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Abstract: Most of the existing sender-based message logging protocols cannot commonly handle
simultaneous failures because, if both the sender and the receiver(s) of each message fail together, the
receiver(s) cannot obtain the recovery information of the message. This unfortunate situation may
happen due to their asymmetric logging behavior. This paper presents a novel sender-based message
logging protocol for broadcast network based distributed systems to overcome the critical constraint
of the previous ones with the following three features. First, when more than one process crashes at the
same time, the protocol enables the system to ensure the always no rollback property by symmetrically
replicating the recovery information at each process or group member connected on a network.
Second, it can make the first feature persist even if the general form of communication for the system
is a combination of point-to-point and group ones. Third, the communication overhead resulting
from the replication can be highly lessened by making full use of the capability of the standard
broadcast network in both communication modes. Experimental outcomes verify that, no matter
which communication patterns are applied, it can reduce about 4.23∼9.96% of the total application
execution time against the latest enabling the traditional ones to cope with simultaneous failures.

Keywords: distributed systems; concurrent failures; broadcast networks; message logging

1. Introduction

A tightly coupled distributed system is well used in practice to provide a small
or medium scale high-performance computing environment for missions’critical long-
executing applications [1,2]. It is generally formed as a set of processes running on multiple
hosts inter-connected on a broadcast network, called a cluster computing system. However,
if at least one process or host crashes in the system, it may forget all the contents in its
volatile storage, leading to making the system state inconsistent [3]. To counteract the
negative effects of the misfortune, low overhead fault-tolerance techniques are essentially
required for the system [4]. For this purpose, the rollback recovery technique is one of
the appropriate tools and classified into two kinds, the checkpoint-based and message
logging-based [5]. First, the checkpoint-based technique fulfills the fault-tolerance by letting
each process periodically record its local state, called a checkpoint, on stable storage [6].
According to ensuring the system consistency, there are two types of checkpointing, as
follows. Uncoordinated checkpointing does not require this sort of synchronization on
checkpointing and, when process failures occur, finds a consistent global system state
during recovery [7]. Due to this feature, a joint effort of every process made may become
totally useless. Coordinated checkpointing forces all or related processes to have their local
states consistent with each other’s state on checkpointing, incurring higher failure-free
overhead [8]. However, this technique has the insufficiency that, even if failed processes
roll back to their latest consistent global checkpoint, they may not replay the messages
in the same receipt order such as in their pre-failure states. This feature forces live pro-
cesses to stop their execution and invalidate a part of the execution performed after their
latest checkpoints.
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Secondly, to overcome this kind of limitation, the message logging-based technique has
been developed toward two directions, optimistic and pessimistic message logging [9]. The
optimistic message logging technique [10,11] has the same disadvantage as the checkpointing-
only recovery because it makes each process save the recovery information of each message
only on the volatile storage of the receiver [12]. Pessimistic message logging protocols [13–19]
let each message logged in secure places be unaffected by failures of message receivers,
having no surviving process come back to its previous state. Despite their higher than
normal operation cost, they become a popular fault-tolerance technique for the system.

Among them, sender-based message logging (hereafter noted as SBML) [13–18] is
well known as one of the most lightweight choices because it uses only volatile logging at
message senders compared with receiver-based ones [19] requiring stable storage accesses
mandatorily. However, the traditional SBML protocols [13–18] cannot commonly handle
simultaneous failures because, if the senders of each message fail together, its receiver(s)
cannot obtain the recovery information of the message, called the determinant. This
unfortunate situation may cause the system inconsistency. In this paper, a novel SBML
protocol is presented to solve this important problem with the following features. First, the
proposed protocol makes no rollback of the live processes permitted during recovery even
in the case of concurrent process failures, called the always no rollback property [5], by the
symmetric distribution of redundant determinants of each message. Second, it can still
preserve the first feature even in the network environment, enabling a composite of point-to-
point and group communication. Third, it can make full use of the performance efficiency
the standard broadcast network generally embeds for decreasing the communication
overhead occurring in the replication of the recovery information.

2. Preliminaries
2.1. Distributed System Model

We assume an asynchronous distributed system with no global memory, consisting of
a set of processors, processes and communication channels. Processes can communicate
with each other by exchanging messages at finite but arbitrary transmission delays through
unreliable channels, meaning messages may be dropped or duplicated on these channels.
However, it is assumed that the channels are immune to partitioning. In addition, we
assume that processes may fail based on the crash-failure model, in which they lose contents
in their volatile memories and stop their executions [5]. This system is augmented with an
unreliable failure detector [20] in order to solve the impossibility problem on distributed
consensus. A process p starting at its initial state, sp

0 , generates a sequence of events, [ep
1 ,

ep
2 , . . . , ep

k ]. These events are classified into internal, sending, and delivery. Process p may
produce an internal event to execute a particular computation without any communication.
A sending event of a message m, denoted by sending(m), is generated by sending message
m to another process, and a delivery event of m, delivery(m), by actually delivering the
message after its receipt to its corresponding application. After applying the sequence of
events [ep

1 , ep
2 , . . . , ep

k ] to sp
0 in order, p has a unique local state sp

k (k > 0). Events of processes
occurring in a failure-free execution are ordered using Lamport’s, and happened before the
relationship [5].

2.2. Related Works

The coordinated or uncoordinated checkpoint-based recovery with optimistic mes-
sage logging may force live processes to nullify a part of their execution due to process
failures [12]. The primary reason is that, if they crash, processes lose the log information of
received messages in their volatile memories. In this case, if the surviving processes have
received any messages from those failed, depending on the lost ones, their states may be
inconsistent with the states of the recovered even after completing its recovery procedure.
Let us take a look at the shortcomings with an illustration. In Figure 1, process px receives
two messages m1 and m2 from two processes, sα and sβ, in order, individually. Hereafter, it
transmits a message m3 to another process py. If px crashes later and tries to recover, like in
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this figure, it should come back to its latest checkpoint Ckj
x and replay the receipt of the two

messages. However, as px cannot obtain their receive sequence numbers(hereafter noted as
rsns) from anywhere, m2 may arrive at px earlier than m1 during recovery, unlike in the
pre-failure state. If so, it creates a message mz to py different from m3 that px generated
before the failure. To make the system have a consistent state, this situation causes a
live process py to return to its most recent checkpoint Ckl

y before delivering m3 and then
receiving mz. The rollback recovery of py may also force other live processes, although not
demonstrated in this figure, to revert to their past states in the series. To minimize this
kind of invalidation effect of normal operation execution, pessimistic message logging is
an essential building block that enables each failed process to carry out its own recovery
procedure consistently without any rollback of live ones, which is called the always no
rollback property [5].

Figure 1. Example of replaying messages when px fails.

SBML is one of the pessimistic logging techniques holding this property on a sequential
failure tolerance only: each message is logged in the volatile storage of its sender [13–18].
This asymmetric behavior allows each crashed process to attain the determinant and the
contents of every message it received before the failure from the sender. After the process
replayed the message at the same receipt position, its state always becomes consistent with
the current one of an arbitrary live process. For example, in Figure 1, after performing
SBML during normal operation, sα and sβ currently possess the recovery information of m1
and m2 in their respective memories. When it crashes, px can collect the determinants and
message contents of the two messages from them and replay the delivery of the messages
in the same rsn order it was in before the failure, regenerating the identical message m3
sent to py. Then, the final recovered state of px becomes consistent with the current one
of py.

However, the previous SBML protocols [13–18] commonly possess the critical con-
straint due to its asymmetric logging behavior: It can only tolerate consecutive failures, not
simultaneous failures. In other words, each crashed process cannot replay messages re-
ceived in the same rsn order like before the failure if their senders fail together, because they
lose the determinants of the messages in their volatile memories. This consequence may
give rise to another type of system inconsistency. In particular, when a sender transmits a
message m to a group of processes on the network, the protocols have no functionality to
handle the issue of the existence of multiple rsns of m assigned by the group of processes.
Moreover, it possess no capability of decreasing the communication cost incurred by the
replication by utilizing the embedded efficiency of the broadcasting network.
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3. The New SBML Protocol
3.1. Basic Concepts and Algorithms

A new SBML protocol is designed with the following advantageous features for a
distributed system composed of a set of processes on a broadcast network.

• None of the live processes in the system are rolled back during recovery, even in the
case of concurrent process failures.

• The protocol supports a fault-tolerance for distributed applications exchanging mes-
sages in a mix of point-to-point and group communication modes.

• With little communication cost, it can maintain the recovery information of each
application message on redundant volatile storages in a symmetric manner.

To fulfill all the three requirements in the proposed protocol, each process pi should
keep the following variables for saving a replicated recovery information of messages.

• ssni: the sequence number of the most recent one among all the messages pi has
transmitted since its initial execution state.

• rsni: the sequence number of the most recent one among all the messages pi has
delivered to applications since its initial execution state.

• nSLogi: a set keeping the recovery information of each message pi transmitted. Its
element e is composed of the identifier of the receiver (rid), send sequence number
(ssn), list of the receive sequence numbers (rsnList), and data (data) of the message.
Here, the first field rid can be the identifer of a process or a process group. Moreover,
the third field rsnList is a set whose component is a form of (pid, rsn) of the message
ppid received and assigned to rsn. It may contain multiple rsns of each sent message if
the message is transferred to a group of processes.

• nRLogi: a set keeping the determinant of each message pi received. Its element e is
composed of the identifier of the sender (sid), rid, ssn, and rsnList of the message. Here,
the second field rid and the fourth field rsnList have the same respective meanings as
in nSLogi.

• ssnTablei: a table for sensing duplication of application messages already delivered
that their senders have regenerated in their recovery procedures. Its field ssnTablei[j]
contains the ssn of the most recent one that pi has received from another process pj.

The protocol consists of five primary procedures for pi to make the determinant
of each received message m, maintained not only at its sender’s and receiver’s volatile
storages, nSLogm′s sender and nRLogi, but also at those of others on the network, nRLogj(j 6=i
and j 6=m’s sender). The first procedure, SEND_M(), allows a sender to transmit each
message and keep the recovery information for the message in its volatile log. The second,
RECEIVE_M(), has each process receiving the message send its rsn to the group of the
process as well as its sender, keep the determinant of the message in its volatile log and
indicate the execution of all the send operations invoked after the message should be
delayed. The third, RECEIVE_DET(), enables the sender or the group member to insert
the rsn into the element for recovering the message and then notifies the receiver of the
completion of the volatile logging task. The fourth, RECEIVE_ACK(), checks whether the
receiver obtains the notification from both the sender and every other group member. If so,
it actually performs all the send operations delayed between the message and its immediate
next message. The last, TAKE_CHECKPOINT(), forces each process to save its checkpointed
state with its local variables on the stable storage and then performs all the send operations
delayed before the checkpoint. With this symmetric feature, it can hold the always no
orphan property, which the receiver-based pessimistic message logging using stable storage
must mandatorily have for tolerating simultaneous crashes.

Let us examine how its logging procedure works according to communication types
in detail. First, when a process receives an application message in the point-to-point
communication mode, it allows the other processes to maintain the duplicate determinants
of the message including the rsn of the message on their volatile memories. Second, every
process receiving a message destined to its group g should hold determinants recording all
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the distinct rsns assigned by the other group members as well as itself in its own storage
in a cooperative manner. Moreover, the new protocol is developed to make better use of
the performance efficiency that the standard broadcast network generally embeds in a
wise manner, minimizing the communication overhead coming from the replication of the
recovery information for overcoming multiple failures occurring at the same time. Figure 2
formally describes all the procedures in the proposed protocol that each process performs
depending on the type of event action.

Procedure SEND_M(rid, data)
increment ssni by one ;
if(rid is a group identifier) then

broadcast m(i, rid, ssni, data) to group rid ;
else

send m(i, rid, ssni, data) to prid ;
nSLogi ← nSLogi ∪ {(rid, ssni, {}, data)} ;

Procedure RECEIVE_M(m(sid, rid, ssn, data)) from pj
if((m.rid = i) ∨ (pi is a member of group m.rid except m’s sender)) then

if(ssnTablei[m.sid] < m.ssn) then
increment rsni by one ;
ssnTablei[m.sid]← m.ssn ;
broadcast det(m.sid, m.ssn, m.rid, i, rsni) to pj and the process group of pi ;
nRLogi ← nRLogi ∪ {(m.sid, m.rid, m.ssn, {(i, rsni)})} ;
delay execution of all the send operations depending on m ;
deliver m.data to its corresponding application ;

else
retrieve ∃ e ∈ nRLogi st ((e.sid = m.sid) ∧ (e.ssn = m.ssn)) ;
find ∃ l ∈ e.rsnList st (l.pid = i) ;
send det(e.sid, e.ssn, e.rid, l.pid, l.rsn) to pj ;

Procedure RECEIVE_DET(det(sid, ssn, rid, pid, rsn)) from pj
if(det.sid = i) then

find ∃ e ∈ nSLogi st (e.ssn = det.ssn) ;
e.rsnList← e.rsnList ∪ {(det.pid, det.rsn)} ;

else if(det.pid 6= i) then
find ∃ e ∈ nRLogi st ((e.sid = det.sid) ∧ (e.ssn = det.ssn)) ;
if(e exists) then

e.rsnList← e.rsnList ∪ {(det.pid, det.rsn)} ;
else

nRLogi ← nRLogi ∪ {(det.sid, det.rid, det.ssn, {(det.pid, det.rsn)})} ;
send ack(i, det.ssn, det.rid, det.pid, det.rsn) to pj ;

Procedure RECEIVE_ACK(ack(sid, ssn, rid, pid, rsn)) from pj
if(ack.pid = i) then

if(ack for the message with (ack.sid, ack.ssn, ack.rid, ack.pid, ack.rsn) is received
from both ack.sid and every other live member) then
execute all the send operations delayed before the message

whose rsn value is (ack.rsn+1) ;

Procedure TAKE_CHECKPOINT()
take its local checkpoint with (rsni, ssni, nSLogi, nRLogi, ssnTablei)

on the stable storage ;
execute all the send operations delayed before this checkpoint ;

Figure 2. Procedures of each process pi for the proposed protocol.
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We show pictorial examples to help understand how the protocol can hold all the
beneficial features stated above. In Figures 3–6, it is assumed four processes sα, px, py,
pz can communicate with each other through a broadcast network. In these examples, sα

first sends an application message m1 to a process group g composed of px, py and pz in
Figures 3 and 4, and then a point-to-point one m2 to px in Figures 5 and 6. Suppose the
initial values of ssnα, rsnx, rsny and rsnz in Figure 3 are d, a, b and c. In this figure, sα

increments ssnα by one and transmits m1 with ssnα to the broadcast network (by invoking
procedure SEND_M() in Figure 2). After that, it creates an element for recording the
recovery information of m1 and saves both the tag(m1) and data of m1 on nSLogα. Here,
tag(m1) consists of sid, rid, and ssn of m1. At this time, as the rsns of m1 are not decided
by its receivers, the list type field recording some pairs of the identifier of the respective
receiver and the rsn of m1 assigned by the receiver is initialized to an empty set. As m1 is
destined to group g, each member can sense its presence as group message and obtain it
from the network. Hereafter, it increments its own rsn by one and sends a control message
det containing a pair of its identifier and the rsn into the network while creating and saving
the determinant of m1, including the pair on its volatile memory (by invoking procedure
RECEIVE_M() in Figure 2). The control message is transferred not only to the sender of m1,
but also to every other member.

Figure 3. Example of transmitting a group message m1 to px, py and pz in the proposed SBML.

Then, in Figure 4, the sender sα extracts the pair from the control message and inserts
it into the rsn list field of the corresponding element in nSLogα (by invoking procedure
RECEIVE_DET() in Figure 2). In this case, as the rsns of px, py, and pz may be different
from each other, the three pairs should be kept on the list field. Similarly, when perceiving
the group control messages from the others, each member maintains on its volatile log
all other pairs including the rsns of m1 assigned by the others (by invoking procedure
RECEIVE_DET() in Figure 2). Afterward, it transmits another control message ack(tag(m1))
to group g. After receiving the second control message from both the sender and the
other members, each member can recognize the procedure for replicating the rsn of m1,
which, assigned by itself, has been terminated (by invoking procedure RECEIVE_ACK() in
Figure 2).

Figures 5 and 6 show an example of sending a unicast message m2 to px. After
increasing its ssn, sα lets m2 with the ssn transmitted out to px, and then puts m2’s initial
recovery information in its volatile storage in Figure 5 (by invoking procedure SEND_M() in
Figure 2). In this case, as the only target of m2 is px, px broadcasts a control message det with
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its incremented rsn to the network (by invoking procedure RECEIVE_M() in Figure 2). It
also makes and keeps m2’s determinant in nRLogx. Detecting the control message from the
network, sα, py and pz pull out a pair of px’s identifier and the rsn of m2 from the message,
and then update their respective volatile logs with the pair like in Figure 6 (by invoking
procedure RECEIVE_DET() in Figure 2). Next, they acknowledge their own volatile logging
completion by conveying ack(tag(m1)) to px (by invoking procedure RECEIVE_ACK() in
Figure 2). Therefore, the protocol can reduce the number of the first control message down
to one required to manage the recovery information redundancy for each application by
making full use of the broadcasting capability in both communication modes.

Figure 4. Example of replicating the three distinct determinants of m1 on all the volatile storages of
sα, px, py, and pz together in the proposed SBML.

Figure 5. Example of transmitting a point-to-point message m2 to px in the proposed SBML.
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Figure 6. Example of replicating the determinant of m2 on all the volatile storages of sα, py, and pz in
the proposed SBML.

Let us verify whether the protocol with the symmetric behavior stated earlier can
satisfy the first two requirements using a recovery scenario. Figure 7 illustrates the situation
that all processes on the network except pz crash from the state of Figure 6. Each failed
process rolls back to its latest checkpoint and disseminates a recovery message into the
broadcast network. At that time, a live process pz possesses in nRLogz the determinant(s)
of every point-to-point or group message transmitted on the network during normal
operation. Perceiving the recovery request from any crashed process, it provides them
for the failed one using just one message transfer, such as in Figure 8. Hereafter, every
recovering process can be restored into a pre-failure state consistent with the current state
of pz.

Figure 7. Example of the three failed processes requesting their recovery information by broadcasting
to the network in the proposed SBML.
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Figure 8. Example of enabling pz to provide the failed processes with all the determinants for
restoring their respective pre-failure states in the proposed SBML.

3.2. Correctness

In this section, we prove that the proposed protocol guarantees a consistent recovery
and satisfies the always no rollback property even in the case of simultaneous failures by
Theorems 1 and 2, respectively. In particular, Theorem 2 means even though more than one
process fails at the same time, they have only to roll back to their latest checkpointed states,
while all other live processes can continue their own executions without requiring their
rollbacks. The proof of the second theorem verifies that the number of live processes rolled
back by process failures of our protocol is 0 at all times.

Theorem 1. Even if the concurrent failures of processes on a broadcast network occur, our proposed
protocol always enables the system to be recovered consistently.

Proof. Let us denote the set of all processes on a broadcast network by N (3≤ |N|), the set
of all concurrent crashed processes ∈ N, by CRASHED, and the set of all live processes ∈
N, by SURVIVING. We prove the correctness of this theorem by induction on the number
of all the concurrent crashed processes, |CRASHED| (2 ≤ |CRASHED| ≤ |N|).
[Base case]:
It is supposed |CRASHED| = 2, i.e., the two processes px and py, crash simultaneously. In
this case, there exists at least one live process as |SURVIVING| = |N| − |CRASHED|.
Before the failures, the protocol makes every process pz ∈ SURVIVING obtain from both
px and py and maintain in nSLogz or nRLogz the determinants of all the point-to-point
or group messages they received since their respective latest checkpoints by executing
procedure RECEIVE_DET() in Figure 2. Therefore, after each failed process ∈ CRASHED
has obtained them from pz and replayed their corresponding messages in the same order
before the crashes, it can be restored to be a state consistent with pz’s current state.
[Induction hypothesis]:
Suppose that the theorem is true in the case that |CRASHED| = k(2 ≤ k ≤ |N| − 1).
[Inductive step]:
By induction hypothesis, the recovered state of each process ∈ CRASHED is consistent
with the current states of all the processes ∈ SURVIVING despite the occurrence of k
concurrent failures. With this assumption, let us verify whether the theorem is true in the
case |CRASHED| = k + 1. Suppose a process pw ∈ SURVIVING joins CRASHED at the
same time interval. There are two cases we should consider.
Case 1: (k + 1) < |N|.
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In this case, the subsequent steps are similar to the base case mentioned earlier.
Case 2: (k + 1) = |N|.
In this case, there exists no live process in the system, i.e., |SURVIVING| = 0. It means the
recovered state of the system always becomes consistent even though every failed process
replays all the messages it delivered before the crashes in any receipt order.
By the induction, the protocol makes the system have a consistent state despite any number
of simultaneous process crashes on a broadcast network.

Theorem 2. Our proposed protocol ensures the always no rollback property even if multiple
processes crash at the same time.

Proof. Let us prove this theorem by contradiction. It is assumed the protocol may not
ensure the always no rollback property in case of simultaneous failures. This assumption
means that there is at least one failed process p making live processes roll back for the
system consistency. Suppose m is an arbitrary message p has received and completely
logged since its latest checkpoint according to the protocol. Two cases should be considered.
Case 1: m is a group message.
Case 1.1: process q is the sender of m and does not crash.
As q maintains in nSLogq m’s rsns all group members, including the p assigned for m before
p’s failure; p can directly obtain them from q during recovery. Thanks to this procedure, p
can always replay m in its pre-failure receipt order and then regenerate every point-to-point
or group message which p sent to live process(es) between m and its immediate next
message received before the failure. Therefore, p’s state becomes consistent with those of
the live process(es).
Case 1.2: process q is the sender of m and crashes.
Two sub-cases should be considered.
Case 1.2.1: every process in the group fails.
There exists no live process affected by the recovered state of p regardless of m’s replaying
order. Therefore, the system has no inconsistency problem.
Case 1.2.2: at least one live process r in the group exists.
The completion of logging m in the protocol has all live group members including r obtain
the rsns they assigned for m together. Thanks to its behavior, r can provide p with the
rsns in nRLogr. Therefore, p can always replay m in its pre-failure receipt order and then
regenerate every point-to-point or group message which p sent to live process(es) between
m and its immediate next message received before the failure. Therefore, p’s state becomes
consistent with r’s state.
Case 2: m is a point-to-point message.
All the subsequent steps are similar to case 1.
Therefore, the protocol makes no live process roll back even if multiple processes fail
concurrently. This contradicts the hypothesis.

4. Performance Evaluation
4.1. Simulation Environments

In this section, an extensive simulation has been conducted to measure the perfor-
mance of the proposed protocol OURS against the latest counterpart, called ORIGINAL-R,
with PARSEC simulation language [21]. As mentioned in Section 2.2, all the existing SBML
protocols [13–18] have no functionality to overcome concurrent failures due to their asym-
metric logging behavior. For this reason, they cannot be compared with OURS in terms of
failure-free overhead incurred by the creation, delivery and management of the redundant
recovery information for this purpose. To verify how much performance benefit OURS can
provide, we developed an enhanced replication-enabling SBML protocol ORIGINAL-R
based on the common structure of all the previous SBML ones to cope with simultaneous
failures for comparative study. In ORIGINAL-R, whenever each process obtains a point-
to-point or group communication type of application message m from another, the receiver
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transmits to every other process on a network an individual control message containing
the determinant of m. Moreover, even if the process receiving the control message is not
m’s sender, ORIGINAL-R forces the process to keep the determinant of m in its volatile
memory and convey an acknowledgement of the completion of logging m to the receiver
of m.

A simulated distributed system is composed of n hosts exchanging point-to-point or
group messages transferred on a broadcast network with 100 Mbps transmission capacity
and 1 ms propagation delay. All processes in the system start and finish their corresponding
executions together. Each process running on one host can send an application message
whose size is scaled from 1 KB to 1 MB to an individual process or a group of processes,
following an exponential distribution with a mean value of 3 sec. If one process performs
one message send operation to a group, the network is capable of conveying the message
to every group member using an IP multicast functionality [22]. The capacity of the volatile
storage for the logging per process is 256 MB. The interval between consecutive checkpoints
taken at a process conforms to an exponential distribution with a mean value of 5 min.

To verify our claim mentioned earlier, the two protocols make a comparison of effi-
ciency with a key performance element (Texecution) in terms of failure-free overhead resulting
from their logging procedures for getting over concurrent failures. Texecution means the
total time(marked in minutes) required to complete the execution of a distributed appli-
cation. Moreover, to perform a rich analysis of logging overhead evaluation, four types
of distributed applications, serial, circular, hierarchical and irregular, have been executed
depending on the communication pattern [23]. This measurement method is a great help
to identify a more accurate performance change arising from the susceptibility of commu-
nication patterns. We took an average of the experimental results of multiple runs.

4.2. Comparison Results

Figures 9–12 illustrate Texecution of the two protocols by changing the size of the process
group on a broadcast network, Groupsize, ranging from 6 to 16 according to inter-process
communication patterns. When Groupsize increases, the values of Texecution for both propor-
tionally become higher regardless of four communication patterns in Figures 9–12. The
results are determined because two protocols both generate quite a few additional control
messages for carrying the determinant of each application message to every group member
in order to prepare for simultaneous failures. However, these figures show that Texecution
of ORIGINAL-R is bigger than that of Ours and the difference between the two arises
quickly in proportion to the growth of Groupsize, signifying that Ours outperforms the
counterpart, especially in large-scale broadcast networked systems. The phenomenon
equally occurs in any communication pattern, such as in Figures 9–12. The reduction
rate of Texecution of Ours over ORIGINAL-R is scaled to 4.64∼9.96% in a serial pattern in
Figure 9, 4.24∼9.52% in a circular pattern in Figure 10, 4.66∼9.19% in a hierarchical pattern
in Figure 11, and 4.62∼9.49% in an irregular pattern in Figure 12. The primary cause is that,
unlike ORIGINAL-R, Ours can transmit each control message to every other process or
member with only one broadcast transfer of it for conveying the determinants or acknowl-
edgements of the completion of volatile logging. This effectiveness may be enlarged in a
group communication mode because the number of message receivers greatly increases.

With these results, we can recognize that when a distributed application is executed
combining point-to-point and group messages, Ours can achieve the goal of surviving k
concurrent failures with much less communication overhead coming from the symmet-
ric distribution of redundant determinants to each process or member compared with
ORIGINAL-R, by making better use of the cost-effective characteristic of broadcast net-
works irrespective of their delivery pattern.



Symmetry 2023, 15, 816 12 of 15

Figure 9. Texecution in case of serial pattern.

Figure 10. Texecution in case of circular pattern.
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Figure 11. Texecution in case of hierarchical pattern.

Figure 12. Texecution in case of irregular pattern.

5. Conclusions

Unlike the previous SBML protocols, the OURS presented in this paper possesses the
three desirable features, as follows. First, when more than one process crashes at the same
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time, OURS allows a distributed system to make no rollback of the live processes permitted
during recovery, even in the case of simultaneous failures by symmetrically replicating
recovery information at each process or group member connected on a network. Second,
OURS can make the first feature persist even if the general form of communication for
the system is a combination of point-to-point and group ones. Third, the communication
overhead resulting from the replication can be highly lessened by making full use of the
capability of the standard broadcast network in both communication modes. Through The-
orem 2 in Section 3.2, we verified that OURS prevents any surviving process from rolling
back even in the case of concurrent failures, i.e., ensuring the always no rollback property.
Moreover, from the experimental outcomes, we recognized that, no matter which commu-
nication patterns are applied, OURS can reduce about 4.23∼9.96% of the total application
execution time against the latest, enabling the traditional ones to cope with simultaneous
failures. In particular, this enhancement may be magnified in the group communication
mode that may significantly grow the number of receivers of messages generated.

For future works, we attempt to access the practicality of our protocol OURS by
applying it into Open MPI library based high performance systems employing a large
number of computing nodes with no message logging capabilities [24]. In particular, the
protocol will be implemented with a representative failure detection mechanism combining
a periodic liveness check with sporadic check.
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