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Abstract: An investigation has been carried out on a reconfigured form of the Einstein-Hilbert action,
denoted by f (R, Tφ), where Tφ represents the energy-momentum tensor trace of the scalar field under
consideration. The study has focused on how the structural behavior of the scalar field changes based
on the potential’s shape, which has led to the development of a new set of Friedmann equations. In
the context of modified theories, researchers have extensively explored the range of gravitational
wave polarization modes associated with relevant fields. In addition to the two transverse-traceless
tensor modes that are typically observed in general relativity, two additional scalar modes have
been identified: a massive longitudinal mode and a massless transverse mode, also known as the
breathing mode.

Keywords: gravitational waves; modified gravity; polarization modes

1. Introduction

It is well known that the Friedmann-Lemaître-Robertson-Walker (FLRW) metric, which
represents the exact solution of Einstein’s equations obtained under the presumption of ho-
mogeneity and isotropy of space, has successfully clarified several additional observational
facts about our Universe, including the distribution of large-scale galaxies and the close
uniformity of the CMB temperature [1]. The existing accepted cosmological model, which is
very good at fitting the most recent observational data sets and explaining observed cosmic
acceleration, is embraced by the FLRW metric. Strong evidence that the cosmological
space-time metric differs from the FLRW metric would significantly affect fundamental
physics and inflation theory.

Alternative theories of gravity have long been recognized as a way to get around
some of the inconsistencies in standard cosmology [2–4]. One of the viable alternative
approaches is the f (R, T) gravity, which has been recently introduced by Harko et al [5].
The gravitational field equations in the metric formalism and the covariant divergence of a
stress-energy tensor lead to the equations of motion for test particles. The type of matter
source generally impacts the equations governing the gravitational field.

In the context of quantum gravity, higher derivative theories are a natural fit. Due to
standard power-counting arguments, it is prominent that general relativity (GR) appears to
be non renormalizable [6]. These theories become renormalizable when quadratic terms of
the curvature are added to the Einstein-Hilbert action [7]. Unfortunately, higher derivative
models have a significant drawback: according to Ostrogradsky’s theorem [8], unbounded
kinetic terms are incorporated into field equations with higher-order time derivatives than
second-order, leading to disorders in both classical and quantum theory. The Ostrogradsky
instability can appear at the classical level through exponentially increasing modes. If the
theory is conversing, the vacuum field configurations may become unstable in the presence
of small perturbations.

Symmetry 2023, 15, 832. https://doi.org/10.3390/sym15040832 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15040832
https://doi.org/10.3390/sym15040832
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-1653-6964
https://orcid.org/0000-0003-2802-4138
https://doi.org/10.3390/sym15040832
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15040832?type=check_update&version=1


Symmetry 2023, 15, 832 2 of 13

The Advanced LIGO team’s recent detection [9–11] of gravitational waves (GWs)
has introduced an enormous window to observe the Universe. The high classification
accuracy expected for some events, such as the one detected (black hole–black hole merger,
neutron star–neutron star merger), combined with some electromagnetic counterparts, may
help us better understand physics at extreme regimes gravitational fields, densities, and
other parameters.

Aside from using LIGO/VIRGO interferometers to detect GWs directly, it is possible to
employ the indirect detection of GWs by analysing the considerable reduction in the orbital
period of stellar binary systems. It is the perfect situation for testing modified gravity theories
because the orbital period has decreased, and the GR prediction can be tested with high precision.
Several tests have been carried out to put modified gravity theories to the test.

Hagiara et al. [12] examine a superposition of the two null streams to demonstrate
that any of the three modes (one cumulative spin-0 and two spin-1 modes) can be excluded
by appropriately adapting a weighted superposition of the null streams, allowing for the
experimental testing of the remaining polarization modes. According to the findings of
the study, by analysing the polarization states of the detected GW, it is feasible to verify
numerous assumptions of the scalar-tensor theories of gravitation [13]. The signals from
the multiple detector LIGO-Virgo network alone present a challenge for recognizing the po-
larization content of such GWs [14,15]. Three GW detectors cannot resolve all polarization
mode degeneracies and characterize the GW polarization content for such transient GW
signals [16,17]. Assuming that all polarizations are purely GR, all observations of GWs
from CBCs to date agree with GR’s assumptions [18].

The GW spectrum, as well as its polarization modes, are dependent on theory. Recon-
figured theories of gravity, which have initially been motivated by the drawbacks in the
standard cosmological scenario, can now contribute to the study of GWs by generating
observables that can be verified by experiment.

The polarization, as well as dispersion of GWs in a vacuum, are two significant characteris-
tics of GWs that differentiate the validity of gravity theories in the radiative regime. Alternative
metric theories allow for six possible polarization states for GW, four more than GR have. The
propagation speed of GW can differ from GR’s estimation that GW propagates at light speed
in vacuum, implying that the effective graviton mass is zero. Plus mode and cross mode of
polarization is very normal in the Einstein’s GR. In general, in terms of Riemman tensor Rtjtk, the
plus mode is represented by P+ = Rtxtx + Rtyty, the cross mode by P× = Rtxty, the transverse
breathing mode by Pb = Rtxtx + Rtyty, the vector-x mode by Pxz = Rtxtz, the vector-y mode by
Pyz = Rtytz, and the longitudinal mode by Pl = Rtztz.

Detailed studies of the polarization mode for such theories as the Horndeski theory
have been conducted by Hou et al. [19]. Alves et al. [20] studied the f (R) formalism
through GWs polarization. As in other f (R) gravity models, the model shows the existence
of scalar degrees of freedom for such gravity models in the metric formalism. The theory
contains a scalar mode of polarization of GWs. Extension of the non linear form of f (R) is
also extensively studied with the correction terms. The polarization mode exists in a mixed
state, with one being a massive longitudinal mode and the other being a transverse massless
breathing mode with non-vanishing trace [21]. The potential and mass of scalar gravitons
in both Jordan and Einstein frames have been analyzed to understand better the particular
form of the f (R) model with the corrective terms [22]. Due to the mistaken notion that
applying the Lorenz gauge suggests solutions for transverse-traceless waves, the massive
longitudinal and massless transverse modes have frequently been overlooked. In the recent
works [23,24], on modified gravity and gravitational waves, the different modified gravity
techniques for obtaining gravitational waves tensor modes has also been reviewed.

Nevertheless, Kausar et al. [25], show that it is not possible in general and, specifically,
the traceless condition cannot be enforced because a Minkowski background metric is no
longer available. In the context of quantum gravity, a broad category of higher derivative
gravity models, the degrees of freedom of the metric is (super) renormalizable, which makes
them interesting. In the massive tensor field in D-dimensions, only the transverse modes
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are stimulated in the appearance of a matter source, and the harmonic gauge condition is
dynamically induced [26].

The energy-momentum squared gravity theory, applied on a homogeneous and
isotropic spacetime, the optimum energy density ρmax and, consequently, the least length
amin can be found in the expanding Universe. According to the implication, a bounce in
the early Universe prevents an early-time singularity from existing [27]. According to the
f (R, τ) theories, the gravitational component of the action depends on a general function
of R and a function of τ. The dependence on τ results from taking into account exotic fluids
or quantum effects. The energy-momentum tensor’s variation concerning the metric [28] is
represented by the f (R, τ) model’s source term.

Although non-Einsteinian polarizations can be identified by laser interferometric
gravity wave detectors, their specification is not preferable for the position. On the other
hand, due to the angular distribution of pulsars in the sky, pulsar timing is a versatile tool for
detecting all polarizations. In order to detect nano-Hertz GWs, a method known as a pulsar
timing array involves timing multiple millisecond pulsars, which seem to be extraordinarily
sustainable celestial clocks [29]. For widely spaced pulsars, a stochastic GW background
turns out to leave an angular dependent correlation in pulsar timing residuals. In this
random GW background, the timing residuals of pulsar pairs are correlated. According
to Lee [30], this correlation, C(θ), is influenced by the angular separation (θ) between the
two pulsars, the polarization of the graviton mass, and other factors. For the breathing
mode, we need 40 pulsars, for the longitudinal mode 100 pulsars, and for the shear
mode 500 pulsars to differentiate between the non-Einsteinian modes and the Einsteinian
modes [31,32].

The spectral configuration of the stochastic gravitational-wave background, which
is developed by the superposition of cosmological as well as individually unaddressed
astrophysical references, encodes the polarization of GWs. Abbott et al. [33] look for
a stochastic background of conceptually polarized GWs using data collected by aLIGO
during the first observing run [34]. The evaluation is not dependent on any particular theory
of gravity and is sensitive to continuous signals of scalar, vector, or tensor polarizations.
Although LIGO and Virgo are restricted in differentiating the polarization of GWs transients,
subsequent detectors such as KAGRA [35], and LIGO-India [36] will assist in reducing
existing degeneracies and enable more precise polarization mode detection.

The purpose of the present study is to explore the physical features of the f (R, Tφ)
gravity as well as the GWs signature of the following gravity and the dependence of the
structure on the functional form of gravity potential. The basic structure and field equation
is developed in Section 2. Corresponding scalar field and properties are discussed in
Section 3 based on the potentials. We discuss the Friedmann equation in Section 4. In order
to characterize the polarization modes, we evaluate the Newman-Penrose (NP) quantities in
Section 5. We discuss the polarization modes from different observations that corresponds
to our model in Section 6.

2. Basic Outline of the Modified Gravity

The total action including the scalar field for the modified theory of gravity [5] can be
structured in the following manner,

S =
∫

d4x
√
−g
[

f (R, Tφ) + L(φ, ∂µφ) + KLm
]
, (1)

The Ricci scalar is represented by R, and Tφ represents the trace of the energy-
momentum tensor of the scalar field. Furthermore, K is the coupling constant.

The action of the field, where g is the factor that determines the signature of the metric
(−, +, +, +). We employ the natural units in this article such that G = c = 1. Hereafter, we
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presumed L(φ, ∂µφ) = Lφ. Where the conventional Lagrangian density for a real scalar
field (φ) is Lφ, [37], namely over,

Lφ =
1
2
∇αφ∇αφ−V(φ). (2)

Here, V(φ) is a self-interacting potential. The matter fields in this theory have a
minimal coupling with gravity and have no coupling with the scalar field.

The stress-energy tensor can define as

Tµν = − 2√−g
δ(
√−gL)
δgµν . (3)

and its trace by T = Tµνgµν, respectively. We considered that the Lagrangian density L
depends only on the metric tensor components gµν , and is independent of its derivatives.

Consequently, the energy-momentum tensor corresponding to the scalar field is

Tφ
µν =

1
2

gµν∇αφ∇αφ− gµνV(φ)−∇µφ∇νφ, (4)

and the corresponding trace is as follows,

Tφ = ∇αφ∇αφ− 4V(φ). (5)

We consider the system in the absence of matter, and therefore, Lm = 0 [27].

δS =
1

16π

∫ [
fR(R, Tφ)δR fT(R, Tφ)δTφ

−1
2

gµν f (R, Tφ)δgµν +
1√−g

δ((
√−gL≺))

δgµν

]√
−gd4x,

(6)

The following relationship is provided by gµν by varying the gravitational field’s
action S against the metric tensor components.

Where, fR(R, Tφ) and fT(R, Tφ) denotes ∂ f (R, Tφ)/∂R and ∂ f (R, Tφ)/∂Tφ, respec-
tively, and are hereafter considered as fR and fT , respectively.

After integrating, we obtain the generalized form of the Einstein field equation in
vacuum in the presence of scalar field, which is as follows

fRRµν −
f
2

gµν =
1
2

Tφ
µν + fTTφ

µν − fT gµνLφ (7)

We presume that f (Tφ) is the modified gravity function, and that it is defined as
f (R, Tφ) = αR + f (Tφ).

f (Tφ) is a freely chosen function of the stress-energy tensor trace of a scalar field, and
α is a freely chosen constant. Immediately, the field equation adopts the following form:

Gµν =
1

2α
[Tφ

µν + gµν f (Tφ)− 2 fT(Tφ)∇µφ∇νφ]. (8)

3. Scalar Field

The Ricci scalar of the Equation (7) can be obtained by contraction and simplification
as shown in the followinfg:

R = − 1
2α

[4 f (Tφ) + Tφ − 2 fT∇µφ∇µφ] (9)
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According to covariant divergence of the field Equation (8), it is feasible to derive the
equation of motion for the scalar field as follows,

(1 + 2 fT)�φ + (1 + 4 fT)

(
∂V
∂φ

)
+ 2 fTT∇µφ∇µTφ = 0. (10)

Using the subsequent mathematical identity,

∇λTφ = 2(∇λ∇µφ)(∇µφ)− 4
(

∂V
∂φ

)
(∇λφ). (11)

3.1. Case-I

Let the scalar field φ expand around the constant scalar curvature as follows,

φ = φ0 + δφ (12)

We assume that φ0 is the steady minimum for the effective potential, say, around the
minimum potential V0. The potential as a function of the effective scalar field, near the
minimum V0, can be as follows

V ' V0 +
1
2

aδφ2 (13)

where ′a′ is a constant, in the dimension of mass2.
Let us consider f (Tφ) = βTφ, following Moraes and Santos [37]. Based on the

following consideration, Equation (10) reduces to

�φ +

(
1 + 4β

1 + 2β

)
a(φ− φ0) = 0, (14)

with β 6= −1/2. Explorations into the linear region of the field equations result in the
following solution:

φ(x) = φ0 + φ1 exp (iqρxρ), (15)

where, φ1 is the small amplitude and qρ is the wave vector, which obeys the following
equation,

qρqρ =

(
1 + 4β

1 + 2β

)
a (16)

The effective cosmological constant is,

Λ =
1

2α
(1 + 4β)V0. (17)

3.2. Case-II

One interesting notion is that the trace of the energy-momentum tensor of the scalar
field f (Tφ) has a non linear function, i.e., f (Tφ) = β(Tφ)n , where β and n both are constant.
Linearity can be easily achieved by considering n = 1.

Based on this Equation (10) reduces to

(
1 + 2βn(Tφ)n−1)�φ +

(
1 + 4βn(Tφ)n−1)(∂V

∂φ

)
+2βn(n− 1)(Tφ)n−1∇µφ∇µ(ln Tφ) = 0. (18)
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Let us consider the potential in the following manner

V(φ) =
1
2

µ2φ2 +
1
4

λφ4, (19)

where, µ and λ are real constants.
We restricted to the terms of first order in φ. On such approximation, the third term

of Equation (18) vanishes. Expanding V around the non null minimum value V0. We can
expand the field as η = φ− φ0. Following the relative methodology as before, we find that
with such a presumption and first order constraints,

�φ +

(
1 + 4(−1)n−1βn(V0)

n−1

1 + 2(−1)n−1βn(V0)n−1

)(
∂V
∂φ

)
= 0. (20)

The equation that represents the scalar field’s solution conforms to the following
relation as in Equation (15),

φ′ = φ0 −
(

µ2 + λφ2
0

µ2 + 3λφ2
0

)
φ0, (21)

and

qµqµ = (µ2 + 3λφ2
0)

(
1 + 4(−1)n−1βn(V0)

n−1

1 + 2(−1)n−1βn(V0)n−1

)
. (22)

Correlated energy of the system can be defined as

E = ±
[

q2 + (µ2 + 3λφ2
0)

(
1 + 4(−1)n−1βn(V0)

n−1

1 + 2(−1)n−1βn(V0)n−1

)]1/2

(23)

Introduction of the minimally coupled scalar field included at the first order introduces
an effective cosmological constant, as follows,

Λ =
1

2α

(
4n(−1)n−1βVn

0 + V0

)
. (24)

With λ being a positive constant, there are two possible outcomes for the potential
in Equation (19) : (i) µ2 > 0, and (ii) µ2 < 0. The steady minimum scalar field value for
µ2 > 0 is zero, and as a result, the effective cosmological constant (Λ) is also zero. Figure 1
depicts the propagation of the perturbation of the vacuum scalar field for various µ. The
transition of colour from light brown to deep blue shows the amplitude variation from
crest to trough.

This stands to steady the universe. Although the minimum scalar field is non zero for
µ2 < 0, this consideration results in non zero because of the effective cosmological constant.
Effectively, there is a cosmological constant.

Λ =
1

2α

[
(−1)2n−1β

(
µ4

λ

)n

− µ4

4λ

]
. (25)
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Figure 1. Propagation for the perturbation of the vacuum scalar field. The left panel shows the
variation for µ2 < 0, and the right panel shows the variation for µ2 > 0; considered β = 1.1.

4. The Friedmann-Lemaître-Robertson-Walker Universe

We assess the four-dimensional, curved, isotropic, spatially statistically homogeneous
spacetime with Jordan frame FLRW metric as

ds2 = −dt2 + a2(t)
( dr2

1− kr2 + r2dΩ2
)

. (26)

Here, a(t) stands for the scale factor (in the unit of [length]). The cosmic curvature
parameter is coupled to the dimensionless curvature k as Ωk = k/a2

0H2
0 , where H0 signifies

the Hubble constant (in [time]−1) and a0 is the present value of the scale factor.

3

[( ȧ
a

)2
+

k
a2

]
= − 1

2α

[
1
2
(1 + 4 fT)

{
φ̇2 − 1− kr2

a2(t)

(∂φ

∂r

)2

− 1
r2a2(t)

(∂φ

∂θ

)2}
+ V(φ) + f (Tφ)

]
(27)

The scale factor a(t) determines the Hubble parameter H(t) = d(ln a)/dt.
For the observational purpose hereafter, we considered the flat FLRW metric.

5. Polarization Modes of the Modified Gravity
Newman-Penrose Formalism

Extra polarization modes are found using the Newman-Penrose (NP) [38]formalism; more
details can be found in the references [39,40]. The system of four linearly independent vectors
(et, ex, ey, ez) at any point of space, which are called tetrads, can be used to define the NP
quantities that correspond to each of the six polarization modes of GWs. Such vectors can be
represented as the NP tetrads as k, l, m , m̄. The real null vectors are,

k =
1√
2
(et + ez), l =

1√
2
(et − ez), (28)

and the other two complex null vectors are,

m =
1√
2
(ex + iey), m̄ =

1√
2
(ex − iey). (29)

−k · l = m · m̄ = 1, Ea = (k, l, m, m̄).

While all other dot product vanishes.
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In the algebraically unbiased NP representation, the fundamental components of
the Riemann tensor Rλµκν are depicted by ten constituents of the Wely tensor (Ψ’s), nine
constituents of the traceless Ricci tensor (Φ’s), and just a curvature scalar (Λ). Some
symmetrical and differential properties reduce them to six: Ψ2, Ψ3, Ψ4, Φ22 real and Ψ3, Ψ4
complex. The following Riemann tensor elements in the null tetrad basis have the following
relationships with these NP measurements:

Ψ2 = −1
6

Rlklk ∼ longitudinal scalar mode,

Ψ3 = −1
2

Rlklm̄ ∼ vector-x & vector-y modes,

Ψ4 = −Rlm̄lm̄ ∼ +,× tensorial mode,

Φ22 = −Rlmlm̄ ∼ breathing scalar mode. (30)

The remaining nonzero NP variables are defined in terms of the above-mentioned
variables; Φ11 = 3Ψ2/2, Φ12 = Φ21 = Ψ3 and Λ = Ψ2/2, respectively.

Based on the characteristics of their transformations, these four NP variables Ψ2, Ψ3, Ψ4,
and Φ22 can be grouped into the group E(2), the Lorentz group for massless particles. These
transformations show that the four NP variables’ amplitudes are not observer-independent
and that only Ψ2 is invariant. On the other hand, some of the four NP variables’ absence (zero
amplitude) is independent of the observer.

The following relations for the Ricci tensor and the Ricci scalar hold:

Rlklk = Rlk,

Rlklm = Rlm,

Rlklm̄ = Rlm̄,

Rlm̄lm̄ =
1
2

Rll ,

R = −2Rlklk = 2Rlk. (31)

Following Equation (7), the Ricci tensor can be written as,

Rµν =
1

2α
[αRgµν + gµν f (Tφ) + Tφ

µν − 2 fT∇µφ∇νφ] (32)

The corresponding non-null components are as follows,

Rtt =
R

1− βnχ−(n+1)

[
1
2
− βn

6
− βn(n + 1)

Rc

{
k2 − (9− 5βn)Rc

3βn(n + 1)

}]
Rtz = −

R
1− βnχ−(n+1)

[
βn(n + 1)

Rc

{
k2 − (9− 5βn)Rc

3βn(n + 1)

}1/2

k

]
(33)

Rzz =
R

1− βnχ−(n+1)

[
−1

2
+

βn
6
− βn(n + 1)

Rc
k2
]

Using Equations (30) and (31), one finds the following NP quantities:
Ψ2 6= 0; Ψ3 = 0 ; Ψ4 6= 0 and Φ22 6= 0
This results in the GW having four polarization modes: breathing scalar mode, longi-

tudinal scalar mode, +, times tensorial mode.

6. Detection of GWs’ Polarization Modes

The experimental detection of GWs polarization modes is essential for understanding
the proper mechanism of GWs and, as a result, determining the viability of modified gravity
theories. The Pulsar Timing Arrays (PTAs) are discussed in this section as a method for
differentiating between polarization modes. We also explain the model’s findings. In the
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indirect identification of GWs, PTAs play an important role. They are also used in a variety
of astronomical applications.

We calculate the GW-induced correlation functional relations between the timing
residuals of two pulsars for each of the six polarizations. There are two groups for the
polarizations. Analytical calculations of the GW-induced correlation functions for pri-
marily transverse polarizations in the GR and breathing modes are feasible. Monte Carlo
simulations must be used to evaluate the correlation function for shear and longitudinal
polarization, not just transverse polarization.

The correlation functional relations [30] of the tensor and breathing modes are not
dependent on the individual models, but the correlation functional relation of massive
longitudinal modes is not, since the scalar graviton mass determines it.

For the tensor modes, the correlation functional relation is as follows

C+,×(θ) = ξGR(θ)
∫ ∞

0

|h+,×
c |2

24π2 f 3 d f , (34)

where θ is the angular separation between two pulsars

and ξGR(θ) =
(1− cos θ)

8

[
6 log(

(1− cos θ)

2
)− 1

]
+

1 + δ(θ)

2
,

The correlation functional relation for the corresponding scalar modes is defined as

Cb(θ) = ξb(θ)
∫ ∞

0

|hb
c |2

12π2 f 3 d f , (35)

where, θ is the angular separation between two pulsars

and ξb(θ) =
1
8

[
3 + cos θ + 4δ(θ)

]
,

The normalized correlation functional relation is explained as

ζ(θ) =
C(θ)
C(0)

. (36)

The time residual induced by GW can be expressed in terms of the dispersion relation,
S = 2(1 + (c/ωg)kg · n̂) as

R = − 1
S

AijHij. (37)

where the mass (mg) of the polarization mode is defined as m2
g = ω2

g−k2
g, Hij =

∫ τ
0 hij(τ, 0)

−hij(τ − |D|/c, D)dτ and Aij = n̂in̂j. n̂i and n̂j are the unit vectors pointing the pul-
sars, respectively, and D is the displacement vector. The corresponding correlation coeffi-
cient [30,41,42] between the pulsars is

C1,2(θ) =< R1R2 >= A1 A2 < S1S2H1H2 > (38)

Correlation functions of some selected pulsars obtained from PPTA [43,44], NANOGrav [45,46]
and IPTA [47,48] data are shown in Figure 2.
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Figure 2. Variation of the correlation functions with θ.

7. Conclusions and Outlook

For the considered spontaneous symmetry-breaking potential in our system, the scalar
field’s structural characteristics depend on the nature of the potential. A phase transition
can be thought of as the behaviour of the scalar field changing depending on the sign
of the critical parameter (µ2). When µ2 > 0, the system is independent of degree order,
whereas µ2 < 0 leads to the dependency on order. The variation of the wave is very
minute on varying the coupling constant β. The variation of the field also varies with the
order of the variation. However, the variation is almost stagnant for the higher-order. The
variation of the propagation based on the coupling constant and order parameter is shown
in Figures 3 and 4, respectively.
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Figure 3. Variation of the field based on the coupling constant β. Blue dotted line for β = 1.1, Red
dashed line for β = 0, and Black solid line for β = −1.1.
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Figure 4. Variation of the field based on order parameter n with β = 1.1. For n = 3, we use Blue
dash-dotted line, where Red dashed line is used to define n = 2, and Black solid line for n = 1.

An analyzed signal, such as a stochastic cosmological background of GWs, would
be an integration of all of those modes if GWs have the nontensorial polarization modes
discussed above. If there are only tensorial polarizations, the appearance of scalar and/or
vector modes helps distinguish between different theories of gravity that go beyond general
relativity and places limits on the relative intensities of each mode. When we can recognize
the polarization states, we may establish a considerable framework for determining the
theory of gravity [49]. It is also already clear that the polarization modes are independent of
the characteristics of the cosmological constant. The relationship between the cosmological
constant and the mass of the graviton is noteworthy. The amplitude, on the other hand,
is modified by terms depending on the cosmological constant. Furthermore, if a source
emits a regular waveform, the periodicity of the waveform, as observed by a distant
observer, changes. These effects, however, are incredibly tiny and, thus, far below the
identification [50].

For pulsars close together in the sky, the correlation curve for such waves reaches a
maximum of 0.5. It has decreased from 1.0 because the same GW background passing over
the pulsars produces a statistically equal but uncorrelated modulation in their residuals
that goes negative for pulsars separated by about 90° and favourable again for pulsars
separated by 180°.
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