + 20()) 1Py (€) ) b
+(1)1(2p(8) = 1) Py 1 (8)

1
Chpz:g,n(é) = 2(

Proof. Let Dy = 1 and

Uil Ui 0 ce 0 0
Uz U U3 0 0
usi uszn [253) e 0 0
Di’l = ’
Up_21 Up—22 Up23 ... Uyp_2u_1 0
Up—11 Up-12 Up-13 --- Up—1n-1 Un—1n
Up3a Un)2 Upj3 cee Upn—1 Unn

for n € N. In ([37], Page 222, Theorem), the authors proved that the sequence D,, forn > 0
satisfies D1 = e1,1 and

n n—1
Dy =Y (=1)" T, <H Mj,j+1> Dy, (25)
r=1 j:r

for n > 2, where the empty product is understood to be 1. If we apply the recurrent
relation (25) to Theorem 10, we have

2" oPygu (@) = 64(0) (Z :i) 2 Pyt 4(©)
+2p@) +400) (732 AP (@

+2p@ =1} 75) 2 P (@

for n > 3, which can be simplified as (24). O

5. Conclusions

In our present investigation, we defined the (p, g)-Fibonacci-Changhee polynomials
and (p,q)-Lucas—Changhee polynomials, respectively. Then, we derived several fun-
damental properties and relations of these types of polynomials. Next, we generalized
the (p, q)-Fibonacci-Changhee polynomials and the (p, §)-Lucas—Changhee polynomials
called generalized (p, 9)-Fibonacci-Lucas-Changhee polynomials. We derived a determi-
nantal representation for the generalized (p, 9)-Fibonacci-Lucas—-Changhee polynomials.
Finally, we provided a new recurrent relation of the generalized (p, g)-Fibonacci-Lucas—
Changhee polynomials. Our results can be derived not only for the generalized (p,q)—
Fibonacci-Lucas—Changhee polynomials defined by Equation (21), but also for many
polynomials and numbers (please see Tables 1 and 2), according to the special cases of
p(&), (). Thus, our main results are more general. For the interested reader, the results
presented here could motivate further research such as symmetric identities, sum formulas,
and recurrence relations on the subject of other mixed-type polynomials.
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