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Abstract: Recently, Pei et al. (National Science Review 2023, nwad034, 10.1093/nsr/nwad034) reported
that ambient pressure β-MoB2 (space group: R3m) exhibits a phase transition to α-MoB2 (space
group: P6/mmm) at pressure P~70 GPa, which is a high-temperature superconductor exhibiting
Tc = 32 K at P~110 GPa. Although α-MoB2 has the same crystalline structure as ambient-pressure
MgB2 and the superconducting critical temperatures of α-MoB2 and MgB2 are very close, the first-
principles calculations show that in α-MoB2, the states near the Fermi level, εF, are dominated by the
d-electrons of Mo atoms, while in MgB2, the p-orbitals of boron atomic sheets dominantly contribute
to the states near the εF. Recently, Hire et al. (Phys. Rev. B 2022, 106, 174515) reported that the
P6/mmm-phase can be stabilized at ambient pressure in Nb1−xMoxB2 solid solutions, and that these
ternary alloys exhibit Tc ∼ 8 K. Additionally, Pei et al. (Sci. China-Phys. Mech. Astron. 2022, 65,
287412) showed that compressed WB2 exhibited Tc ∼ 15 K at P~121 GPa. Here, we aimed to reveal
primary differences/similarities in superconducting state in MgB2 and in its recently discovered
diboride counterparts, Nb1−xMoxB2 and highly-compressed WB2. By analyzing experimental data
reported for P6/mmm-phases of Nb1−xMoxB2 (x = 0.25; 1.0) and highly compressed WB2, we showed
that these three phases exhibit d-wave superconductivity. We deduced 2∆m(0)

kBTc
= 4.1± 0.2 for α-

MoB2, 2∆m(0)
kBTc

= 5.3 ± 0.1 for Nb0.75Mo0.25B2, and 2∆m(0)
kBTc

= 4.9 ± 0.2 for WB2. We also found
that Nb0.75Mo0.25B2 exhibited high strength of nonadiabaticity, which was quantified by the ratio of
Tθ
TF

= 3.5, whereas MgB2, α-MoB2, and WB2 exhibited Tθ
TF
∼ 0.3, which is similar to the Tθ

TF
in pnictides,

A15 alloys, Heusler alloys, Laves phase compounds, cuprates, and highly compressed hydrides.

Keywords: superconducting diborides; superconducting gap symmetry; high-pressure superconductivity;
nonadiabatic superconductors

1. Introduction

There is an experimental quest for high-temperature superconductivity in compounds
based on lightweight elements which exhibit high Debye temperature, Tθ . Thus, in ac-
cordance with the theory of the electron–phonon mediated superconductivity, these com-
pounds can have a high transition temperature, Tc. This work started in the 1970s [1,2].
These studies covered hydrides [1] and borides [2]. Surprisingly, Cooper et al. [2] performed
detailed studies of Mo-diborides, Nb-diborides, and ternary borides R2−xAxB5 (R = Mo,
Nb, A = transition metal), while Fisk [3] reported on discovery of 40 superconducting
phases in rare earth and transition metals borides. The diboride of magnesium was first
studied on its superconducting properties in 2001 [4].

The discovery of near-room temperature superconductivity in highly compressed
sulfur hydride by Drozdov et al. [5] sparked theoretical and experimental studies of a
variety of materials that can potentially exhibit high-temperature superconductivity to be
compressed at high pressure [6–29]. This research field represents one of the most fasci-
nating scientific explorations in which advanced first-principles calculations are combined
with the top world class of experimental studies [30–43].
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In this regard, the quest for high-temperature superconductivity in highly compressed
borides seems reasonable. One of the interesting results of this conjunctive exploration
was reported by Pei et al. [44], who found that the stoichiometric compound MoB2 ex-
hibits a phase transition from the β-MoB2-phase (space group: R3m) to the α-MoB2-phase
(space group: P6/mmm) at a critical pressure of P~70 GPa. This high-pressure phase,
α-MoB2, exhibits the same crystalline structure as the ambient-pressure MgB2. The most
intriguing experimental result reported by Pei et al. [44] was that the α-MoB2 phase is a high-
temperature superconductor with Tc = 32 K (at P = 109.7 GPa); this value is remarkably
close to Tc = 39− 42 K in MgB2 [4,45].

First-principles calculations performed by Pei et al. [44] showed that several bands
in the α-MoB2 cross the Fermi level, εF, which causes the metallic type of conductivity
in this phase. Pei et al. [44] also showed that molybdenum d-orbitals (especially the dz2
orbital) have larger contributions than boron p-orbitals near the εF. Overall, although
the α-MoB2 phase exhibits the same crystal structure as MgB2 and the superconducting
transition temperatures for these compounds are comparable, their electronic structures
are different. For instance, the out-of-plane phonon mode of molybdenum ions is strongly
coupled with molybdenum d-electrons near the εF in α-MoB2 [44], whereas the in-plane
B-B stretching mode in MgB2 interacts intensively with the σ-bond in the boron honeycomb
lattice near the εF [44]. Pei et al. [44] also calculated the electron–phonon coupling constant,
λe−ph = 1.60, in α-MoB2 at P = 90 GPa. Similar findings, including λe−ph = 1.60, were
reported by Quan et al. [46], who performed first-principles calculations for a highly
pressurized α-MoB2 phase.

These results establish a ground to expect that the α-MoB2 phase can exhibit d-wave su-
perconducting energy gap symmetry (or, at least, s+d-wave gap symmetry with a significant
d-wave component), which is different from the two-band s-wave MgB2.

More recently, Hire et al. [47] showed that the P6/mmm-phase can be stabilized at
ambient pressure in Nb1−xMoxB2 (x = 0.25, 0.50, 0.75, and 0.9) solid solutions. Despite
the superconducting transition temperature in Nb1−xMoxB2 (x = 0.25, 0.50, 0.75 and 0.9)
being significantly lower (i.e., Tc = (6.5− 8.1) K [47]), these values are still high enough to
suggest that the same pairing mechanism emerges in ambient pressure superconductors
Nb1−xMoxB2 and highly-pressurized α-MoB2.

Hire et al. [47] also performed first-principles calculations and measured the temperature-
dependent magnetoresistance, R(T, B), and specific heat, from which several parameters
of Nb1−xMoxB2 (x = 0.25, 0.50, 0.75, and 0.9) superconductors (in particular, the Debye
temperature, Tθ) were determined.

Pei et al. [48] and Lim et al. [49] extended the family of superconducting diborides
by the discovery of the highly compressed phase of WB2 ( Tc ∼ 15 K at P~121 GPa) for
which Pei et al. [48] proposed the space group: P63/mmc (which is distorted P6/mmm),
while Lim et al. [49] concluded that this highly pressurized superconducting phase of WB2
formed by stacking faulted P63/mmc-P6/mmm phases (which can be found to be similar to
the stacking faulted 123–124 phases in the Y-Ba-Cu-O system [50–52]).

Here, we aimed to determine the difference in the superconducting gap symmetry and
other superconducting parameters in MgB2 and in the recently discovered Nb1−xMoxB2
(x = 0.25; 1.0) and WB2, which might originate from the difference in the band structure
of these materials. To do this we performed a detailed analysis of the magnetoresistance
data reported by Pei et al. [44], Hire et al. [47], and Pei et al. [48] and showed that the
P6/mmm-phases of Nb1−xMoxB2 (x = 0.25, 1.0) and WB2 (P = 121.3 GPa) exhibit d-wave su-
perconducting gap symmetry. We also found that ambient pressure Nb1−xMoxB2 (x = 0.25)
superconductors characterized by high strength of nonadiabaticity, which can be character-
ized by the ratio of Tθ

TF
= 3.5 (where TF is the Fermi temperature, which exceeds the Tθ

TF
ratio

in MgB2, α-MoB2, WB2, pnictides, A15 alloys, Heusler alloys, Laves phase compounds,
cuprates, and highly-compressed hydrides by more than one order of magnitude.



Symmetry 2023, 15, 812 3 of 20

2. Utilized Models

The Debye temperature, Tθ , can be deduced from the fit of the experimentally mea-
sured temperature-dependent resistance curve, R(T), to the Bloch–Grüneisen (BG) equa-
tion [53,54]. In many reports, the classical BG approach was advanced by introducing the
so-called saturation resistance [55–60]:

R(T) =
1

1
Rsat

+ 1

R0+A
(

T
Tθ

)5 ∫ Tθ
T

0
x5

(ex−1)(1−e−x)
dx

, (1)

where Rsat, R0, Tθ , and A are free fitting parameters. From the deduced Tθ and measured
Tc (which we defined by as strict as practically possible resistance criterion of R(T)

Rnorm
→ 0 ,

where Rnorm is the normal state resistance at the onset of the superconducting transition
(ee details in [59]), the electron–phonon coupling constant, λe−ph, can be calculated as the
unique root of the advanced McMillan equation [59]:

Tc =

(
1

1.45

)
× Tθ × e

−(
1.04(1+λe−ph)

λe−ph−µ∗(1+0.62λe−ph)
)
× f1 × f ∗2 , (2)

where

f1 =

(
1 +

(
λe−ph

2.46(1 + 3.8µ∗)

)3/2
)1/3

, (3)

f ∗2 = 1 + (0.0241− 0.0735× µ∗)× λ2
e−ph, (4)

where µ∗ is the Coulomb pseudopotential parameter, which we assumed (following the
approach proposed in [44,47,49]) to be µ∗ = 0.13 for Nb1−xMoxB2 (x = 0.25; 1.0) and WB2.

By following the general logic [59,61,62] that a resistance criterion with the smallest
possible value should be in use, we utilized the same criterion of R(T)

Rnorm(T) = 0.10, as the one
that was used to define the Tc and the Bc2(T). The temperature-dependent upper critical
field, Bc2(T), is described by

Bc2(T) =
φ0

2·π·ξ2(T)
, (5)

where φ0 is the superconducting magnetic flux quantum and ξ(T) is the coherence length.
Bc2(T) datasets were fitted to the equation for the temperature-dependent upper critical
field for s-wave superconductors [61–63]:

Bc2(T) =
φ0

2·π·ξ2(0)

1.77− 0.43
(

T
Tc

)2
+ 0.07

(
T
Tc

)4

1.77


2

×

1− 1
2kBT

∫ ∞

0

dε

cosh2
(√

ε2+∆2(T)
2kBT

)
, (6)

where the amplitude of the temperature-dependent superconducting gap, ∆(T), is given
by [64,65]

∆(T) = ∆(0)× tan h

[
πkBTc

∆(0)

√
η

∆C
γTc

(
Tc

T
− 1
)]

, (7)

where η = 2/3 for s-wave superconductors, γ is the Sommerfeld constant, and kB is
Boltzmann’s constant.
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Bc2(T) datasets were also fitted to the equation for the temperature-dependent upper
critical field for d-wave superconductors [61–63], where the amplitude of the temperature-
dependent superconducting gap, ∆(T), is given by [64,65]:

Bc2(T) =
φ0

2·π·ξ2(0)

(
1.77−0.43( T

Tc )
2
+0.07( T

Tc )
4

1.77

)2[
1− 1

2·kB ·T ·

∫ 2π
0 cos2(θ)·

∫ ∞
0

dε

cosh2

(√
ε2+∆2(T,θ)
2·kB ·T

)
·dθ

,

(8)

where the superconducting energy gap, ∆(T, θ), is given by [64–67]:

∆(T, θ) = cos(2θ)× ∆m(0)× tan h

[
πkBTc

∆(0)

√
η

∆C
γTc

(
Tc

T
− 1
)]

, (9)

where ∆m(0) is the maximum amplitude of the k-dependent d-wave gap, η = 7/5 [68], θ is
the angle around the Fermi surface subtended at (π, π) in the Brillouin zone (details can be
found elsewhere [64,65]).

The Fermi temperature, TF, was calculated using the equation [61]:

TF =
π2me

8·kB
×
(

1 + λe−ph

)
× ξ2(0)×

(
2∆m(0)

}

)2
, (10)

where me is the bare electron mass, } is the reduced Planck’s constant, and the other
parameters were deduced above.

3. Results
3.1. P6/mmm α-MoB2 (P = 109.7 GPa)

The fits of R(T) datasets, measured for the α-MoB2 phase at P = 91.4 and 109.7 GPa [44]
of Equation (1), together with the deduced Rsat, Tθ , and λe−ph, are shown in Figure 1 (where

we utilized R(T)
Rnorm(T) = 0.10 criterion to define Tc because the same criterion was used by

Pei et al. [44] to define the upper critical field in the same α-MoB2 sample).
The deduced λe−ph(91.4 GPa) = 1.42 is in good agreement with the value calculated

by first-principles calculations, λe−ph(90 GPa) = 1.60 [44,46].
In Figure 2a, the Bc2(T) dataset is fitted to the equation for the temperature-dependent

upper critical field for s-wave superconductors (Equations (6) and (7)). However, the
deduced 2∆(0)

kBTc
= 2.3± 0.1 (Figure 2a) is too low to be attributed to s-wave superconductivity,

for which the weak-coupling limit is 2∆(0)
kBTc

= 3.53 [66,67]. Additionally, the fit quality was
low (coefficient of determination = 0.8267).

Subsequently, we fitted the temperature-dependent upper critical field data to the
d-wave gap symmetry model. The fit converged with a better quality (goodness of fit of
0.9842) (Figure 2b). The deduced parameters are ξ(0) = 6.2(5) nm, ∆(0) = 5.0± 0.2 meV,
2∆(0)
kBTc

= 4.1± 0.2, ∆C
γTc

= 0.8± 0.1. Considering that the weak coupling limits for d-wave

superconductors [64–66] are 2·∆(0)
kB ·Tc

= 4.28 and ∆C
γTc

= 0.995, we can conclude that the
deduced parameters in α-MoB2 (P = 109.7 GPa) superconductor are within the weak-
coupling values for d-wave superconductors.

It should be noted that the accuracy of the extracted parameters is directly related
to the sampling number of the measurement. Thus, further increase in the accuracy of
the deduced parameters is possible if more raw R(T, B) data (especially, measured at low
temperatures, down to the milliKelvin level) are available.
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Figure 1. R(T) data for highly compressed α-MoB2 (P = 109.7 GPa) and data fit to Equation (1)
(raw data reported by Pei et al. [44]). The green balls indicate the bounds for which R(T) data
were used to fit data to Equation (1). (a) Deduced Tθ = 301± 1 K, Tc,0.10 = 26.6 K, λe−ph = 1.42,
Rsat = 0.61± 0.02 Ω, fit quality is 0.9998. (b) Deduced Tθ = 321± 1 K, Tc,0.10 = 28.2 K, λe−ph = 1.41,
Rsat = 0.50± 0.01 Ω; fit quality is 0.9998. The 95% confidence bands are indicated by pink shad-
owed areas.

From the deduced parameters, one can calculate the Fermi temperature TF = 1756 ± 25 K.
The calculated TF implies that the P6/mmm α-MoB2 (P = 109.7 GPa) phase falls in the
unconventional superconductor band in the Uemura plot (Figure 3) because this phase is
typical for many unconventional superconductors (for instance, iron-based, cuprates, and
hydrogen-rich superconductors) ratio of Tc

TF
= 0.016. Raw data for this plot were reported

by many research groups (Refs. [68–78]).



Symmetry 2023, 15, 812 6 of 20

Symmetry 2023, 15, x FOR PEER REVIEW 5 of 19 
 

 

The deduced 𝜆௘ି௣௛(91.4 𝐺𝑃𝑎) = 1.42 is in good agreement with the value calculated 
by first-principles calculations, 𝜆௘ି௣௛(90 𝐺𝑃𝑎) = 1.60 [44,46]. 

In Figure 2a, the 𝐵௖ଶ(𝑇) dataset is fitted to the equation for the temperature-depend-
ent upper critical field for s-wave superconductors (Equations (6) and (7)). However, the 
deduced ଶ୼(଴)௞ಳ ೎் = 2.3 ± 0.1 (Figure 2a) is too low to be attributed to s-wave superconduc-

tivity, for which the weak-coupling limit is ଶ୼(଴)௞ಳ ೎் = 3.53 [66,67]. Additionally, the fit qual-
ity was low (coefficient of determination = 0.8267). 

Subsequently, we fitted the temperature-dependent upper critical field data to the d-
wave gap symmetry model. The fit converged with a better quality (goodness of fit of 
0.9842) (Figure 2b). The deduced parameters are ξ(0) = 6.2(5) 𝑛𝑚, Δ(0) = 5.0 ± 0.2 𝑚𝑒𝑉, ଶ୼(଴)௞ಳ ೎் = 4.1 ± 0.2, ୼஼ఊ ೎் = 0.8 ± 0.1. Considering that the weak coupling limits for d-wave su-

perconductors [64–66] are ଶ∙୼(଴)௞ಳ∙ ೎் = 4.28 and ୼஼ఊ ೎் = 0.995, we can conclude that the de-
duced parameters in 𝛼-MoB2 (𝑃 = 109.7 𝐺𝑃𝑎) superconductor are within the weak-cou-
pling values for d-wave superconductors. 

It should be noted that the accuracy of the extracted parameters is directly related to 
the sampling number of the measurement. Thus, further increase in the accuracy of the 
deduced parameters is possible if more raw 𝑅(𝑇, 𝐵) data (especially, measured at low 
temperatures, down to the milliKelvin level) are available. 

 
Figure 2. Temperature-dependent upper critical field, Bc2(T), and data (left Y-axes) (defined by ோ(்)ோ೙೚ೝ೘(்) = 0.10 criterion), calculated by Equation (5). The coherence length 𝜉(𝑇) (right Y-axes) for 𝛼-MoB2 (𝑃 = 109.7 𝐺𝑃𝑎) reported by Pei et al. [44] and data fits to s-wave (panel a) and d-wave 
(panel b) single-band models. Deduced parameters are (for both panels the critical temperature was 
fixed to the observed value of Tc = 28.2 K): (a) s-wave fit, ξ(0) = 6.5(2) 𝑛𝑚, Δ(0) = 2.8 ± 0.1 𝑚𝑒𝑉, Δ𝐶 𝛾𝑇௖⁄ = 1.5 ± 0.8, ଶ୼(଴)௞ಳ ೎் = 2.3 ± 0.2, the goodness of fit is 0.8267; (b) d-wave fit, ξ(0) = 6.2(5) 𝑛𝑚, Δ(0) = 5.0 ± 0.2 𝑚𝑒𝑉, Δ𝐶 𝛾𝑇௖⁄ = 0.8 ± 0.1, ଶ୼(଴)௞ಳ ೎் = 4.1 ± 0.2, the goodness of fit is 0.9842. 

From the deduced parameters, one can calculate the Fermi temperature 𝑇ி = 1756 ± 25 𝐾. The calculated 𝑇ி implies that the P6/mmm 𝛼-MoB2 (𝑃 = 109.7 𝐺𝑃𝑎) phase 
falls in the unconventional superconductor band in the Uemura plot (Figure 3) because 

Figure 2. Temperature-dependent upper critical field, Bc2(T), and data (left Y-axes) (defined by
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α-MoB2 (P = 109.7 GPa) reported by Pei et al. [44] and data fits to s-wave (panel a) and d-wave
(panel b) single-band models. Deduced parameters are (for both panels the critical temperature was
fixed to the observed value of Tc = 28.2 K): (a) s-wave fit, ξ(0) = 6.5(2) nm, ∆(0) = 2.8± 0.1 meV,
∆C/γTc = 1.5± 0.8, 2∆(0)

kBTc
= 2.3± 0.2, the goodness of fit is 0.8267; (b) d-wave fit, ξ(0) = 6.2(5) nm,

∆(0) = 5.0± 0.2 meV, ∆C/γTc = 0.8± 0.1, 2∆(0)
kBTc

= 4.1± 0.2, the goodness of fit is 0.9842.

In addition, we found that the P6/mmm α-MoB2 (P = 109.7 GPa) phase exhibits a
similar level of nonadiabaticy ( Tθ

TF
= 0.18± 0.02) to iron-based, cuprates, and hydrogen-rich

superconductors [69,70] (Figures 4 and 5).



Symmetry 2023, 15, 812 7 of 20

Symmetry 2023, 15, x FOR PEER REVIEW 6 of 19 
 

 

this phase is typical for many unconventional superconductors (for instance, iron-based, 
cuprates, and hydrogen-rich superconductors) ratio of ೎்்ಷ = 0.016. Raw data for this plot 
were reported by many research groups (Refs. [68–78]). 

 
Figure 3. Uemura plot (Tc vs. TF), where the diborides are shown together with other superconduct-
ing families: 2D materials, metals, pnictides, cuprates, and near-room-temperature superconduc-
tors. References to the original data can be found in Refs. [68-78]. 

In addition, we found that the P6/mmm 𝛼-MoB2 (𝑃 = 109.7 𝐺𝑃𝑎) phase exhibits a 
similar level of nonadiabaticy (்ഇ்ಷ = 0.18 ± 0.02) to iron-based, cuprates, and hydrogen-
rich superconductors [69,70] (Figures 4 and 5). 

 
Figure 4. Plot of ்ഇಷ்  vs. 𝜆௘ି௣௛ for several superconducting families and diborides. This type of plot 
was proposed by Pietronero et al. [69]. References to the original data can be found in Refs. [68–74]. 

0.25 0.5 1 2 4

0.001

0.01

0.1

1

10

100

MgB2

WB2

Nb0.75Mo0.25B2

α-MoB2

LiC6

metals
A15

LavesHeusler

ζ-O2

CsISrTiO3

noncentrosymmetric

LaH10

H3S

H3S (from ξ(0))
H3S (from λ(0))
 metals
 A15 alloys
 Heusler alloys
noncentrosymmetric 
Laves phase
intermetallics
SrTiO3

Ba1-xKxBiO3

iron-based SCs
LaH10 (from ξ(0))
LaH10 (from λ(0))
(La,Nd)H10 (from ξ(0))
CsI (P=209 GPa)
ζ-O2 (P=115 GPa)
LiC6

Tθ/TF = 0.025
Tθ/TF = 0.4
α-MoB2 (P =110 GPa)
Nb0.75Mo0.25B2

MgB2

WB2 (P =121 GPa)

T θ
/T

F

electron-phonon coupling strength, λe-ph

Figure 3. Uemura plot (Tc vs. TF), where the diborides are shown together with other superconduct-
ing families: 2D materials, metals, pnictides, cuprates, and near-room-temperature superconductors.
References to the original data can be found in Refs. [68–78].
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Figure 4. Plot of Tθ
TF

vs. λe−ph for several superconducting families and diborides. This type of plot
was proposed by Pietronero et al. [69]. References to the original data can be found in Refs. [68–74].
In this plot, we assumed that α-MoB2, WB2, and the Nb1−xMoxB2 (x = 0.25) exhibit the Coulomb
pseudopotential parameter, µ∗ = 0.13.
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Figure 5. Plot of Tθ
TF

vs. Tc for several superconducting families and diborides. References to the
original data can be found in Refs. [68,70–75].

3.2. Ambient Pressure P6/mmm Nd0.75Mo0.25B2

In Table 1 of Hire et al.’s work [24], they reported the Debye temperature for P6/mmm
Nb1−xMoxB2 (x = 0.25), which was deduced from low-temperature specific heat mea-
surements, Tθ = 625 K. Following the approach implemented in this study, we pro-
cessed R(T, B = 0) data reported by Hire et al. [24] by utilizing the resistance criterion of

R(T)
Rnorm(T) = 0.015. We deduced Tc,0.015 = 7.2 K, from which λe−ph = 0.573 was calculated
using Equations (2)–(4).

In Figure 6 of Hire et al. [47]’s work, they reported R(T, B) data, which we pro-
cessed by utilizing the resistance criterion of R(T)

Rnorm(T) = 0.015. We deduced the Bc2(T)
dataset. The fits of this dataset to the s-wave (Equations (6) and (7)) and d-wave model
(Equations (8) and (9)) are shown in Figure 6.

The deduced parameters for s-wave (Figure 6a) contradict each other, i.e.,
2∆(0)
kBTc

= 3.18± 0.15 (which is lower than the s-wave weak-coupling limit is 2∆(0)
kBTc

= 3.53 [66,67]).

The deduced ∆C
γTc

= 1.62± 0.19 is larger than the s-wave weak-coupling limit of ∆C
γTc

= 1.43.
The fit quality is not high and has a coefficient of determination of 0.9534.

The fit to the d-wave gap symmetry model has a better quality (with a goodness of fit of
0.9959) (Figure 6b). The deduced parameters are ξ(0) = 6.2(5) nm, ∆(0) = 1.65± 0.05 meV,
2∆(0)
kBTc

= 5.3± 0.1, and ∆C
γTc

= 1.13± 0.03; these values characterize the material as being a
moderately strong coupled d-wave superconductor (considering that the weak coupling
limits for d-wave superconductors [64–66] are 2·∆(0)

kB ·Tc
= 4.28 and ∆C

γTc
= 0.995). It should

be noted that analyzed experimental Bc2(T) dataset has six raw data points which cover
the 0.2 ≤ T

Tc
≤ 1.0 range. More experimental Bc2(T) data measured at wider temperature

ranges can be used to deduce primary superconducting parameters of the Nb0.75Mo0.25B2
with better accuracy.
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Figure 6. Temperature dependent upper critical field, Bc2(T), data (left Y-axes) (defined by
R(T)

Rnorm(T)
= 0.015 criterion) and calculated by Equation (5). The coherence length ξ(T) (right Y-axes)

for P6/mmm Nb0.75Mo0.25B2 reported by Hire et al. [47], and data fit to s-wave (panel a) and d-wave
(panel b) single-band models. Deduced parameters are (for both panels the critical temperature was
fixed to the observed value of Tc = 7.2 K) (a) s-wave fit, ξ(0) = 8.0(7) nm, ∆(0) = 0.987± 0.038 meV,
∆C/γTc = 1.6± 0.2, 2∆(0)

kBTc
= 3.2± 0.1, the goodness of fit is 0.9534; (b) d-wave fit, ξ(0) = 7.5(0) nm,

∆(0) = 1.65± 0.05 meV, ∆C/γTc = 1.13± 0.03, 2∆(0)
kBTc

= 5.3± 0.1, the goodness of fit is 0.9959.

By the substituting the deduced parameters in Equation (10), the Fermi temperature
can be obtained: TF = 180 ± 7 K in P6/mmm-phase of Nb0.75Mo0.25B2. The calculated TF
implies that this phase falls in the unconventional superconductors band in the Uemura
plot (Figure 3) because this phase is typical for many unconventional superconductor ratios
of Tc

TF
= 0.042.

However, what comes from our analysis and reported by Hire et al. [47] is the De-
bye temperature: the P6/mmm-phase of Nb0.75Mo0.25B2 superconductor exhibits strong
nonadiabaticy, because the ratio

0.4� Tθ

TF
= 3.5± 0.3, (11)

is well above the typical range for the moderate level of nonadiabaticity (0.025 ≤ Tθ
TF
≤ 0.4)

observed in the majority of unconventional superconductors, including iron-based, cuprates,
and highly compressed hydrides [70] (Figures 4 and 5).
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3.3. P63/mmc WB2 (P = 121.3 GPa)

Pei et al. [48] measured the R(T) dataset for the WB2 phase at P = 121.3 GPa,
which was fitted to Equation (1) in Figure 7. The fit converged at Tθ = 440 ± 1 K and
Rsat → ∞ . From the deduced Tθ , we found λe−ph = 0.755, for which we utilized the

criterion of R(T)
Rnorm(T) = 0.18, which is based on the presence of the inflection point in the

R(T, B, P = 121.3 GPa), as shown in Figure 2b,d of Ref. [48].
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By utilizing the resistance criterion of R(T)
Rnorm(T) = 0.18 for R(T, B) data reported in

Figure 2d by Pei et al. [48], we deduced the Bc2(T) dataset for WB2 (P = 121.3 GPa).
The fit of the Bc2(T) dataset to the s-wave (Equations (6) and (7)) and d-wave models
(Equations (8) and (9)) are shown in Figure 8.

The deduced parameters for s-wave (Figure 8a) contradict to each other, i.e.,
2∆(0)
kBTc

= 2.8± 0.1 (which is lower than the s-wave weak-coupling limit of 2∆(0)
kBTc

= 3.53 [66,67]),

while the deduced ∆C
γTc

= 1.6± 0.4 is slightly larger than the s-wave weak-coupling limit of
∆C
γTc

= 1.43. The fit quality is not high and has a coefficient of determination of 0.9019.
The fit to the d-wave gap symmetry model has a better quality (with a goodness of fit of

0.9986) (Figure 8b). The deduced parameters are ξ(0) = 13.0 nm, ∆(0) = 2.58± 0.02 meV,
2∆(0)
kBTc

= 4.9± 0.1, ∆C
γTc

= 1.19± 0.07. The parameters characterize the material as being a
moderately strong coupled d-wave superconductor (considering that the weak coupling
limits for d-wave superconductors [64–66] are 2·∆(0)

kB ·Tc
= 4.28 and ∆C

γTc
= 0.995).
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= 2.8 ± 0.1, the good-

ness of fit is 0.9019; (b) d-wave fit, Tc = 12.2± 0.2 K, ξ(0) = 13.0 nm, ∆(0) = 2.58± 0.02 meV,
∆C/γTc = 1.19± 0.07, 2∆(0)
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= 4.9± 0.1, the goodness of fit is 0.9986.

By substituting the deduced parameters in Equation (10), a Fermi temperature of
TF = 1679 ± 68 K in WB2 (P = 121.3 GPa) is calculated. The calculated TF implies that this
phase falls in the nearly conventional superconductors band in the Uemura plot (Figure 3),
because this phase exhibits a reasonably low ratio of Tc

TF
= 0.0077± 0.0003, while the typical

range for unconventional superconductors is 0.01 ≤ Tc
TF
≤ 0.05.

This superconductor also exhibits a very moderate strength of nonadiabaticy, because
the ratio:

0.025 <
Tθ

TF
= 0.26± 0.01 < 0.4, (12)

is typical for the majority of high-temperature superconductors, including iron-based,
A15 alloys, Heusler alloys, Laves phase compounds, cuprates, and highly compressed
hydrides [70] (Figures 4 and 5).

3.4. P6/mmm MgB2

To demonstrate that the Bc2(T) model (Equations (6)–(9) [61–63,74]) can be considered
as an alternative model to extract primary superconducting parameters from R(T, B)
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datasets (while the Bc2(T) definition criterion is R(T)
Rnorm(T) → 0) in addition to the widely

used Werthamer–Helfand–Hohenberg model [79,80], we showed Bc2(T) data in Figure 9.
The data were reported by Zehetmayer et al. [81] for single crystal MgB2 and data fits to
the single band s-wave (panel a, Equations (6) and (7)), the single band d-wave (panel b,
Equations (8) and (9)), and the so-called two-band α-model [80] under the assumption of
s-wave gap symmetry for both bands (panel c) [80,81]:

Bc2,total(T) = α× Bc2,band1(ξtotal(0), T) + (1− α)× Bc2,band2(ξtotal(0), T), (13)

To reduce the number of free-fitting parameters, we implemented the restriction [82]:

Tc1 = Tc2, (14)

∆C1

γ1Tc1
=

∆C2

γ2Tc2
. (15)

The deduced parameters for the single band s-wave model (Figure 9a) contradict
each other, that is, 2∆(0)

kBTc
= 3.3± 0.1 (which is lower than the s-wave weak-coupling limit).

∆C
γTc

= 2.3± 0.3 is much larger than the s-wave weak-coupling limit. The deduced ratio

of 2∆m(0)
kBTc

= 7.1± 0.3 for the d-wave model is nearly two times as large as the d-wave

weak-coupling limit of 2∆m(0)
kBTc

= 4.28, which is too large to be a realistic value.
However, the parameters deduced for the two-band α-model, α = 0.77 ± 0.06,

2∆1(0)
kBTc

= 4.1± 0.3, and 2∆2(0)
kBTc

= 1.7± 0.2, are in good agreement with the values deduced
for MgB2 by other techniques [83], in particular, by point contact spectroscopy [84].
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Figure 9. Temperature-dependent upper critical field, Bc2(T), data (left Y-axes). Calculated
by Equation (5): coherence length ξ(T) (right Y-axes) for P6/mmm MgB2 reported by Zehet-
mayer et al. [81] and data fits to single band s-wave (panel a, Equations (6) and (7)), single band
d-wave (panel b, Equations (8) and (9)), and two-band s-wave [82,83] (panel c, Equations (6) and (7),
Equations (13)–(15)) models. Deduced parameters are: (a) s-wave fit, Tc = 36.7 ± 0.4 K,
ξ(0) = 10.4 nm ∆(0) = 5.22 ± 0.09 meV, ∆C/γTc = 2.3 ± 0.3, 2∆(0)

kBTc
= 3.3 ± 0.1, the goodness

of fit is 0.9887; (b) d-wave fit, Tc = 37.8 ± 0.3 K, ξ(0) = 10.0 nm, ∆m(0) = 11.6 ± 0.5 meV,
∆C/γTc = 1.15± 0.07, 2∆m(0)

kBTc
= 7.1± 0.3, the goodness of fit is 0.9975. (c) two conditions where

used: Tc1 = Tc2 = 37.2± 0.2 K and ∆C1
γ1Tc1

= ∆C2
γ2Tc2

= 1.8± 0.1, and other free-fitting parameters are:

ξtotal(0) = 10.3 nm, α = 0.77± 0.06, ∆1(0) = 6.5± 0.4 meV, 2∆1(0)
kBTc

= 4.1± 0.3, ∆2(0) = 2.7± 0.4 meV,
2∆2(0)

kBTc
= 1.7± 0.2, the goodness of fit is 0.9984.
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4. Discussion

In the consideration above, we calculated the electron–phonon coupling constant,
λe−ph, with the assumption that diborides exhibit the Coulomb pseudopotential parameter,
µ∗ = 0.13. The latter value is typical value for s-wave superconductors [67]. While our
analysis of the upper critical field, Bc2(T), showed that the materials exhibited d-wave
gap symmetry, it is useful to show the variation in λe−ph calculated in the assumption
of d-wave superconductivity. Santi et al. [85] reported that d-wave superconductors ex-
hibit much lower µ∗ values in comparison with s-wave superconductors. In Table 1, we
listed calculated λe−ph values for all studied dibories (apart MgB2) in accordance with
Equations (2)–(4), with the assumption of µ∗ = 0.00; 0.05; 0.10; and 0.13.

Table 1. Calculated the electron–phonon coupling constant, λe−ph, for assumed
µ∗ = 0.00; 0.05; 0.10; and 0.13 for studied diboride compounds α-MoB2, Nb0.75Mo0.25B2, and WB2.

Compound Tθ (K) Tc (K) Assumed µ* λe−ph

α-MoB2 321 28.2 0.00 0.935
(109.7 GPa) 0.05 1.10

0.10 1.29
0.13 1.41

Nb1−xMoxB2 625 7.2 0.00 0.337
(x = 0.25) 0.05 0.422

0.10 0.514
0.13 0.573

WB2 440 12.5 0.00 0.475
(121.3 GPa) 0.05 0.575

0.10 0.685
0.13 0.755

The P6/mmm-phase of Nb0.75Mo0.25B2 exhibits pronounced nonadiabaticity, Tθ
TF

= 3.5.

This value is well above an empirical border, Tθ
TF
∼= 0.4. The majority of conventional and

unconventional superconductors are located below this value (Figures 4 and 5). We can
propose that the strength of the nonadiabaticity is a primary reason for the relatively low
Tc in this material in comparison with other diboride counterparts. A good support for this
hypothesis can be seen in Figure 5, where the Tc suppression within four dibories is linked
to the increase in the strength of the nonadiabaticity. It can also be seen in Figure 5 that no
materials simultaneously exhibit Tc > 10 K and Tθ

TF
> 0.4.

Another explanation for the relatively low Tc in Nb0.75Mo0.25B2 is the Abrikosov–
Gor’kov [86], Anderson [87], and Openov [88,89] theory of dirty superconductors. The
theory established that impurities with magnetic moments suppress the superconduct-
ing transition temperature, if the material exhibits s-wave superconductivity. However,
magnetic impurities not affect the superconducting transition temperature in d-wave super-
conductors. From other hand, non-magnetic impurities cause the suppression of transition
temperature in d-wave superconductors, and these impurities not affect the s-wave su-
perconductors transition temperature.. Considering that the (Nb,Mo)-(0001) planes in
P6/mmm-phase have chemical atomic disorder, because Hire et al. [47] did not report any
evidence for the atomic ordering within Nb-Mo atoms in the (0001) planes, it appears that
the Tc suppression in Nb0.75Mo0.25B2 (and in all materials in the Nb1−xMoxB2 (x = 0.25;
0.50; 0.75 and 0.9) system) can be interpreted as Tc suppression in d-wave MoB2 supercon-
ductors by nonmagnetic impurity—Nb/Mo atoms. However, we need to note that NbB2
and MoB2 are non-superconductors and these compounds exhibit different crystalline
structures (P6/mmm and R3m, respectively). Thus, the influence of the Nb/Mo atoms
composition in (0001) planes on band structure and phonon spectra required more detailed
experimental and first-principles calculation studies.
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To consider the problem of the superconducting gap symmetry in diborides in a more
general context, we should mention that there are several theoretical possibilities for the in-
terplay between s- and d-wave symmetries for different compounds within the same group
of superconductors, and even for the same compound at different condition. For instance,
we can mention the infinite layer nickelates, where both gap symmetries were observed
in experiment [90–92]. Wang et al. [93] reported the theoretical consideration that a very
delicate boundary between a realization for one of two symmetries has been established.

Considering that all diborides considered here exhibit a layered structure with al-
ternative atomic layers along the c-axis, one can expect a similarity between considered
diborides and other anisotropic superconductors. For instance, in one of the seminal
papers regarding cuprates (Uemura et al. [94]), the muon spin relaxation (µSR) data for
Tl-based cuprates (showed in their Figure 1 [94]) can be interpreted exclusively as data
supporting s-wave superconducting energy gap symmetry in cuprates. However, four
years later, Uemura et al. [95] reported more extended µSR data for Tl-based cuprates,
where temperature-dependent superfluid data for samples with low doping states can
be still interpreted within s-wave symmetry, while low temperature data for overdoped
samples are typical for d-wave linear dependence on temperature.

In addition, while our consideration is mainly focused on highly pressurized materials,
we can mention another class of layered superconductors: iron-based superconductors. In
these superconductors, the interplay between s- and d-wave gap symmetries was observed
for the same compound in experiment. For instance, Guguchia et al. [96] reported that, at a
pressure of several gigapascals, Ba0.65Rb0.35Fe2As2 (a two-band s-wave superconductor)
exhibits a transition into a d-wave superconductor: “ . . . hydrostatic pressure promotes the
appearance of nodes in the superconducting gap . . . ” [96].

Another purely theoretical possibility exists for a crossover between the electron–
phonon and the electron–plasmon mediated pairing in layered superconductors. This
possibility was recently proposed by in ’t Veld et al. [97]. This is another possibility that
shows how high-pressure (which, as a rule, changes the screening length in the compound)
can induce the change in the pairing symmetry from s-wave (which is widely considered to
be a consequence of the electron–phonon interaction) to nodal symmetry (which is widely
accepted to be attributed to non-electron-phonon mediated pairing).

In overall, our analysis of experimental data on dibories—apart from MgB2—showed
that d-wave gap symmetry can explain experimental data with much better consistency.
However, theoretical understanding of this result is still ongoing.

5. Conclusions

The field of experimental and theoretical studies of materials with strongly correlated
charge carriers [5–44,46–49,57,59–61,74,98–116], including diborides [44,46–49,107,108], is
experiencing a boom. In this work, we deduced the primary superconducting parameters of
highly compressed diborides: the P6/mmm phases of MoB2 and WB2 and ambient pressure
superconductors Nd0.75Mo0.25B2. It was shown that these the compounds exhibit d-wave
superconducting gap symmetry. We proposed that the suppression of the superconducting
transition temperature (down to Tc = 8 K) in Nb0.75Mo0.25B2 can be either related to strong
nonadiabaticity in this phase (which exhibits the ratio Tθ

TF
= 3.5) or to the effect of the Tc

suppression in d-wave MoB2 superconductors by nonmagnetic impurities (Nb/Mo atoms).
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