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Abstract: In this study, the effects of laser light on the heat transfer of a thin beam heated by an 

applied current and voltage are investigated. Laser heating pulses are simulated as endogenous heat 

sources with discrete temporal properties. The heat conduction equation is developed using the 

energy conservation equation and the modified Moore–Gibson–Thompson (MGT) heat flow vector. 

Thermal and structural analysis of Euler–Bernoulli microbeams is provided with the support of 

visco-Pasternak’s base with three parameters. Using the Laplace transform method, an approxima-

tion of an analytical solution is found for the field variables being examined. A comparison was 

made of the impacts of laser pulse length, the three foundation coefficients, and the thermal param-

eters on the responses to changes in measured thermophysical fields, such as deflection and tem-

perature. 
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1. Introduction 

The principles of the theory of elasticity lead to inherent symmetries in the associated 

elasticity tensor, which defines any linearly elastic continuum at a given position. Further-

more, an elasticity tensor may display additional context-specific symmetries. This study 

focuses on these later symmetries, sometimes known as “material symmetries”. When 

symmetry is involved, it can be found in the bifurcation theory, physics, and the mechan-

ics of materials when constituent tensors, such as the elastic tensor, require classification. 

Moreover, several formulas for coordination-free criteria for determining elastic tensors 

with a given symmetry class can be found in the literature, complementing experimental 

and numerical techniques. 

There are always new developments in nanoelectromechanical systems research and 

development. Mechanical devices are becoming thinner and narrower to lessen their 

mass, raise their resonance frequency, and decrease their force constants. Improvements 

in manufacturing procedures and the development of novel techniques for actuating and 

sensing nanoscale motion are examples of recent developments in this area [1]. Microe-

lectromechanical systems (MEMS) are one of the most critical technologies of the 21st cen-

tury. It combines silicon-based microelectronics and micro industry, two of the most ad-

vanced technologies. Its microsystem-based methods and technologies may improve the 

overall quality of human life. 

Because MEMS is a combination of many different fields, its design, construction, 

and manufacturing depend on mechanical design, solid-state physics, microelectronics, 
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biological sciences, chemical engineering, hydrodynamic engineering, optical devices, 

sensor systems, and packaging. The variety of industries and uses that employ MEMS 

indicates its sophistication. Accelerometers for airbag sensors are one example of an 

MEMS device that is made and used commercially [2]. In today’s world, microelectrome-

chanical systems can be found in everything from automobiles to healthcare, electronics, 

communications, and even military systems. Li et al. [3] studied the nonlinear in-plane 

instability of shallow circular arches made of functionally graded carbon nanotube-rein-

forced composite that were limited by rotational symmetry and put under constant radial 

stress in a temperature environment. Li [4] is also interested in the transverse vibrations 

of axially moving nanobeams. This is in addition to the effects of the strain gradient and 

temperature. It considers the thermal behavior and the concept of strain gradient elastic-

ity. Li et al. [5] investigated the motion of a piezoelectric nanoribbon under the influence 

of thermomechanical and electrical forces. This is employed as a model for the intrinsic 

component of medical nanorobotics. Sui et al. [6] described the vibrational properties of 

axially moving, fairly thick plates supported by an elastic base. The plate is made of func-

tionally graded (FG) materials, and both its dynamic and kinematic conditions including 

the vibration’s inherent frequency and axial velocity are taken into consideration. 

Zemskov et al. [7] discussed the issue of unstable vibrations in a Bernoulli–Euler beam 

while considering temperature and diffusion processes that relax with time. The first 

mathematical model comprises an equation set for the beam’s unstable bending vibrations 

that consider heat transfer and mass transfer. 

In civil engineering, rigid road slabs, airport asphalt, tall building foundations, side-

walk platforms, etc., are often made with flexible-based composite structures. In these 

cases, it is important to consider the mechanical properties of structures mounted on an 

elastic base, as they are important considerations for design, use, and maintenance. For 

this reason, one of the most exciting areas of research in this field has been the analysis of 

the vibration response of laminated slabs and small beams supported by flexible founda-

tions. Based on the literature in this context, there are two main types of flexible baseboard 

models: the Winkler type and the two-parameter models, such as the Pasternak model [8]. 

Winkler proposed the first linear foundation. Many papers have been written about 

this issue, exploring various approaches such as Winkler or Pasternak foundations, flexi-

ble or viscoelastic foundations, linear or non-linear assumptions, etc. In contrast to the 

Pasternak foundation coefficients, which can withstand both normal and transverse shear 

stresses, the Winkler modulus can only handle normal loads [9]. The two-parameter elas-

tic foundation model is presented as the investigation proceeds further. The discontinuity 

may be efficiently removed by representing the soil’s compressive strength and shear 

strength with two separate factors, thereby overcoming the shortcomings of the Winkler 

foundation type. The Pasternak basis is commonly employed in the two-parameter type 

[10]. Zemskov and Tarlakovskii [11] considered an orthotropic Timoshenko beam with a 

uniformly distributed transverse load, rests on an elastic base, and is supported by an 

elastic base. The problem is one of unstable elastic diffusion resonance. On a flexible basis, 

they employed the Winkler framework. For the theoretical analysis, they employed a set 

of Timoshenko beam bending formulas that include diffusion. Zemskov et al. [12] studied 

the issue of unstable vibrations in a simply supported Euler–Bernoulli beam subject to a 

distributed transverse force. They employ a set of beam deflection formulas with inner 

diffusion processes to formulate the mathematical issue. 

Joule heating is often used as a trigger mechanism in microelectromechanical systems 

(MEMS) because it is easy to understand. The term “joule heating” refers to the process 

by which the electrical current of a building is converted into heat energy. In order to 

regulate the axial tension caused by thermal expansion from within the microbeam, a VTH 

electrothermal voltage (thermoelectric potential) is introduced between the microbeam 

stabilizers, causing an ITH current to flow through the beam, but the permanent anchors 

of the microbeam, which cause a compressive force, prevent any elongation from occur-

ring. The microbeam might buckle (deform) under such compressive stress. There are two 
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ways to approach the study of this mechanism: the thermoelectric case, which explains 

the conversion of electrical energy into heat, and the thermoelasticity case, which accounts 

for the conversion of thermal energy into compressive stress [13]. Joule heating is pro-

duced when an electric current flows through a conductor and interacts with the moving 

particles that make up the current and the atomic ions that make up the conductor itself. 

When these particles, which make up the electric current, collide with an ion, they lose 

some of their momentum in the process. This kinetic energy makes the conductor’s inter-

nal temperature rise, which turns the electrical energy into thermal energy [14]. 

In recent decades, researchers have paid particular attention to innovative, continu-

ous models of deformable materials. It is known that the internal structural motions of 

matter play an important role in determining how matter interacts with external stimuli. 

Conventional flexibility completely ignores this effect because it only gives degrees of 

freedom in translation to physical locations in the body. In thermoelasticity, the interplay 

between elasticity and heat transfer is analyzed theoretically. Thermal stresses and ther-

moelastic deformations in a variety of materials have been the focus of a great deal of 

research in recent decades [15]. Researchers are exploring thermoelasticity because of its 

usefulness in many different branches of engineering and science. The thermoelastic phe-

nomenon is briefly discussed in light of different computational techniques. When solving 

heat transfer issues using thermoelasticity theory, the outcomes vary depending on the 

starting and limiting conditions [16]. 

Based on Biot’s system of mixed parabolic and hyperbolic Biot equations [17], con-

ventional thermodynamic models predict some physical observations and outcomes that 

contradict physical phenomena. These observations include the infinite velocities of the 

thermal signals. That is why many researchers have revised the concept of traditional cou-

pled dynamic thermoelasticity in this context to address this problem. The majority of 

proposals are based on the development of the classic Fourier law of heat transfer. Among 

these proposed thermal models are those that include periods of thermal relaxation (ther-

mal delay time). In recent years, Lord and Shulman [18], Green and Lindsay [19], and 

Green and Naghdi [20–22] have published different modified heat transfer models. These 

systems are the hyperbolic heat equations that have received the most attention in the 

literature. 

From a mathematical and computational point of view, the individual physical phe-

nomena that make up many linked issues are well explained and sophisticated models 

that can be used to describe their mathematical representation. On the other hand, there 

are some situations in which a new model is necessary. This is because the current stand-

ard concept for discussing certain physical processes has been shown to be insufficient, 

and it can even sometimes lead to contradictions within some well-established physical 

systems. In these situations, a new framework is formulated. In this study, the Moore–

Gibson–Thompson (MGT) equation will be used to figure out how heat moves in a ther-

moelastic system. This model emerges due to the insertion of a relaxation parameter into 

the Green–Naghdi type III framework [23]. Quintanilla [24] presented a thermoelastic 

model in which the MGT equation includes the heat transfer rate. In this context, Quinta-

nilla [16] also proposed a two-temperature system for the Moore–Gibson–Thompson heat 

transfer equation. In previous embodiments, Quintanilla has shown that solutions are 

well-rendered and fade exponentially when the constituent parameters are set correctly. 

Since the advent of the MGT equation theory of thermoelasticity in the field of fluids, 

many studies have been conducted on this topic [25–32]. 

In many engineering applications, optimal design requires performing the elastic 

thermal vibration analysis of microbeams on an elastic basis. However, no solutions have 

been developed for the thermoelastic vibration issues that arise when thermal coupling is 

included in analyses of such structures resting on three-parameter viscoelastic elastic ba-

ses. For this purpose, the investigation of how the Winkler and Pasternak foundations 

affect the thermoelastic behavior of an Euler–Bernoulli beam is proposed. In order to 

achieve this, it was necessary to solve the derived differential equation that governs this 
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system in order to obtain the distributions of various physical domains. Moreover, the 

generalized heat transfer equation has been modified based on the MGT equation and is 

considered the first proposal in this field. Using a three-parameter viscoelastic basis and 

taking into account the thermoelastic coupling effect, the thermoelastic behaviors of mi-

crobeam resonators were studied as a result of the effects of the initial axial tension, the 

effects of the laser pulse, and the voltage. Finally, the numerical results of the different 

fields obtained are presented graphically and discussed in detail. 

2. Theoretical Analysis and Basic Equations 

In the theory of thermoelasticity of homogeneous conductive solids for heat transfer, 

the following set of governing equations can be written [33]: 

𝜎𝑘𝑙 = 2𝜇𝑒𝑘𝑙 + (𝜆𝑒𝑚𝑚 − 𝛾𝜃)𝛿𝑘𝑙, (1) 

𝜂 =
𝜌𝐶𝐸

𝜌𝑇0

𝜃 +
𝛾

𝜌
𝑒𝑘𝑙,      (2) 

2𝑒𝑘𝑙 = 𝑢𝑘,𝑙 + 𝑢𝑙,𝑘 , (3) 

𝜌𝑇0

𝜕𝜂

𝜕𝑡
= −𝑞𝑙,𝑙 + 𝜌𝑄,     𝑙, 𝑘 = 1, 2, 3. (4) 

In these equations, 𝜀𝑘𝑙 denotes the strain tensor, 𝜎𝑘𝑙 is the stress tensor, 𝑢𝑙 repre-

sents the displacement components, 𝜂 symbolizes the entropy, 𝑞𝑙 denotes the heat flow 

components, 𝑄 signifies the heat source, 𝐶𝐸 is the specific heat, 𝛿𝑘𝑙 represents the Kron-

ecker delta, and 𝜌 is the material density. The symbols 𝜆 and 𝜇 are the usual Lame’s 

constants, 𝛾 = (3𝜆 + 2𝜇)𝛼𝑡 , and 𝛼𝑡  is the thermal expansion coefficient. Additionally, 

𝜃 = 𝑇 − 𝑇0 is the temperature increment, where 𝑇0 is the reference temperature. 

The revised version of Fourier’s Law that is in line with the GN-III context [21] may 

be written as: 

𝑞𝑙 = −𝐾𝜃,𝑙 − 𝐾∗𝜗,𝑙 (5) 

where 𝜗 symbolizes the thermal displacement, 𝐾∗ refers to the material characteristics, 

𝐾 is the thermal conductivity, and 𝜗 = ∫ 𝜃𝑑𝑡. 

The suggested improved heat equation was developed by Quintanilla [15,16] after 

the relaxation coefficient 𝜏0 was implemented into the Green–Naghdi framework of type 

III. Therefore, the resulting revised heat transfer equation will be in the form of [23,24]: 

(1 + 𝜏0  
𝜕

𝜕𝑡
) 𝑞𝑙 = −𝐾𝜃,𝑙 − 𝐾∗𝜗,𝑙 . (6) 

A modified MGT heat transfer equation is obtained by combining Equations (2), (4), 

and (6) as follows: 

(1 + 𝜏0  
𝜕

𝜕𝑡
) [𝜌𝐶𝐸

𝜕2𝜃

𝜕𝑡2
+ 𝑇0𝛾

𝜕2

𝜕𝑡2
(𝑢𝑚,𝑚) − 𝜌

𝜕𝑄

𝜕𝑡
] = (𝐾

𝜕

𝜕𝑡
+ 𝐾∗) ∇2𝜃 (7) 

3. Model Description 

As illustrated in Figure 1, a thin Bernoulli–Euler thermoelastic beam supported by a 

viscoelastic foundation with three parameters and loaded with a thermoelectric current 

was considered. The microbeam has an isotropic shape with a constant cross-sectional 

area, denoted by 𝐴, thickness ℎ, and length, denoted by 𝐿. It is presumed that a Cartesian 

coordinate system (𝑥, 𝑦, 𝑧) is being used, with the origin located on the left side of the 

beam and in the middle of its thickness. The microbeam is first assumed to be at room 

temperature 𝑇0, and then it is exposed to a short-pulse laser heating at an absorption rate 

of 𝑄(𝑥, 𝑧, 𝑡) of laser energy. 
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Figure 1. Illustration of a slender beam based on visco-Pasternak’s Base. 

It is assumed that the beam deflects in a manner consistent with the Euler–Bernoulli 

model (small deflections 𝑤(𝑥, 𝑡)) as a result of its exposure to bending vibrations of small 

amplitude around 𝑥-axis. If the Euler–Bernoulli beam model is considered, the displace-

ment and strain components can be written as follows: 

𝑢 = −𝑧
𝜕𝑤

𝜕𝑥
,     𝑣 = 0,     𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤(𝑥, 𝑡), (8) 

𝑒𝑥𝑥 = 𝑒 = 𝑧
𝜕2𝑤

𝜕𝑥2
. (9) 

Pasternak’s model has been utilized to characterize the soil foundation so that shear 

contact between the springs may be calculated. To do this, the spring components will be 

joined to a layer of incompressible vertical elements that are subject only to transverse 

shear deformation. Because of its relative ease of use, Pasternak’s two-parameter system 

has garnered the most attention from engineers. The impact of the underappreciated 

shear–strain energy on the soil is taken into consideration in the Pasternak version. Pas-

ternak’s basis formula, which is based on transverse displacement, forms an elastic reac-

tion to the foundation and is as follows [33,34]: 

𝑝(𝑥, 𝑡) = 𝐾𝑤𝑤 − 𝐾𝑝

𝜕2𝑤

𝜕𝑥2
 (10) 

where the Winkler and Pasternak moduli are denoted by the parameters 𝐾𝑤 and 𝐾𝑝, re-

spectively. 

In order to account for the effects of viscoelasticity, Kelvin–Voigt included them in 

the elastic Pasternak model. The elastic foundation force can be expressed as [34]: 

𝑝(𝑥, 𝑡) = 𝐾𝑤𝑤 − 𝐾𝑝

𝜕2𝑤

𝜕𝑥2
+ 𝐾𝑣

𝜕𝑤

𝜕𝑡
 (11) 

where 𝐾𝑣 represents the damping of the foundation caused by the viscous components. 

In the special situation where 𝐾𝑝 is equal to zero, Equation (11) depicts the reaction of the 

viscoelastic Winkler foundation. If the microbeam is not supported by the elastic basis, 

then 𝐾𝑤 = 𝐾𝑝 = 𝐾0 = 0, and Equation (11) may be simplified to become that which is de-

scribed in [35]. 

For the Bernoulli–Euler microbeam shown in Figure 1, the linear bending issue may 

be represented by the following equation of motion in terms of the Pasternak’s basis, 

𝑝(𝑥, 𝑡), and the bending moment, 𝑀(𝑥, 𝑡) [36,37]: 

𝜕2𝑀

𝜕𝑥2
= 𝜌𝐴

𝜕2𝑤

𝜕𝑡2
+ 𝑝(𝑥, 𝑡) (12) 

It is possible to calculate the Bernoulli–Euler flexural moment of the microbeam using 

the following equation 
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𝑀 = ∫ 𝑧 𝜎𝑥d𝐴 (13) 

where 𝜎𝑥 is the single constitutive connection for a one-dimensional problem, and the 

expression for this relationship is provided by: 

𝜎𝑥 = 𝐸
𝜕𝑢

𝜕𝑥
−

𝛼𝑡𝐸

(1 − 2𝜈)
𝜃 = −𝐸𝑧

𝜕2𝑤

𝜕𝑥2
−

𝛼𝑡

(1 − 2𝜈)
𝐸𝜃 (14) 

In Equation (14), 𝐸, 𝛼𝑡, and 𝜈 denote Young’s modulus, the coefficient of the ther-

mal expansion, and Poisson’s beam ratio, respectively. When (14) is substituted into (13), 

the flexural moment can be derived as follows: 

𝑀 = −𝐸𝐼 [
𝜕2𝑤

𝜕𝑥2
+ 𝛼𝑇𝑀𝑇] (15) 

where 𝛼𝑇 = 𝛼𝑡/(1 − 2𝜈), 𝐼 = 𝑏ℎ3/12 represents the moment of inertia, 𝐸𝐼 stands for the 

flexural stiffness of the microbeam, and 𝑀𝑇 is the thermal moment described by the ex-

pression: 

𝑀𝑇 =
12

ℎ3 ∫ 𝜃(𝑥, 𝑧, 𝑡)𝑧d𝑧
ℎ/2

−ℎ/2
  (16) 

By plugging Equation (15) into Equation (12), it is possible to derive: 

[𝐸𝐼
𝜕4

𝜕𝑥4
− 𝐾𝑝

𝜕2

𝜕𝑥2
+ 𝐾𝑤 + 𝜌𝐴

𝜕2

𝜕𝑡2
+ 𝐾𝑣

𝜕

𝜕𝑡
] 𝑤 + 𝛼𝑇𝐸𝐼

𝜕2𝑀𝑇

𝜕𝑥2
= 0. (17) 

When Equations (7) and (8) are used, one can determine the MGT heat transport in 

terms of temperature 𝜃 and transverse displacement 𝑤 as follows: 

(𝐾∗ + 𝐾 
𝜕

𝜕𝑡
) (

𝜕2𝜃

𝜕𝑥2
+

𝜕2𝜃

𝜕𝑧2
) + 𝜌 (1 + 𝜏0

𝜕

𝜕𝑡
)

𝜕𝑄

𝜕𝑡

                                   = (1 + 𝜏0

𝜕

𝜕𝑡
)

𝜕2

𝜕𝑡2
[𝜌𝐶𝐸𝜃 − (𝛼𝑇𝐸𝑇0)𝑧

𝜕2𝑤

𝜕𝑥2
] .

 (18) 

It will be considered that the upper and lower sides of the package are thermally 

insulated. As a result, we will have 
𝜕𝜃

𝜕𝑧
= 0 at 𝑧 = ±ℎ/2. Additionally, for the current mi-

crobeam, it is presumed that the temperature increase varies sinusoidally in the direction 

of the thickness. Therefore, the following assumption can be taken into account: 

𝜃(𝑥, 𝑧, 𝑡) = Θ(𝑥, 𝑡) sin (
𝜋𝑧

ℎ
) (19) 

When Equation (19) is substituted into Equations (15) and (17), the resulting equa-

tions are: 

[𝐼𝐸
𝜕4

𝜕𝑥4
− 𝐾𝑝

𝜕2

𝜕𝑥2
+ 𝜌𝐴

𝜕2

𝜕𝑡2
+ 𝐾𝑣

𝜕

𝜕𝑡
+ 𝐾𝑤] 𝑤 +

24𝐼𝐸𝛼𝑇

ℎ𝜋2

𝜕2Θ

𝜕𝑥2
= 0, (20) 

𝑀 = −𝐼𝐸
𝜕2𝑤

𝜕𝑥2
− (

24𝐼𝐸𝛼𝑇

ℎ𝜋2
) Θ (21) 

Following the multiplication by 
12

ℎ3 𝑧, the integration, together with the microbeam 

thickness in Equation (18), produces the following results: 

(1 + 𝜏0

𝜕

𝜕𝑡
)

𝜕2

𝜕𝑡2
[
𝜌𝐶𝐸

𝐾
Θ − (

𝛼𝑇𝜋2ℎ𝑇0𝐸

24𝐾
)

𝜕2𝑤

𝜕𝑥2
] = (𝐾∗ + 𝐾 

𝜕

𝜕𝑡
) (

𝜕2Θ

𝜕𝑥2
−

𝜋2

ℎ2
Θ)

+ (
𝜋2

2𝐾ℎ2
) (1 + 𝜏0

𝜕

𝜕𝑡
) ∫ 𝑧

𝜕𝑄

𝜕𝑡
d𝑧

ℎ/2

−ℎ/2

.

 (22) 
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4. Solution of the Governing Equations 

Normalization must be performed first so that the governing equations can be solved. 

As a result, the following nondimensional variables can be introduced: 

Θ′ =
Θ

𝑇0

,    𝜎𝑥
′ =

1

𝐸
𝜎𝑥 , {𝑡′, 𝜏0

′ } =  
𝜗2

𝑘
{𝑡, 𝜏0}, {𝑥′, 𝑧′} =

𝜗

𝑘
{𝑥, 𝑧}, 𝐾𝑣

′ =
𝜗2𝐾𝑣

𝑘𝐼𝐸
,

𝑀′ =
𝑘𝑀

𝜗𝐼𝐸
, {𝑤′, 𝑢′} =

𝜗

𝑘
{𝑤, 𝑢}, 𝑄′ =

𝑘2𝑄

𝜗2𝐾𝑇0

, 𝐾𝑤
′ =

1

𝐼𝐸
𝐾𝑤 , 𝐾𝑝

′ =
𝜗2

𝑘2𝐼𝐸
𝐾𝑝 ,

 (23) 

where 𝜗 = √
𝐸

𝜌
 and 

1

𝑘
=

𝜌𝐶𝐸

𝐾
. 

Equations (14) and (20)–(22) can be rewritten after using the above nondimensional 

parameters (eliminating primes for convenience) as: 

[
𝜕4

𝜕𝑥4
− 𝐾𝑝

𝜕2

𝜕𝑥2
+

12

ℎ2

𝜕2

𝜕𝑡2
+ 𝐾𝑣

𝜕

𝜕𝑡
+ 𝐾𝑤] 𝑤 = − (

24𝜗𝑇0𝛼𝑇

𝑘𝜋2ℎ
)

𝜕2Θ

𝜕𝑥2
 (24) 

(1 + 𝜏0

𝜕

𝜕𝑡
)

𝜕2

𝜕𝑡2
[Θ − (

𝛼𝑇𝜋2𝑇0
2ℎ𝜗𝐸

24𝐾
)

𝜕2𝑤

𝜕𝑥2
] = (

𝑘𝐾∗

𝜗2𝐾
+

𝜕

𝜕𝑡
) (

𝜕2Θ

𝜕𝑥2
−

𝜋2

ℎ2
Θ)

                                                                   −
𝜋2

2
(1 + 𝜏0

𝜕

𝜕𝑡
) ∫ 𝑧

𝜕𝑄

𝜕𝑡
d𝑧,

ℎ/2

−ℎ/2

 (25) 

𝑀 = −
𝜕2𝑤

𝜕𝑥2
− (

24𝜗𝑇0𝛼𝑇

𝑘ℎ𝜋2
) Θ (26) 

𝜎𝑥 = −𝑧
𝜕2𝑤

𝜕𝑥2
− (𝛼𝑇𝑇0)𝜃. (27) 

The diversity of laser pulses and their distinctive properties in the fabrication and 

development of elements with complex geometries and the integration of many compo-

nents into one integrated part have gained significant engineering and scientific interest 

in recent years. In the surface heat source model 𝑄(𝑥, 𝑧, 𝑡), the pattern of surface heat flow 

to the upper surface of the microbeam, which is assumed to follow a Gaussian distribu-

tion, is supposed to be of the following form [38,39]: 

𝑄(𝑥, 𝑧, 𝑡) = √
4ln(2)

𝜋
(

1 − 𝑅

𝑑𝑡𝑝

) 𝐼0𝑒
(−

𝑥
𝑑

)
𝑒

−𝛽|
𝑡−2𝑡𝑝

𝑡𝑝
|
  (28) 

where 𝐼0 is the laser fluence (J/m2), 𝑑 symbolizes the laser penetration depth, 𝑡𝑝 denotes 

the length of time that the laser pulse is active, and the reflectance of the surface denoted 

by 𝑅 and 𝛽 is a constant parameter. 

5. Initial and Boundary Conditions 

In the beginning, at 𝑡 = 0, the microbeam is taken to be at rest, and the initial circum-

stances are supposed to be: 

Θ(𝑥, 0) = 0 =
𝜕Θ(𝑥, 0)

𝜕𝑡
,    𝑤(𝑥, 0) = 0 =

𝜕𝑤(𝑥, 0)

𝜕𝑡
,

𝑢(𝑥, 0) = 0 =
𝜕𝑢(𝑥, 0)

𝜕𝑡
,    𝜎𝑥(𝑥, 0) = 0 =

𝜕𝜎𝑥(𝑥, 0)

𝜕𝑡
.

 (29) 

Boundary conditions are necessary to ensure the possibility of a complete solution to 

the system of differential equations. In this work, the following mechanical boundary con-

ditions will be taken into account 
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𝑤(𝑥, 𝑡) = 0,   
𝜕2𝑤(𝑥, 𝑡)

𝜕𝑥2
= 0,         at     𝑥 = 0,

𝑤(𝑥, 𝑡) = 0,     
𝜕2𝑤(𝑥, 𝑡)

𝜕𝑥2
= 0,         at     𝑥 = 𝐿.

 (30) 

Joule heating is produced when an electric current flows through a conductor and 

interacts with the moving particles that make up the current and the atomic ions that make 

up the conductor itself. When these particles, which make up the electrical current, collide 

with an ion, they lose some momentum. This kinetic energy causes the conductor’s inter-

nal temperature to increase, which changes the electrical energy into thermal energy. 

When a potential voltage is applied across the first end of a microbeam (𝑥 = 0), heat is 

generated with an intensity per volume of 𝐸 = 𝐼𝑒
2/𝜎𝑒, where 𝐼𝑒  is the current density de-

scribed by 𝐼𝑇ℎ/𝐴, and 𝜎𝑒 is the electrical conductivity of the microbeam. The density of 

the current is considered to remain constant all along the microbeam. Due to the small 

scale of the investigation, it will be assumed that convection and thermal radiation from 

the microbeam are restricted and negligible. The average temperature along the portion 

of the microbeam caused by the current 𝐼𝑇ℎ is governed by the following equation, which 

is derived using the heat equation (Fourier’s law) and the aforementioned assumptions 

[14]: 

−
𝜕Θ(𝑥, 𝑡)

𝜕𝑥
=

𝐼𝑒
2

𝜎𝑒

        at       𝑥 = 0.  (31) 

The electrothermal voltage 𝑉𝑒 and current density may be expressed as 𝐼𝑒 = 𝑉𝑒𝜎𝑒/ℎ. 

Since this is the case, Equation (31) may be rewritten as [14]: 

−
𝜕2Θ(𝑥, 𝑡)

𝜕𝑥2
=

𝜎𝑒𝑉𝑒
2

ℎ2
        at       𝑥 = 0. (32) 

In addition, it will be assumed that at the second terminal edge of the microbeam, 

the function Θ(𝑥, 𝑡) satisfies the following condition 

𝜕Θ

𝜕𝑥
= 0                 at      𝑥 = 𝐿. (33) 

6. Laplace Transform Solution 

The partial differential equation in the time domain may be transformed into a dif-

ferential equation in the space domain with the help of a mathematical method known as 

the Laplace transform. After that, the result is transformed using the inverse Laplace op-

erator on the response, which causes it to be translated back into the time domain. If 

𝑔(𝑥, 𝑡) is a function that operates in the time domain, then the mathematical definition of 

its Laplace transform is given by: 

𝑔̅(𝑥, 𝑠) = ∫ 𝑔(𝑥, 𝑡)e−𝑠𝑡d𝑡
∞

0

. (34) 

Now, by taking the beginning conditions (29) and applying the Laplace transform to 

both sides of the basic equations given in (24)–(27), the following formulas can be ob-

tained: 

(
d4

d𝑥4
− 𝐾𝑝

d2

d𝑥2
+ 𝐴1) 𝑤̅ = −𝐴2

d2Θ̅

d𝑥2
 (35) 

−𝐴4

d2𝑤̅

d𝑥2
=

d2Θ̅

d𝑥2
− 𝐴3Θ̅ + 𝐴7𝑒−𝑥/𝑑 (36) 

𝑀̅ = −𝐴5Θ̅ −
d2𝑤̅

d𝑥2
 (37) 
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𝜎𝑥 = −𝑧
d2𝑤̅

d𝑥2
− 𝐴6𝜃̅ (38) 

where  

𝐴0 =
12𝐾𝑝

ℎ2
,    𝐴1 =

12𝑠2

ℎ2
+ 𝐾𝑣s + 𝐾𝑤 ,    𝐴2 =

24𝜗𝑇0𝛼𝑇

𝑘𝜋2ℎ
,    𝐴3 =

𝜋2

ℎ2
+

𝑠2(1 + 𝑠𝜏0)

𝐾0 + s
,

𝐴5 =
24𝜗𝑇0𝛼𝑇

𝑘𝜋2ℎ
, 𝐴4 =

𝛼𝑇𝜋2𝑇0
2ℎ𝜗𝐸(1 + 𝑠𝜏0)

24𝐾(𝐾0 + s)
, 𝐴6 = 𝑇0𝛼𝑇 , 𝐴7 =

𝑆0(1 + 𝑠𝜏0)

𝐾0 + 𝑠
,

𝐾0 =
𝑘𝐾∗

𝜗2𝐾
,   𝑆0 = √

4ln(2)

𝜋

𝛽𝐼0(1 − 𝑅)𝜋2ℎ3𝑒2𝛽

24𝑑𝑡𝑝(𝛽 + 𝑠𝑡𝑝)
.

 (39) 

Combining Equations (35) and (36) results in the differential equation shown below: 

(
d6

d𝑥6
− 𝜂3

d4

d𝑥4
+ 𝜂2

d2

d𝑥2
− 𝜂1) 𝑤̅(𝑥) = 𝜙1e−𝑥/𝑑, (40) 

where  

𝜂3 = 𝐾𝑝 + 𝐴3 + 𝐴2𝐴4,    𝜂2 = 𝐴1 + 𝐾𝑝𝐴3, 𝜂1 = 𝐴1𝐴3, 𝜙1 =
𝐴2𝐴7

𝑑2
. (41) 

It is possible to write the differential Equation (36) as follows: 

(
d4

d𝑥4
− 𝓂1

2) (
d4

d𝑥4
− 𝓂2

2) (
d4

d𝑥4
− 𝓂3

2) 𝑤̅(𝑥) = 𝜙1e−𝑥/𝑑, (42) 

where the roots of the equation: 

𝓂6 − 𝜂3𝓂4 + 𝜂2𝓂2 − 𝜂1 = 0, (43) 

are satisfied by the parameters 𝑚𝑛
2 , 𝑛 = 1,2,3. 

The solution to Equation (52) can be expressed as follows: 

𝑤̅ = ∑ (𝒫𝑛e−𝓂𝑛𝑥 + ℛ𝑛e𝓂𝑛𝑥)3
𝑛=1 + 𝜙2e−𝑥/𝑑 ,  (44) 

where 𝜙2 =
𝜙1𝑑6

1−𝑑2𝜂3+𝑑4𝜂2−𝑑6𝜂1
. 

By using the conditions of the issue, it is possible to derive the values for the param-

eters 𝒫𝑛 and ℛ𝑛, where 𝑛 = 1,2,3 in Equation (44). Similarly, by removing the function 

𝑤̅ from Equations (35) and (36), the following equation can be arrived at: 

(
d4

d𝑥4
− 𝓂1

2) (
d4

d𝑥4
− 𝓂2

2) (
d4

d𝑥4
− 𝓂3

2) Θ̅(𝑥) = −𝜙3𝑒−𝑥/𝑑 (45) 

where 𝜙3 =
𝐴7

𝑑4 (1 − 𝑑2𝐾𝑝 + 𝑑4𝐴1).  

It is possible to write the solution of Equation (45) as: 

Θ̅ = ∑ ℋ𝑛(𝒫𝑛e−𝓂𝑛𝑥 + ℛ𝑛e𝓂𝑛𝑥)3
𝑛=1 − 𝜙4e−𝑥/𝑑  (46) 

where: 

𝜙4 =
𝜙3𝑑6

1 − 𝑑2𝜂3 + 𝑑4𝜂2 − 𝑑6𝜂1

,     ℋ𝑛 = −
𝓂𝑛

4 − 𝐾𝑝𝓂𝑛
2 + 𝐴1

𝓂𝑛
2 𝐴2

. (47) 

With the assistance of Equations (44) and (46), one can construct the solution for the 

variables 𝑀̅, 𝜎𝑥, and 𝑢̅ in the Laplace domain as follows: 

𝑀̅(𝑥) = − ∑ (𝓂𝑛
2 + 𝐴5ℋ𝑛)(𝒫𝑛e−𝓂𝑛𝑥 + ℛ𝑛e𝓂𝑛𝑥)3

𝑛=1 + (𝜙4𝐴5 −
𝜙2

𝑑2) e−𝑥/𝑑  (48) 
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𝜎𝑥 = − ∑ (𝑧𝓂𝑛
2 + 𝐴6 ℋ𝑛sin (

𝜋𝑧

ℎ
)) (𝒫𝑛e−𝓂𝑛𝑥 + ℛ𝑛e𝓂𝑛𝑥)3

𝑛=1

                                                    + (𝜙4𝐴6 sin (
𝜋𝑧

ℎ
) −

𝜙2

𝑑2 𝑧) e−𝑥/𝑑,
  (49) 

𝑢̅(𝑥) − 𝑧
𝜕𝑤

𝜕𝑥
=

𝜙2

𝑑
𝑧e−𝑥/𝑑 + 𝑧 ∑ 𝓂𝑛(𝒫𝑛e−𝓂𝑛𝑥 − ℛ𝑛e𝓂𝑛𝑥)3

𝑛=1   (50) 

The boundary conditions (30) to (33) imposed on the problem can be transformed 

into the domain of the Laplace transform to become: 

𝑤̅(0, 𝑠) = 0,
𝜕2𝑤̅(0, 𝑠)

𝜕𝑥2
= 0,

𝑤̅(𝐿, 𝑠) = 0,
𝜕2𝑤̅(𝐿, 𝑠)

𝜕𝑥2
= 0,

𝜕Θ̅(0, 𝑡)

𝜕𝑥
= −

𝜎𝑒𝑉𝑒
2

𝑠ℎ2
,    

𝜕Θ̅(𝐿, 𝑠)

𝜕𝑥
= 0.

 (51) 

Boundary conditions (49) are inserted with Equations (40) and (42) to yield:   

∑ (𝒫𝑛 + ℛ𝑛)3
𝑛=1 = −𝜙2,  (52) 

∑ 𝓂𝑛
2 (𝒫𝑛 + ℛ𝑛)3

𝑛=1 = −
𝜙2

𝑑2 ,  (53) 

∑ (𝒫𝑛e−𝓂𝑛𝐿 + ℛ𝑛e𝓂𝑛𝐿)3
𝑛=1 = −𝜙2e−𝐿/𝑑  (54) 

𝑤̅ = ∑ 𝓂𝑛
2 (𝒫𝑛e−𝓂𝑛𝐿 + ℛ𝑛e𝓂𝑛𝐿)3

𝑛=1 = −
𝜙2

𝑑2 e−𝐿/𝑑  (55) 

∑ 𝓂𝑛ℋ𝑛(𝒫𝑛 + ℛ𝑛)3
𝑛=1 = −

𝜙4

𝑑
−

𝜎𝑒𝑉𝑒
2

𝑠ℎ2   (56) 

∑ 𝓂𝑛ℋ𝑛(𝒫𝑛e−𝓂𝑛𝐿 + ℛ𝑛e𝓂𝑛𝐿)3
𝑛=1 = −

𝜙4

𝑑
e−

𝐿

𝑑  (57) 

By solving this system of linear equation, the values of the two unknown parameters 

𝒫𝑛 and ℛ𝑛, where 𝑛 = 1,2,3, can be determined. 

7. Numerical Inversion Technique 

The Laplace transform inversion issue on the real axis is an ancient and challenging 

numerical inversion problem. This topic has been the subject of several academic studies 

and represents a significant issue in scientific computing. This ill-posed inverse issue can 

be solved in several ways [40–43]. 

In this study, a straightforward formula for calculating the inverse Laplace transform 

for real-world data will be presented without resorting to standard regularization tech-

niques. 

The Gaver–Stehfest technique, given in [44] and [45], is one of the most often used 

inversion algorithms, particularly in reservoir engineering, where it is essential for the 

Laplace argument 𝑠 to be real (𝑠 ∈ ℜ). Most of the time, this approach produces accepta-

ble results, mainly when used to smooth functions. The Gaver–Stehfest method relies on 

the following approximation [46]: 

𝑓(𝑥, 𝑡) =
𝑙𝑛(2)

𝑡
∑ 𝑎𝑖𝐹̅ (𝑥, 𝑖

𝑙𝑛(2)

𝑡
)𝑀

𝑖=1 ,     𝑀 = 2𝑛, 𝑛 ≥ 1, 𝑡 > 0,  (58) 

in which the parameters 𝑎𝑖 are provided as follows: 

𝑎𝑖 = (−1)𝑛+𝑘 ∑
𝑗𝑛(2𝑗)!

(𝑛−𝑗)!𝑗!(𝑗−1)!(𝑘−𝑗)!(2𝑗−𝑘)!

min (𝑘,𝑛)

𝑗=
𝑘+1

2

.  (59) 

The parameter 𝑀 = 2𝑛, sometimes called the “Stehfest number”, must be an even 

integer. Since the weighting coefficients 𝑎𝑖 depend only on the Stehfest number 𝑀, they 
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may be computed once during a pre-processing phase. Various other considerations of 

microstructured media can be found in [47–50]. 

8. Numerical Results and Analysis 

To depict the thermo-dynamic behavior of the thin microbeam on the viscous Paster-

nak basis with a heat supply in the form of laser pulses, an analytical and numerical solu-

tion was derived in the preceding sections, taking into consideration the thermoelectric 

influence. In the present section, the analytical results obtained from the literature will be 

reviewed, and the effects of several essential elements and parameters on the variations 

of the considered field variables, such as nondimensional temperature and deflection, will 

be examined. The current approach suffers from a lack of actual empirical cases, which 

can be used to measure the physical domains being investigated and then compare them 

to others. 

As far as the authors are aware, there has been no previous research into the thermo-

mechanical consequences of analyzing vibration in a thermoelectric beam using the gen-

eralized theory of thermoelasticity. For this reason, the present article uses general ther-

moplastic models to consider the vibrational properties of a microbial beam based on a 

viscoelastic-Pasternak base. To determine how to solve this problem, relevant theoretical 

issues will be considered, along with how the results are similar and different. Here, the 

numerical findings of a silicon-doped microbeam will be presented, considering the phys-

ical parameters listed in Table 1. 

Table 1. Physical values of the doped silicon microbeam. 

Quantity Symbol Value 

Density 𝜌 2332 (kg/m3) 

Young’s Modulus 𝐸 120 GPa 

Length 𝐿 600 μm 

Width 𝑏 20 μm 

Thickness ℎ 10 μm 

Thermal expansion coefficient 𝛼𝑡 2.59 × 10−6 (1/K) 

Thermal conductivity 𝐾 165 W/(m K) 

Specific heat 𝐶𝐸 130 J/(kg K) 

Electrical conductivity 𝜎𝑒 0.78 × 104 (S/m) 

Poisson’s ratio 𝜈 0.22 

Laser intensity 𝐼0 13.4 (W/m2) 

Laser penetration depth 𝑑 15.3 × 10−9 m 

Constant parameter 𝛽 1.992 

Ambient temperature 𝑇0 300  K 

Laser pulse duration 𝑡𝑝 100 × 10−15 s 

Relaxation time 𝜏0 8.5 × 10−12 s 

Surface reflectivity 𝑅 0.93 

Due to the application of non-dimensional values in the problem, it will be assumed 

that 𝐿 = 1 and 𝑧 = ℎ/3 in the numerical calculations. The results are graphically shown 

in Figures 2–11 and Table 2, with values ranging from 0 to 1.0 at different 𝑥-coordinates. 

Based on the analytical solutions obtained previously, numerous numerical examples 

were presented to study how the visco-foundation Pasternak indices (shear stiffness 𝐾𝑝, 

damping modulus of the foundation 𝐾𝑣 , and horizontal spring stiffness 𝐾𝑤 ) affect the 

beam response under the influence of the thermoelectric heat flow. Simulation results are 

also used to look at how the rise time of the laser 𝑡𝑝 and the electrothermal voltage coef-

ficient 𝑉𝑒 affect the temperature of the microbeam and how it bends. This is completed to 

better understand the thermoelectric phenomena. 
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8.1. The Influence of Visco-Pasternak’s Basis Factors 

In this subsection, the numerical results of the different field variables for studying 

the vibration of thermoelectric microbeams and evaluating their temperature 𝜃, defor-

mation 𝑢, and deflection 𝑤 will be presented, taking into account the changes in the non-

dimensional visco-Pasternak flexible basis factors (𝐾𝑝, 𝐾𝑤, and 𝐾𝑣). Table 2 shows how 

the coefficients 𝐾𝑝, 𝐾𝑤, and 𝐾𝑣 affect the thermomechanical properties of the microbeam. 

The researchers used a modified version of the MGT heat transfer equation so that they 

could study the different variations and give facts and figures for each. In order to make 

comparisons, the non-dimensional values 𝐾∗ = 200 , 𝑡𝑝 = 0.01 , 𝜏0 = 0.03 , 𝑉𝑒  = 10, and 

𝑡 = 0.12 can be set. It can be seen that the results can be obtained from comprehensive 

thermoplastic calculations for beams without a visco-Pasternak elastic basis by setting 

𝐾𝑝 = 𝐾𝑤 = 𝐾𝑣 = 0. 

The numerical data in Table 2 illustrates the influence of the Pasternak parameter 

(shear stiffness) 𝐾𝑝 on the values of various domains as a function of distance. One can 

see that as the shear stiffness 𝐾𝑝 increases, so do the values of the deflection 𝑤 in this 

table. The numerical data show that increasing the constant base factors mitigates the ef-

fects of the Winkler and Pasternak coefficients 𝐾𝑤 and 𝐾𝑝 on the deflection 𝑤. This is 

because a more rigid microbeam system is inherently stronger. Table 2 displays the rela-

tionship between deflection and the Winkler stiffness modulus 𝐾𝑤. Moreover, in Table 2, 

the studied domains are represented against the distance for a variety of viscous damping 

coefficient values (𝐾𝑣). As the damping coefficient 𝐾𝑣 rises, the physical fields become in-

creasingly noticeable. This is expected due to the fact that linear deviation is proportional 

to 𝐾𝑣. 

The table shows that the absolute values of the nondimensional thermal stress 𝜎𝑥, as 

well as the bending moment 𝑀, increased with the increase in the Winkler stiffness pa-

rameter (𝐾𝑤) and Pasternak (𝐾𝑝) coefficients. The precision girder stability is enhanced as 

a result of the increased structural rigidity in 𝐾𝑤 and 𝐾𝑝. Changes in the visco-Pasternak 

basis profoundly affect the bending moment 𝑀 and the deflection within the microbeam. 

Variations in the coefficients of the Pasternak viscous basis have less effect on the defor-

mation 𝑢 and temperature 𝜃. 

Table 2. The influence of visco-Pasternak parameters 𝐾𝑝, 𝐾𝑤, and 𝐾𝑣 on the studied fields. 

𝑲𝒗 𝑲𝒘 𝑲𝒑 
Thermo-Physical Fields 

𝒘 𝜽 𝒖 𝝈𝒙 𝑴 

0.2 

0.0 0.0 −0.0609143 2.85630 0.101218 −0.564227 −0.406249 

0.1 0.2 −0.0597582 2.85663 0.101314 −0.558596 −0.406141 

0.2 0.3 −0.0591818 2.85680 0.101359 −0.555789 −0.405988 

0.3 0.4 −0.0586066 2.85696 0.101402 −0.552988 −0.405758 

0.4 

0.0 0.0 −0.0608022 2.85631 0.101190 −0.563906 −0.406248 

0.1 0.2 −0.0601662 2.85649 0.101243 −0.560807 −0.406133 

0.2 0.3 −0.0590141 2.85682 0.101335 −0.555195 −0.405971 

0.3 0.4 −0.0584398 2.85699 0.101378 −0.552398 −0.405727 

0.6 

0.0 0.0 −0.060650 2.85632 0.101152 −0.563469 −0.406246 

0.1 0.2 −0.059497 2.85665 0.101247 −0.557849 −0.406136 

0.2 0.3 −0.0589221 2.85682 0.101291 −0.555049 −0.405982 

0.3 0.4 −0.0583485 2.85698 0.101334 −0.552255 −0.405750 

0.8 

0.0 0.0 −0.0604983 2.85633 0.101114 −0.563033 −0.406244 

0.1 0.2 −0.0593470 2.85667 0.101208 −0.557421 −0.406133 

0.2 0.3 −0.0587731 2.85683 0.101252 −0.554624 −0.405978 

0.3 0.4 −0.0582004 2.85700 0.101295 −0.551833 −0.405747 
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It is seen from the numerical values in the table that the quantities of the different 

thermophysical fields decline when the Winkler and Pasternak coefficients 𝐾𝑤  and 𝐾𝑝 

remain unchanged with the increase in the viscous damping coefficient 𝐾𝑣. In addition, 

when there is a change in the viscous damping parameter 𝐾𝑣, there is little variation in 

the temperature and displacement values. The absolute value of the deviation w increases 

as the viscosity parameter 𝐾𝑣 decreases. As the viscous damping modulus 𝐾𝑣 and other 

exponents are increased, the dimensionless axial stress 𝜎𝑥  and flexure moment 𝑀  in-

crease. 

It has been observed that increasing the viscoelastic structural damping parameter 

𝐾𝑣 of microscale beams can reduce the internal thermophysical fields. The reason for this 

is that a rise in the structural damping coefficient 𝐾𝑣 causes the structure to be less rigid. 

The influence of the viscous structural damping parameter is more pronounced when the 

Winkler and Pasternak parameters 𝐾𝑤  and 𝐾𝑝  remain unchanged. This review article 

can provide useful information for the design of some fine structural systems by helping 

to choose the appropriate foundation model, which must take into account the stability, 

control, and vibrations of the structural system being treated or designed. As a conse-

quence of the analysis mentioned above, it is clear that the anticipated results will be on 

the low side for the problem if shear stiffness, damping, or transverse impact are ignored. 

Engineering that considers these factors will produce better results at a lower cost. 

8.2. Effect of Laser Pulse Duration 𝑡𝑝  

This present work studied the transient electrical and thermal conductivity in thin 

silicon bundles subjected to short-pulse laser heating as a heat source by means of the 

MGT thermal conductivity model. Exciting the metal with an ultrafast laser can cause the 

material to enter a state very different from its original equilibrium. A system of cold, 

highly bound ions immersed in a partially degenerated electron sea is produced due to 

the preferential and rapid heating of one subsystem compared to another. These tempo-

rary states frequently occur during the formation of high-energy-density plasmas, which 

can contain warm, dense matter. These cases are particularly relevant for laser microm-

achine fusion studies and self-entrapment fusion studies because of their transient nature. 

In the laboratory, these short-lived states are used to test quantum mechanics theories of 

nuclear dynamics, electron-ion interactions, and phase transitions. 

It is very important to study the thermal influence that a non-Gaussian laser has on 

thermoelastic microbeams when using a laser as a heat source using modified heat trans-

fer models. In this subsection, the heating of microbeams using a pulsed laser as a heating 

source will be investigated. The microbeam is made of silicon and is heated by a pulsed 

non-Gaussian laser beam with a duration 𝑡𝑝. The interaction between temperature change 

and stress dissipates energy, converting temporary mechanical energy into more stable 

thermal energy within the material. Figures 2–5 show the numerical values of the different 

fields for the purpose of investigating how the laser pulse length 𝑡𝑝 affects the relation-

ship between the dimensionless temperature and the amount of deflection and defor-

mation that occurs inside the microbeam. All other influencing factors involving 𝐾𝑝, 𝐾𝑤, 

𝐾𝑣, 𝜏0, and 𝐾∗ remain constant in the numerical calculations. 

When the solid microbeam is exposed to pulsed laser light on its surface, the material 

inside begins to vibrate in the form of waves. As shown in Figures 2 and 4, thermoelastic 

waves are formed by thermal expansion near the surface during pulsed laser heating and 

are transmitted to the microbeam, which leads to increased deformation and deflection. 

Due to the short length of the laser pulse, the heating process will be extremely fast, 

making the Fourier transfer theory invalid, as it predicts infinite velocities for heat waves. 

For this reason, a modified non-Fourier heat transfer equation (MGT model) was used in 

the present work, considering that thermal signals can only travel at a finite speed within 

the medium. These results demonstrate that the MGTE model shows excellent practical 

and theoretical consistency for mechanical properties. 
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Increases in the laser pulse length increase the temperature and the intermolecular 

distances between the beam materials, while simultaneously reducing the intermolecular 

thrust. As the duration of the laser pulse increases, the temperature decreases within the 

microbeam, which stands on the viscoelastic Pasternak foundation (see Figure 3). This is 

because the structural pieces are moved at such a high rate by an ultrashort laser pulse 

that the resulting inertial forces are so great that the structure vibrates more than usual. 

One thing to keep in mind is that in the laser process, thermoelasticity and momentum 

coexist and can have an effect on each other, although these two phenomena are rarely 

studied together. 

 

Figure 2. The deflection 𝑤 versus several durations of the laser pulse 𝑡𝑝. 

 

Figure 3. The temperature 𝜃 versus several durations of the laser pulse 𝑡𝑝. 

 

Figure 4. The axial displacement 𝑢 versus several durations of the laser pulse 𝑡𝑝. 
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Figure 5. The thermal stress 𝜎𝑥𝑥 versus several durations of the laser pulse 𝑡𝑝. 

 

Figure 6. The bending moment 𝑀 versus several durations of the laser pulse 𝑡𝑝. 

8.3. The Effect of Electrothermal Voltage 

The thermoelectric microbeam that is the subject of this investigation is given a ther-

mal load through electrothermal operation by having an external circuit added to the first 

edge of the beam. In the micro-structures and machinery industry, thermoelectric activa-

tion is often used to excite and tune harmonic resonators. Thermally tuned micro/nanoe-

lectromechanical and electromechanical devices are useful for many applications, such as 

communication systems, process filtration, systems with gyroscopes, power control, and 

sensitivity detection. The fluctuations of beam deflection and other investigated thermo-

mechanical fields are expressed in Figures 7–11 as a response to the applied thermoelectric 

load (voltages 𝑉𝑒). In this case, the microspheres would be electrically excited by applying 

different values of the thermoelectric voltages, 𝑉𝑒 = 10  V, 𝑉𝑒 = 20  V, 𝑉𝑒 = 30  V, and 

𝑉𝑒 = 40 V. At the same time, the other influencing constants will be assumed to be con-

stant. 

From Figure 7, it is interesting to note that the amount of deflection increases with 

increasing electrical voltages. This is due to the increase in the thermal and electrical load 

(electrothermal voltage) produced inside the microbeam. It is well known that its temper-

ature increases as current travels through a conductor. Collisions between moving elec-

trons and the conductor’s atoms cause the electrons to lose some of their energy, which is 

then transformed into heat when the electrons pass through the conductor. As a result, 

the conductor’s temperature rises. Figure 8 shows the significant effect of voltage on the 

temperature distribution. With the increase in the amount of voltage in the electrical cir-

cuit from the first end of the microbeam, the thermal load increases, leading to an increase 

in temperature. Temperature differences decrease as one moves away from the source of 

the electric heat flow. Figure 9 shows that the compressive stress inside the microbeams 

increases when the ferroelectric voltage rises. This causes the microbeams to buckle and 

the bending moment to increase. From Figure 9, it can be expected that the shape of the 
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microbeams will change near the thermoelectric load at the beginning of the microbeam. 

This is because the microbeam is subjected to a compressive force that increases as the 

thermoelectric potential increases. 

 

Figure 7. The thermal deflection 𝑤 versus various electrothermal voltages 𝑉𝑒. 

 

Figure 8. The temperature 𝜃 versus various electrothermal voltages 𝑉𝑒. 

 

Figure 9. The displacement 𝑢 versus various electrothermal voltages 𝑉𝑒. 
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Figure 10. The thermal stress 𝜎𝑥 versus various electrothermal voltages 𝑉𝑒. 

 

Figure 11. The bending moment 𝑀 versus various electrothermal voltages 𝑉𝑒. 

9. Conclusions 

In this paper, a mathematical model is given to study the thermoelastic vibrational 

behavior of thin microbeam that are embedded in a three-parameter viscoelastic founda-

tion. The thermal interactions between a microbeam and a viscoelastic foundation were 

simulated using the Winkler–Pasternak elastic foundation model. In addition, a new heat 

transfer model incorporating the Moore–Gibson–Thompson formula is introduced. The 

microbeam undergoes a heating effect when electrical current and voltage are applied 

through a graphene sheet. Moreover, it is exposed to laser heating pulses as an internal 

heat source with changing properties over time. The effects of the three different founda-

tion parameters, ferroelectric voltage, and laser pulse duration coefficient were shown. 

From the discussions and analysis, the following conclusions can be drawn: 

• The results show that increasing the Winkler and foundation shear moduli reduces 

microbeam deflection and first-side axial deformations. This reduction is a direct con-

sequence of the higher beam stiffness. However, as the viscosity index is raised, the 

deflection and deformation significantly increase.  

• As Pasternak’s modulus and Winkler’s viscosity factor increase, flexural moment and 

axial stress also increase. Increasing the coefficient of the visco-Pasternak base re-

duces the dynamic behavior of the microbeam, facilitating a much faster attempt at 

equilibrium. Increasing the viscous damping coefficients results in a significant de-

crease in the amplitudes of the studied work areas and the response time. 

• Theoretical analysis and experimental results showed that a solid base is necessary 

for the stability of the building when it is in a state of oscillation. Every building needs 

a solid foundation on which to rest, as this helps prevent any kind of mechanical 

failure from occurring.  

• The results show that the MGTE model has a good theoretical and experimental 

agreement between the mechanical properties and the physical aspects.  
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• The magnitudes of deflection increase with increasing electrical voltages. This is due 

to the increase in the thermos-electrical load (electrothermal voltage) produced inside 

the microbeam. 
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