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Abstract: In this paper, we study the matter–antimatter imbalance in the universe through baryogen-
esis (also known as baryosynthesis), which is a physical process that took off just a little while after
the big bang explosion, producing a supremacy of matter over antimatter. In this work, we commit

the reproduction of the baryon to entropy ratio (
ηB
S =

η
β
−η

β̄

S ), where ηβ (ηβ̄ ) is a baryon(anti-baryon)
number and S is the entropy of the universe in the presence of modified Hořava-Lifshitz F(R) gravity,
which is also called F(R̃)-gravity. We inspect different baryogenesis interactions proportional to R̃
(where R̃ is the argument of general function F used for the development of modified Hořava-Lifshitz
gravity). For this study, we examine two models by choosing different values of F(R̃). In the first
model, the functional value of F(R̃) = R̃ + αR̃2 (where α is a real constant). The second model is
more generalized and extended as compare to first one. Mathematically, this model is given by
F(R̃) = R̃ + αR̃2 + βR̃m, where α, β are real constants and m > 2 is a real model parameter. Our
results for both models and different values of m point out that matter-antimatter asymmetry does not
vanish under the effect of the modified Hořava-Lifshitz theory of gravity, which shows a consistent
and compatible fact of gravitational baryogenesis with recent observational data.

Keywords: gravitational baryogenesis; baryon to entropy ratio; modified Hořava-Lifshitz gravity

1. Introduction

In our universe, the supremacy of matter over antimatter has been one of the great
puzzles since cosmology became a sovereign research field. The data observed from a
cosmic microwave background (CMB) [1], assisting with the big bang nucleosynthesis
(BBN) [2], revealed the supremacy of matter over antimatter in the universe. Physicists
believe that just a little while after the explosion, an asymmetry appeared between matter
and antimatter, which changed a minute part of antimatter into matter. Then, matter and
antimatter annihilated, which caused a surplus amount of matter which is considered as all
matter that can we observe and that exists around us. However, it is not yet revealed why
this asymmetry (called “baryon asymmetry”) comes to exist. The cosmological theories
that make an effort to resolve this fundamental query lie under the realm of baryogenesis
(a process that took place at the birth time of the universe and produced more matter
then antimatter). Among these, one theoretically attractive mechanism for initiating the
matter–antimatter asymmetry is “gravitational baryogenesis” [3]. The other similar the-
ories which addressed baryogenesis are black hole (BH) evaporation baryogenesis [4],
Affleck-Dine baryogenesis [5], grand-unified-theory (GUT) baryogenesis [6], electroweak
baryogenesis [7], and spontaneous baryogenesis [8,9]. All of these theories are committed
to clarify why this kind of asymmetry exists in the cosmos. Observational data [1,2] provide
a confirmation that

ηB
S is nearly equal to 9.42× 10−11, where S denotes the universe entropy

while ηB represents the baryon number.
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Gravitational baryogenesis [3] is one such theory that played a vital role in the modifi-
cation and extension of various modified theories of gravity [10–13]. Half a century ago,
Sakharove [14] discussed three major conditions that must be met to create more matter
then antimatter, which are: (i) baryon number violation, (ii) charge (C) and charge-parity
(CP) symmetry are violated, and (iii) the process occurs out of thermal inequilibrium.
The gravitational baryogenesis mechanism utilizes one of Sakharov’s conditions and the
baryon–anti-baryon asymmetry was assured by the existence of the CP violation (violation
of conservation laws related to the charge conjugation and parity by the weak force). It is
given by a change in the Ricci scalar and coupling between the baryon current Ji, as

1
M2∗

∫ √
−g(∂iR)Jid4x, (1)

where M∗ is the parameter characterizing the cutoff scale of the underlying effective
gravitational theory, g is the determinant of the metric tensor, Ji describes baryonic matter
current, and R represents the Ricci scalar. Under the effect of flat (Friedmann–Robertson-
Walker) FRW metric, we obtain ηB

S ∝ Ṙ, where the overhead dot represents the time
rate of change. Physicists further extended Equation (1) to many modified theories of
gravity [10,15,16]. The reason behind the extension of this interaction to modified theories
is deduced from the fact that other curvature invariants such as the Gauss–Bonnet (GB)
scalar G, torsion scalar T, and non-metricity Q produce a non-zero baryon asymmetry with
ω = 1/3 (radiation-dominated universe), which cannot be obtained in general relativity
(GR). For the modified Hořava-Lifshitz f (R̃)-gravity, the relation for the CP-violating
interaction is

1
M2∗

∫ √
−g(∂iR̃)Jid4x. (2)

Some physicists have also worked on Hořava-Lifshitz gravity as well as on some
other modified gravity theories and found viable results [17–33]. An extension of the
baryogenesis phenomenon is discussed by many physicists, considering various modified
theories of gravity, which are established by the modification in the Einstein–Hilbert action.
The suitable and interesting modification in these theories of gravity is the curvature-based
formulation of GR. A promising modification in which torsional formulation took the place
of the curvature scalar is teleparallel gravity. Lagrangian density in the framework of
this gravity supports the Weitzenböck connection instead of the torsionless Levi-Civita.
Further, the generalized function f (T) is used instead of the torsion scalar T to obtain a
generalized form of this theory, called f (T)-gravity. In the same manner, f (R)-gravity can
be constructed by taking the scalar curvature R into account instead of the Lagrangian
density as an extension of teleparallel gravity. It is important that f (R) and f (T) represent
different modification classes, which assures one that these theories are not coincidental to
each other.

Nojiri and Odintsov have strived to review modified theories of gravity and concluded
a rich cosmological structure [34]. It is observed that these theories provide evidence of
a transition to the accelerated expansion phase of the universe and may pass the solar
system test. In [35], both strong and weak gravitational backgrounds of f (R)-gravities are
considered to discuss inflation, dark energy (DE), cosmic perturbation, and local gravity
constraints. The authors in [36] discussed the different representation and properties of the
f (R)-gravity and its modified form. It is found that numerous DE models with different
fluids may imitate the ΛCDM model consistency with the recent observational bounds [37].

The study of gravitational baryogenesis emerged from the near past and many scien-
tists investigated it while considering various theories of gravity. Bento et al. [38] investi-
gated the effect of the well-known term ηB

S in the context of the GB braneworld cosmology.
This phenomenon is studied under the effect of the f (R)-gravity in [15]. Oikonomou [39]
studied the gravitational baryogenesis mechanism for a Type IV singularity, considering
two distinct models that described two different Type IV singularities. Considering various
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cases of f (T)-gravity, Oikonomou and Saridakis [11] have discussed baryogenesis. It is ob-
served for the loop quantum cosmology (LQC) [40] that ηB

S is consistent with observational
data. The same authors examined baryon number to entropy ratio for the GB gravitational
baryogenesis term [10]. The investigation of gravitational baryogenesis, considering the
f (R)-gravity, with nonminimal coupling between matter and curvature, is focused in [12].
Considering that the universe is composed of DE and perfect fluid, this ratio is discussed
for f (R, T ) gravity [41], where T is the trace of the energy momentum tensor. The results
obtained by them was well matched with observational data. Sahoo and Bhattacharjee [13]
discussed the baryogenesis phenomenon for the non-minimal f (R, T ) gravity and obtained
well-matched outcomes with observational bounds.

Bhattacharjee and Sahoo [16] investigated baryogenesis in the f (Q, T ) gravity and
concluded that this gravity is consistent with the gravitational baryogenesis phenomenon.
Consistent results with observational data are extracted for the baryon to entropy ratio by
Bhattacharjee [42], taking non-minimal f (T) and f (T, B) theories of gravity into account,
where B is the boundary term. Azhar et al. [43] considered the power law scale factor
to discuss the generalized gravitational baryogenesis for f (T,TG) and f (T, B) gravity
models and verify the consistency of results with observations (where TG is the teleparallel
equivalent to the GB term). Agrawal et al. [44] considered the matter field to be made up
with perfect fluid to discuss the gravitational baryogenesis models comparison in f (R)
gravity. Azhar et al. [45] examined baryogenesis in the context of f (G, T ) and f (R,G),
using some specific models to evaluate the term ηB

S , such as f (G, T ) = δGm + λT and
f (G, T ) = δGm + T + εT 2. The outcomes from these models exhibit such values which
lie in the range of observational data. The models discussed for the f (R,G) gravity were
f (R,G) = k1R + k2RnGm and f (R,G) = foR + f1

√
G, and they found consistent results

with observations. Mavromatos [46] used the string/brane theory through the compactifi-
cation of spatial dimensions in the presence of non-trivial Kalb-Ramond axion-like fields,
which have not been fully explored so far. He discussed a scenario which produced a
spontaneous Lorentz and CPT-violating cosmological backgrounds, which in the early
universe can lead to baryogenesis through leptogenesis which can be initiated from the
idea of baryogenesis in models with heavy right-handed neutrinos. Jawad and Sultan [47]
investigated the matter–antimatter asymmetry in context of f (R, A) cosmology, where A is
the trace of anti-curvature, and found compatible outcomes with recent observational data.

The aim and motivation of this work is to investigate the implication of modified
Hořava-Lifshitz F(R) gravity to address the phenomenon of gravitational baryogenesis,
which came into existence along with the big bang, by discussing the coupling time t = tD,
a prerequisite to examining this physical aspect of the universe. Since one among the
biggest difficulties towards quantum theories of gravity is that GR is non-renormalizable
which causes a loss of theoretical control and predictability at high energies. In 2009,
Hořava presented a new theory avoiding this issue by invoking a Lifshitz-type anisotropic
scaling at high energy [48] due to which it is called Hořava-Lifshitz theory of gravity. The
casual structure of this theory was depending on foliation theory and relativistic concept
of time emerges at large distances. Mathematically, this theory is considered as topologi-
cally massive theory that involves the Cotton tensor which is a feasible ultra violet (UV)
completion of GR where at high energies speed of light goes to infinity. The quality of this
approach comparing to previous quantum gravity approaches such as LQC is that it uses
concepts from condensed matter physics such as quantum critical phenomena. Due to im-
portance of this theory, its various important cosmological implications have investigated.
For example, in early universe it leads to regular bounce solutions due to higher spatial cur-
vature term [49,50] which is also a source to milder the flatness problem [51]. The horizon
problem is addressed with anisotropic scaling of the theory and leads to a scale- invariant
cosmological perturbations without inflation [52]. Circularly polarized gravitational waves
can be generated by considering parity-violating version of this theory [53].

Since, modified Hořava-Lifshitz theory of gravity addressed the issues of renormal-
izability and UV divergence by rejecting Lorentz asymmetry. The basic idea to evade the
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above issue is invoking a different kind of scaling in the UV which is anisotropic scaling
also called Lifshitz scaling. Mathematically this scaling can be given as

t→ bzt, ~x → bx, φ→ b−sφ,

where φ represents scalar field, the number z is called dynamical critical exponent, b is an
arbitrary number and s gives the scaling dimension which may be given as

z + 3− 2z− 2s = 0.

Here z comes from dt, 3 from d3~x, −2z from two times derivatives and −2s from two φ’s in
the canonical kinetic term which leads to the relation

s =
3− z

2
.

It is interesting that z = 3 implies s = 0 which means that the amplitude of quantum
fluctuations of φ does not change as the energy scale of the system changes for which
details are given in [54]. Moreover, this theory has answered questions about the major
issues of modern cosmology (i.e., accelerated expansion). Therefore, we are motivated to
investigate whether the modified Hořava-Lifshitz theory of gravity confirms the occurrence
of the gravitational baryogenesis scenario, which is the source for the existence of baryon
asymmetry in the universe.

The layout of paper is as follows: in Section 2, we provide a summary of the f (R̃)-
gravity and discuss field equations for the theory. We also discuss the argument R̃ in this
section that is utilized for Friedmann equations. In Section 3, we explain the phenomenon
of the gravitational baryogenesis scenario and study it for modified Hořava-Lifshitz gravity
in detail. In Section 4, we present the viability of the term ηB

S for the model f (R̃) = R̃ + αR̃2.
In Section 5, we describe the baryogenesis scenario in order to examine its viability with
observational data for another model f (R̃) = R̃ + αR̃2 + βR̃m. In Section 6, we conclude
our results.

2. Modified Hořava-Lifshitz Gravity

The generalized action term for modified Hořava-Lifshitz gravity is given by [55,56]

SF(R̃) =
∫

d4x
√
−gF(R̃) + Sm, (3)

where
√−g =

√
g(3)N, N, depending on time t, is called the lapse function and Sm is the

matter’s part of the action. Moreover,

R̃ = KabKab − λK2 + 2µ∇σ(nσ∇νnν − nν∇νnσ)−L(3)R (g(3)ab ). (4)

Here λ, µ are real constants, L(3)R is a function depending on the three-dimensional metric

g(3)ab and the covariant derivatives ∇(3)
a are defined by this metric, nσ, which is a unit

vector perpendicular to the three-dimensional hypersurface, K = Ka
a , and Kab describes the

extrinsic curvature, which can be given as Kab = 1
2N

(
ġ(3)ab −∇

(3)
a Nb −∇

(3)
b Na

)
[55]. For

the FRW universe, line element is given by

ds2 = −N2dt2 + a(t)2
[

dr2

1− κr
+ r2(dθ2 + sin2θdφ2)

]
, (5)

where a = a(t) is the scale factor of the universe and κ curvature parameter while κ = −1, 0, 1
represents the open, flat, and closed universe, respectively [57]. We consider the flat FRW
universe (κ = 0) to be composed with perfect fluid. The energy momentum tensor for
such a case is given by Tab = pgab + (ρ + p)UaUb, where ρ is the total energy density of
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the system, p describes the total pressure of the universe and Ua is called the four-velocity.
The continuity equation for modified Hořava-Lifshitz gravity in a standard form is given
by ρ̇ + 3H(ρ + p) = 0, where H = ȧ

a is called the Hubble parameter. In this scenario, the
argument R̃ takes the form

R̃ =
(3− 9λ)H2

N2 +
6µ

a3N
d
dt

(
Ha3

N

)
. (6)

Here, t is cosmic time (laterally, in our work, this cosmic time t will be dealt as the coupling
time, tD). If we choose parameters λ = µ = 1 with a flat FRW universe, then R̃ reduces to
R, and hence the usual f (R)-gravity is obtained. If we select µ = 0, R̃ reduces to RHL (Ricci
scalar for Hořava-Lifshitz gravity) [56] and thus the action (3) becomes similar to the action
term of Hořava-Lifshitz-like f (R)-gravity [58]. Hence, this assumption (µ = 0) conforms to
a degenerate limit of the general f (R) Hořava-Lifshitz theory of gravity. We call this limit
degenerate, as it is very difficult to obtain (it might be impossible).

Considering the FRW cosmology for action (3), the spatial curvature R(3)
ab = R(3)

vanishes; thus, L(3)R does not contribute anything. In other words, the same FRW cosmology

is obtained for any choice of L(3)R . It is obvious that this situation varies when BH or
solutions with a non-trivial dependence are considered. Suppose that the universe is
composed with perfect fluid, varying (3) with regards to g(3)ab and setting N = 1; the
Friedmann equations for modified Hořava-Lifshitz gravity are given by

ρ = F(R̃)− 6
[
(1− 3λ + 3µ)H2 + µḢ

]
F′(R̃) + 6µH

dF′(R̃)
dt

− c
a3 , (7)

p = −F(R̃) + 2
[
(1− 3λ + 3µ)(Ḣ + 3H2)

]
F′(R̃) + 2(1− 3λ)H

dF′(R̃)
dt

− 2µ
d2F′(R̃)

dt2 , (8)

where the prime denotes the derivative of the respective function with respect to the
argument. Here, c is the constant of integration. One can find c = 0 [56], but it has been
claimed in [59] that c will not always vanish in a local region. In the region where c > 0,
the term ca−3 may be considered as dark matter (DM). Latterly, we consider both cases of c
to analyze the scenario of gravitational baryogenesis. The value of the argument R̃ from
Equation (6) reduces to

R̃ = 3(1− 3λ + 6µ)H2 + 6µḢ. (9)

3. Gravitational Baryogenesis

According to the observational data, such as CMB [1] and BBN [2], the numeric value
observed for baryogenesis in different models is [16,45]

ηB

S
' 9.42× 10−11. (10)

Modern cosmology is of the opinion that there will be produced an equal amount
of matter and antimatter if an explosion occurs which results no baryon but the current
observational scheme [1,2], and without intense matter-antimatter annihilation [60], it is
strongly recommended that there is more matter than antimatter in the universe. The total
amount of this asymmetry is proposed by these observational schemes and is defined by
the dimensionless parameter

η =
ηB

S
=

η
β
− η

β̄

S
. (11)
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This baryon asymmetry gives rise to gravitational baryogenesis. As the universe became
cool during its evolution and gained in temperature less then the critical temperature TD
(the universe temperature at which the baryon asymmetry-generating interactions arise),
which is usually represented by T|TD , the asymmetry existing in the cosmos is nearly equal
to [3]

ηB

S
' −

15gb

g∗s
Ṙ

M2∗T

∣∣∣∣
TD

, (12)

where gb ∼ O(1) is the number representing the intrinsic degree of freedom of the baryons
and g∗s represents the total degree of freedom for those particles, which contributes to
the entropy of the universe, adopting very close values to the total degree of freedom of
massless particles [15] i.e., g∗s = g∗ ' 106.

To discuss the baryogenesis, we consider that the system prevails in the thermal
equilibrium. Moreover, at each state of the universe, the energy density corresponding to
temperature T yields

ρ(T) =
π2

30
g∗sT4. (13)

Hence, the related ratio
ηB
S for the CP-violating interaction terms of Equation (2) takes the

form as

ηB
S
' −

15gb

g∗s

˙̃R
M2∗T

∣∣∣∣
TD

. (14)

It would be useful to consider the power law solution to calculate the term ηB
S under

the action of modified Hořava-Lifshitz gravity for different models, because such kinds of
solutions are supportive to elaborate all cosmic modification such as radiation, DE-, and
DM-dominated eras. We assume a power law solution for each model in the context of
modified Hořava-Lifshitz gravity. The scale factor of the universe for the power law model
is give by [55,61]

a(t) = a0tn, H(t) =
n
t

, R̃ =
3n(n− 3λn + 6µn− 2µ)

t2 , (15)

where n is a positive real number and a0 is the value of the scale factor at the current time.
Inserting ˙̃R from the above equation in (14) and after simplifications yields

ηB

S
' 45n(n− 3λn + 6µn− 2µ)gb

2π2g∗s M2∗TD
t−3. (16)

4. Model: I

This section is devoted to discuss the phenomenon of gravitational baryogenesis for
modified Hořava-Lifshitz gravity, for which we suppose F(R̃) in Equation (7) to be as [56]

F(R̃) = R̃ + αR̃2, (17)

where α is a real constant. Differentiating Equation (17) with respect to R̃ and substituting
the value of R̃ from (15), we obtain

F′(R̃) = 1 +
6αn(n− 3λn + 6µn− 2µ)

t2 , (18)
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which yields

dF′(R̃)
dt

= −12αn(n− 3λn + 6µn− 2µ)

t3 . (19)

Substituting the values from (13), (15), (17)–(19) in (7), the simplification leads to

t4 − 90n
π2g∗sT4

D
(3λn− n − 4µ)t2 − 270αn

π2g∗sT4
D
(n− 3λn + 6µn− 2µ)(n2 − 3λn2

+ 6µn2 − 14µn + 12λ− 12µ− 4) +
30c

a3
oπ2g∗sT4

D
= 0. (20)

Solving this equation for t, we obtain four different solutions, among which three do not
satisfy the observational bounds for

ηB
S and look like extraneous roots of the model. The

only solution of Equation (20), which gives good results for
ηB
S , is given by

t =

[
1
2

(
8100n2

π4g2∗sT8
D
(n− 3λn + 4µ)2 − 120

π2g∗sT4
D

(
c
a3 − 81αλ2n4 + 324αλµn4

+ 54αλn4 − 324αµ2n4 − 108αµn4 − 432αλµn3 + 864αµ2n3 + 144αµn3

+ 324αλ2n2 − 972αλµn2 − 9αn4 − 216αλn2 + 396αµ2n2 + 324αµn2

+ 216αλµn + 36αn2 − 216αµ2n− 72αµn
)) 1

2

+
135λn2 − 45n2 − 180µn

π2g∗sT4
D

] 1
2

. (21)

As cosmic time t gives rise to the coupling time tD, the above Equation (21) becomes as

tD =

[
1
2

(
8100n2

π4g2∗sT8
D
(n− 3λn + 4µ)2 − 120

π2g∗sT4
D

(
c
a3 − 81αλ2n4 + 324αλµn4

+ 54αλn4 − 324αµ2n4 − 108αµn4 − 432αλµn3 + 864αµ2n3 + 144αµn3

+ 324αλ2n2 − 972αλµn2 − 9αn4 − 216αλn2 + 396αµ2n2 + 324αµn2

+ 216αλµn + 36αn2 − 216αµ2n− 72αµn
)) 1

2

+
135λn2 − 45n2 − 180µn

π2g∗sT4
D

] 1
2

. (22)

Replacing t by tD and substituting the above value in Equation (16), we obtain

ηB

S
' 45n(n− 3λn + 6µn− 2µ)gb

2π2g∗s M2∗TD

[
1
2

(
8100n2

π4g2∗sT8
D
(n− 3λn + 4µ)2 − 120

π2g∗sT4
D

×
(

c
a3 − 81αλ2n4 + 324αλµn4 + 54αλn4 − 324αµ2n4 − 108αµn4 − 9αn4

− 432αλµn3 + 864αµ2n3 + 144αµn3 + 324αλ2n2 − 972αλµn2 − 216αλn2

+ 396αµ2n2 + 324αµn2 + 36αn2 + 216αλµn− 216αµ2n− 72αµn
)) 1

2

+
135λn2 − 45n2 − 180µn

π2g∗sT4
D

]− 3
2

, (23)

In Figure 1, ηB
S has been plotted versus parameter α for different values of parameter

µ = 0.60, 0.75, 0.90, which belongs to real numbers. For this evaluation, the integration
constant c in Equation.(7) is taken to be non-zero (i.e., c = 0.3) and the other parameters are
a0 = 1, gb = 1, g∗s = 106, λ = 0.7, M∗ = 1012 GeV, n = 0.5, and TD = 2× 1016 GeV. The
graph represents that this ratio remains less than 9.42× 10−11, up to when α remains less
then −8× 1021, which shows consistency with the latest observational data [1,2]. Figure 2



Symmetry 2023, 15, 824 8 of 15

represents the graph of ηB
S against parameter n for different values of α, as mentioned in

the panel. All other constants chosen are the same as in the previous figure. The graph
shows that the inspected ratio remains <9.42× 10−11 up to when n < 1.86, resulting in
compatibility with the observational data [1,2].

μ= 0.60

μ= 0.75

μ= 0.90

-8×1022 -7×1022 -6×1022 -5×1022 -4×1022 -3×1022 -2×1022 -1×1022

2.×10-11

4.×10-11

6.×10-11

8.×10-11

1.×10-10

α

ηB

s

For c≠0

Figure 1. Plot of ηB
S versus parameter α, for µ = (0.60, 0.75, 0.90), while other fixed parameters are

TD = 2× 1016 GeV, a0 = 1, c = 0.3, gb = 1, g∗s = 106, λ = 0.7, M∗ = 1012 GeV, and n = 0.5.

α= -2.6×1022

α= -2.7×1022

α= -2.8×1022

0.5 1.0 1.5 2.0
0

2.×10-11

4.×10-11

6.×10-11

8.×10-11

1.×10-10

n

ηB

s

For c≠ 0

Figure 2. Variation of ηB
S against the parameter n for the model F(R̃) = R̃ + αR̃2.

In particular, if we choose the constant c = 0 in Equation (7), then Equation (23)
reduces to
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ηB
S

∣∣∣∣
c=0

' 45n(n− 3λn + 6µn− 2µ)gb
2π2g∗s M2∗TD

[
1
2

(
8100n2

π4g2∗sT8
D
(n− 3λn + 4µ)2 − 120

π2g∗sT4
D

×
(

54αλn4 − 81αλ2n4 + 324αλµn4 − 324αµ2n4 − 108αµn4 − 9αn4

− 432αλµn3 + 864αµ2n3 + 144αµn3 + 324αλ2n2 − 972αλµn2 − 216αλn2

+ 396αµ2n2 + 324αµn2 + 36αn2 + 216αλµn− 216αµ2n− 72αµn
)) 1

2

+
135λn2 − 45n2 − 180µn

π2g∗sT4
D

]− 3
2

. (24)

In Figure 3, the ratio ηB
S has been plotted versus parameter α for varying values of

µ, which are (0.60, 0.75, 0.90). In this case, the integration constant c in Equation (7) is
chosen to be zero. The other constants are taken to be as a0 = 1, gb = 1, g∗s = 106,
λ = 0.7, M∗ = 1012GeV, n = 0.5, and TD = 2 × 1016 GeV. The graph described that
ηB
S < 9.42× 10−11 for α . −8× 1021, which is consistent with the current observational

data [1,2]. Figure 4, shows the graph of ratio ηB
S against n for various values of parameter α.

All the parameters are chosen, the same as in the previous plot. The graph describes that
ηB
S < 9.42× 10−11 for n . 1.88, which shows compatibility with the observations [1,2].

μ=0.60

μ=0.75

μ=0.90

-1×1023 -8×1022 -6×1022 -4×1022 -2×1022

2.×10-11

4.×10-11

6.×10-11

8.×10-11

1.×10-10

α

ηB

s

For c=0

Figure 3. Variation of baryon number to entropy ratio against parameter α for various values of
parameter µ mentioned in the panel. The other parameters are ao = 1, gb = 1, g∗s = 106, λ = 0.7,
M∗ = 1012 GeV, n = 0.5, and TD = 2× 1016 GeV.
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α= -2.6×1022

α= -2.7×1022

α= -2.8×1022

0.5 1.0 1.5 2.0

2.×10-11

4.×10-11

6.×10-11

8.×10-11

1.×10-10

n

ηB

s

For c=0

Figure 4. Plot of ηB
S against parameter n for the model F(R̃) = R̃ + αR̃2.

5. Model: II

In this section, we are motivated to consider the more generalized and extended
functional form of F(R̃), which is mathematically given by

F(R̃) = R̃ + αR̃2 ++βR̃m, (25)

where α, β are non-zero real numbers and m > 2 is also a real constant. Differentiating
Equation (25) with respect to R̃ and substituting the value of R̃ from Equation (15), we obtain

F′(R̃) = 1 +
6αn(n− 3λn + 6µn− 2µ)

t2 +
βm3m−1nm−1(n− 3λn + 6µn− 2µ)m−1

t2(m−1)
. (26)

The above equation leads to

dF′(R̃)
dt

= −12αn(n− 3λn + 6µn− 2µ)

t3 − 2(m− 1)βm[3n(n− 3λn + 6µn− 2µ)]m−1

t2m−3 . (27)

Substituting the values from Equations (13), (15), and (25)–(27) in Equation (7), a simplifica-
tion yields

t2m+3n − 90n2

π2g∗sT4
D
(3λ− 1)t2m+3n−2 − 90n2(n− 3λn + 6µn− 2µ)

π2g∗sT4
D

[
3α(n− 3λn− 2µ)

− 48αnµ− 12n(1− 3λ + 3µ)

]
t2m+3n−4 − 30(3mnm)(n− 3λn + 6µn− 2µ)m−1

π2g∗sT4
D

×
[

n− 3λn + 6µn + 2µm− 2βmn(1− 3λ + 3µ)− 2µ

]
t3n + 120µ β m(3mnm)

× (n− 3λn + 6µn− 2µ)m−1

π2g∗sT4
D

t3n−4 − ca−3
o t2m = 0. (28)

As the above equation is much complicated and impossible to solve, for simplicity, we
choose c = 0; it reduces to
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t2m+4 − 90n2

π2g∗sT4
D
(3λ− 1)t2m+2 − 90n2(n− 3λn + 6µn− 2µ)

π2g∗sT4
D

[
3α(n− 3λn− 2µ)− 48αnµ

− 12n(1− 3λ + 3µ)

]
t2m − 30(3mnm)(n− 3λn + 6µn− 2µ)m−1

π2g∗sT4
D

[
n− 3λn + 6µn + 2µm

− 2βmn(1− 3λ + 3µ)− 2µ

]
t4 +

120mβµ(3mnm)(n− 3λn + 6µn− 2µ)m−1

π2g∗sT4
D

= 0. (29)

When m = 3, Equation (29) becomes as

t10 − 90n2

π2g∗sT4
D
(3λ− 1)t8 − 90n2(n− 3λn + 6µn− 2µ)

π2g∗sT4
D

[
3α(n− 3λn− 2µ)− 48αnµ

− 12n(1− 3λ + 3µ)

]
t6 − 810n3(n− 3λn + 6µn− 2µ)2

π2g∗sT4
D

[
n− 3λn + 6µn + 4µ− 6β

× n(1− 3λ + 3µ)

]
t4 +

9720βµn3(n− 3λn + 6µn− 2µ)2

π2g∗sT4
D

= 0. (30)

The above mathematical model is still complicated and it is impossible to obtain the
general solution. If we assign some particular values to the parameters involved in the
coefficients of the model equation, it leads to a constant solution. We assign fixed values
to the parameters involved in Equation (30), as g∗s = 106, λ = 0.7, M∗ = 1012 GeV, n = 2,
TD = 2× 1016 GeV, and α = 5, by varying the values to the parameter µ (as mentioned
in Table 1). For each value of µ, twelve different roots are obtained, among which, eight
belongs to a set of complex numbers that cannot be further discussed. Two of them are
equal to zero and considered as trivial solutions, while the other two are ±6.33978× 10−7.
The solution 6.33978× 10−7 is an extraneous root while−6.33978× 10−7 is the only solution
for the coupling time t = tD, which gives suitable results for the term ηB

S . These values in
a point form are mentioned in Table 1. These deduced values provide consistent results
with observations of ηB

S . It can be observed from Table 1 that as the value of µ increases, ηB
S

decreases.

Table 1. Baryogenesis for F(R̃) = R̃ + αR̃2 + βR̃m when m = 3.

Sr. No µ
ηB
S

1 −0.90 9.453× 10−23

2 −0.85 9.442× 10−23

3 −0.80 9.433× 10−23

4 −0.75 9.426× 10−23

5 −0.70 9.422× 10−23

When m = 4, Equation (29) becomes as

t12 − 90n2

π2g∗sT4
D
(3λ− 1)t10 − 90n2(n− 3λn + 6µn− 2µ)

π2g∗sT4
D

[
3α(n− 3λn− 2µ)− 48αnµ

− 12n(1− 3λ + 3µ)

]
t8 − 2430n4(n− 3λn + 6µn− 2µ)3

π2g∗sT4
D

[
n− 3λn + 6µn + 6µ

− 8nβ(1− 3λ + 3µ)

]
t4 +

38880βµn4(n− 3λn + 6µn− 2µ)3

π2g∗sT4
D

= 0. (31)

The complications to find the solution of the above mathematical model also exist in
this case. To avoid the complication, we assign some particular values to the parameters
involved in the coefficients of the above equation, which leads to constant solutions. We
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assign fixed values to the parameters involved in Equation (31) as g∗s = 106, λ = 0.7,
M∗ = 1012 GeV, n = 2 and TD = 2× 1016 GeV, α = 5, and varying values to the parameter
µ, as mentioned in Table 2. For each value of µ, fourteen different solutions for t are
obtained, among which ten solutions belong to set of complex numbers that we ignore,
as they are impossible to tackle. Two more solutions are equal to zero and considered as
trivial solutions, while the other two non-zero real solutions are ±3.31854× 10−6 from
which 3.31854× 10−6 is extraneous roots, while −3.31854× 10−6 is the only solution for
which the coupling time t = tD provides good matchable results with the observational
data for ηB

S . It can be observed from Table 2 that as the value of µ increases, ηB
S decreases,

and remains in the required range.

Table 2. Baryogenesis for F(R̃) = R̃ + αR̃2 + βR̃m when m = 4.

S. No µ
ηB
S

1 0.20 1.176× 10−26

2 0.18 1.437× 10−26

3 0.16 1.637× 10−26

4 0.14 1.819× 10−26

5 0.12 1.999× 10−26

6. Conclusions and Discussion

The motivation of this research work is to look over the compatibility and consistency
of the modified Hořava-Lifshitz theory in the aspect of gravitational baryogenesis with
perfect fluid and the FLRW universe. A prerequisite to examining this physical aspect of
the universe is to evaluate the coupling time t = tD. For this purpose, we assumed two
different models, and the baryon asymmetry is investigated thoroughly. The first model
considered is F(R̃) = R̃ + αR̃2. This model is analyzed for two different cases. In first
case, we examined the ratio ηB

S when the constant of the integration c in Equation (7) is
considered to be non zero. The outcomes in this case are plotted in Figures 1 and 2 for
ηB
S against α and n, respectively. It is found from the figures that the assumed model is

efficient and consistent in presenting the observed value of ηB
S . Graphical values exhibit an

increase in the baryon to entropy ratio, as the parameter α and n increases. In the second
case, the constant c is chosen to be zero in Equation (7), and the baryogenesis phenomenon
is investigated. It is found in Figure 3 (the plot of ηB

S against α) and Figure 4 (the graph of
ηB
S versus n) that ηB

S has an excellent agreement with the observational data [1,2].
The second model considered is more generalized and extended, having a mathe-

matical formalism of F(R̃) = R̃ + αR̃2 + βR̃m. To evaluate the baryon to entropy ratio
for this model, the constant of integration c in Equation (7) is taken to be zero to avoid
the complication for the solution of the model equation. This model is analyzed for two
different values of m (m = 3 and m = 4). The mathematical expression for the coupling
time t = tD was impossible to obtain for both values of m. Therefore, the coupling time, tD,
is obtained in a constant form against different values of µ and a tabular representation
of the outcomes is given in spite of the graphical description. For m = 3, twelve different
solutions for the t = tD were obtained, among which eight were complex and not dis-
cussed. The other two solutions were zero, while the remaining two roots were ±0.962195.
From these two values, tD = 0.962195 is an extraneous root while −0.962195 involves the
ratio ηB

S . The baryogenesis phenomenon is calculated for five different values of µ and
results are mentioned in Table 1. The outcomes are that these results are consistent with
observational data. It is also observed that as the value of µ increases, the baryon to entropy
ratio decreases.

In the same manner, the baryon to entropy ratio is calculated for m = 4, which provides
fourteen different solutions for t = tD, among which ten were complex and two were equal
to zero, which we did not discuss. The other two real solutions were ±3.31854× 10−6

among which the solution, 3.31854× 10−6, behave like extraneous roots. Only the solution
−3.31854× 10−6 was compatible to the observations and hence was considered to analyze
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the ratio. Taking tD = −3.31854× 10−6 into account, five different values of µ are utilized to
find

ηB
S , which is mentioned in Table 2. It is found that the

ηB
S for these values is consistent

and remains in the range of observations. Moreover, it is also found that
ηB
S decreases as

µ increases.
From all obtained results of the ratio

ηB
S , it is concluded that modified Hořava-Lifshitz

gravity can produce a non-vanishing baryon asymmetry, which is highly compatible with
the latest observational bounds for various model parameters.
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