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Abstract: We present the smallest non-lattice orthomodular poset and show that it is unique up
to isomorphism. Since not every Boolean poset is orthomodular, we consider the class of skew
orthomodular posets previously introduced by the first and third author under the name “generalized
orthomodular posets”. We show that this class contains all Boolean posets and we study its subclass
consisting of horizontal sums of Boolean posets. For this purpose, we introduce the concept of a
compatibility relation and the so-called commutator of two elements. We show the relationship
between these concepts and introduce a kind of ternary discriminator for horizontal sums of Boolean
posets. Numerous examples illuminating these concepts and results are included in the paper.
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1. Introduction

It is well-known that the set of closed subspaces of a Hilbert space forms a complete
orthomodular lattice with respect to set-inclusion. Because these subspaces correspond
to self-adjoint bounded operators which correspond to observables in quantum measure-
ments, this orthomodular lattice is often considered as an algebraic counterpart of the
logic of quantum mechanics, see, e.g., [1] or [2]. Recall that an ortholattice is a bounded
lattice (L,∨,∧, ′, 0, 1) with an antitone involution ′ which is a complementation, and an
orthomodular lattice is an ortholattice (L,∨,∧, ′, 0, 1) satisfying the so-called orthomodular
law, i.e.,

(OM) if x ≤ y then y = x ∨ (y ∧ x′)

which in turn is equivalent to its dual

if x ≤ y then x = y ∧ (x ∨ y′).

However, it was recognized later that if the elements x and y are not orthogonal, i.e., if
not x ≤ y′, then the join x ∨ y need not exist in accordance with quantum theory. Hence,
so-called orthomodular posets were introduced (see, e.g., [3]) as follows:

An orthomodular poset is a bounded poset (P,≤, ′, 0, 1) with an antitone involution ′

that is a complementation satisfying the following conditions:

(i) if x ⊥ y then x ∨ y is defined,
(ii) if x ≤ y then y = x ∨ (y ∧ x′). (OM)

Hereinafter, x ⊥ y means x ≤ y′. Observe that the expression in (ii) is well-defined
because x ⊥ y′ yields that y′ ∨ x exists and, by De Morgan’s laws, also y ∧ x′ = (y′ ∨ x)′ is
defined and, due to y ∧ x′ ⊥ x also x ∨ (y ∧ x′) is defined. Of course, (ii) is equivalent to its
dual

x ≤ y implies x = y ∧ (x ∨ y′).
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It is evident that if the lattice L = (L,∨,∧, ′, 0, 1) is Boolean, i.e., a distributive comple-
mented lattice, then it is orthomodular. Unfortunately, a similar result does not hold for
distributive posets. This is the reason why we introduced the concept of a generalized or-
thomodular poset (see, e.g., [4]) which in this paper we will call a skew orthomodular poset
(since the name “generalized orthomodular poset” is also used with a different meaning)
and which, as we will show, can also be a Boolean poset. Hence, we essentially extend the
class of orthomodular posets in such a way that they share more natural properties with
orthomodular lattices than orthomodular posets do. This represents one of our goals in
this paper. The second problem connected with orthomodular posets is to find such a poset
of minimal size not being a lattice. As far as we know, this problem has yet to be solved.

In fact, S. Pulmannová and P. Pták [5] applied the method of Greechie diagrams in
order to construct an 18-element orthomodular poset. The considered Greechie diagram
consists of four three-atomic blocks forming a square. However, it was not proved that this
orthomodular poset is the minimal non-lattice one and that it is unique up to isomorphism.
This motivated us to provide an exact proof of these statements. It is worth noting that
orthomodular posets are closely related to the logic of quantum mechanics, which is a
physical theory based on the idea of symmetry. Overall, the relationship between skew
orthomodular posets and symmetry highlights the deep connection between different areas
of mathematics and science, and underscores the importance of symmetry as a fundamental
concept in understanding the structure and behaviour of physical systems.

2. Basic Concepts

In the following, we need several concepts and notations which we will present in this
section.

Let P = (P,≤) be a poset, A, B ⊆ P and a, b ∈ P. We define A ≤ B if and only if x ≤ y
for all x ∈ A and all y ∈ B. Instead of A ≤ {b}, {a} ≤ B and {a} ≤ {b} we simply write
A ≤ b, a ≤ B and a ≤ b, respectively. The sets

L(A) := {x ∈ P | x ≤ A},
U(A) := {x ∈ P | A ≤ x}

are called the lower cone and upper cone of A, respectively. Instead of L(A ∪ B), L(A ∪ {b}),
L({a, b}) and L

(
U(A)

)
we write L(A, B), L(A, b), L(a, b) and LU(A), respectively. Anal-

ogously, we proceed in similar cases. Recall that P is called distributive (see, e.g., [6]) if it
satisfies the identity

L
(
U(x, y), z

)
≈ LU

(
L(x, z), L(y, z)

)

or, equivalently, one of the following identities:

UL
(
U(x, y), z

)
≈ U

(
L(x, z), L(y, z)

)
,

U
(

L(x, y), z
)
≈ UL

(
U(x, z), U(y, z)

)
,

LU
(

L(x, y), z
)
≈ L

(
U(x, z), U(y, z)

)
.

Here and in the sequel, L
(
U(x, y), z

)
≈ LU

(
L(x, z), L(y, z)

)
means that

L
(
U(x, y), z

)
= LU

(
L(x, z), L(y, z)

)
holds for all x, y, z ∈ P.

It can be easily seen that if P is a lattice then it is a distributive poset if and only if it
satisfies the distributive law

(x ∨ y) ∧ z ≈ (x ∧ z) ∨ (y ∧ z).

Lemma 1. Let (P,≤, 0, 1) be a bounded distributive poset and a, b, c, a′, b′ ∈ P. Then the following
holds:

(i) If b and c are complements of a then b = c,
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(ii) if a ≤ b, U(a, a′) = {1} and L(b, b′) = {0} then b′ ≤ a′.

Proof.

(i) We have

L(b) = L(1, b) = L
(
U(c, a), b

)
= LU

(
L(c, b), L(a, b)

)
= LU

(
L(c, b), 0

)
=

= LU
(

L(b, c), 0) = LU
(

L(b, c), L(a, c)
)
= L

(
U(b, a), c

)
= L(1, c) = L(c)

and hence b = c.
(ii) We have

{0} ⊆ L(a, b′) ⊆ L(b, b′) = {0}
and hence L(a, b′) = {0} which implies

b′ ∈ L(b′) = L(1, b′) = L
(
U(a, a′), b′

)
= LU

(
L(a, b′), L(a′, b′)

)
=

= LU
(
0, L(a′, b′)

)
= LUL(a′, b′) = L(a′, b′) ⊆ L(a′),

i.e., b′ ≤ a′.

Boolean posets, i.e., distributive complemented posets, play an important role in the
algebraic theory of posets since they share many important properties of Boolean algebras.
As mentioned in the introduction, every Boolean algebra is an orthomodular lattice, but
not every Boolean poset is an orthomodular one. In order to avoid this discrepancy, we
define the following concept introduced in [4] under the name “generalized orthomodular
poset” (cf. also the paper [7]):

Definition 1. A skew orthomodular poset is a bounded poset P = (P,≤, ′, 0, 1) with an
antitone involution which in turn is a complementation satisfying the condition

(GOM) x ≤ y implies U(y) = U
(
x, L(y, x′)

)
.

It is worth noting that (GOM) is equivalent to its dual

x ≤ y implies L(x) = L
(
y, U(x, y′)

)
.

If the poset is orthogonal, i.e., if for all x, y ∈ P with x ≤ y′ there exists x ∨ y, then
(GOM) is equivalent to (OM) and hence P is an orthomodular poset.

Recall that a Boolean poset is a distributive complemented poset.
By Lemma 1, the complementation in a Boolean poset is unique and antitone. We will

use this fact when proving our results in Section 4.
It is easy to prove the following assertion.

Proposition 1. Let B = (B,≤, ′, 0, 1) be a Boolean poset. Then B is a skew orthomodular poset.

Proof. Since x and x′′ are complements of x′, we obtain x′′ ≈ x by Lemma 1(i). According
to Lemma 1(ii), ′ is antitone. Finally, if x ≤ y then

U(y) = ULU(y) = UL
(
U(y), 1

)
= UL

(
U(x, y), U(x, x′)

)
= U

(
x, L(y, x′)

)

using distributivity of B.

Example 1. The poset depicted in Figure 1 is a non-lattice Boolean poset and hence a skew ortho-
modular poset according to Proposition 1.
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Boolean posets, i.e. distributive complemented posets, play an important role in the
algebraic theory of posets since they share a lot of important properties of Boolean
algebras. As mentioned in the introduction, every Boolean algebra is an orthomodular
lattice, but not every Boolean poset is an orthomodular one. In order to avoid this
discrepancy, we define the following concept introduced in [3] under the name “generalized
orthomodular poset” (cf. also the paper [2]):

Definition 2.2. A skew orthomodular poset is a bounded poset P = (P,≤, ′, 0, 1) with
an antitone involution which in turn is a complementation satisfying the condition

(GOM) x ≤ y implies U(y) = U
(
x, L(y, x′)

)
.

It is worth noticing that (GOM) is equivalent to its dual

x ≤ y implies L(x) = L
(
y, U(x, y′)

)
.

If the poset is orthogonal, i.e. if for all x, y ∈ P with x ≤ y′ there exists x ∨ y, then
(GOM) is equivalent to (OM) and hence P is an orthomodular poset.

Recall that a Boolean poset is a distributive complemented poset.

By Lemma 2.1 the complementation in a Boolean poset is unique and antitone. We will
use this fact when proving our results in Section 4.

It is easy to prove the following assertion.

Proposition 2.3. Let B = (B,≤, ′, 0, 1) be a Boolean poset. Then B is a skew ortho-
modular poset.

Proof. Since x and x′′ are complements of x′, we obtain x′′ ≈ x by Lemma 2.1 (i).
According to Lemma 2.1 (ii), ′ is antitone. Finally, if x ≤ y then

U(y) = ULU(y) = UL
(
U(y), 1

)
= UL

(
U(x, y), U(x, x′)

)
= U

(
x, L(y, x′)

)

using distributivity of B.

Example 2.4. The poset depicted in Fig. 1 is a non-lattice Boolean poset and hence a
skew orthomodular poset according to Proposition 2.3.

0

a b c d

e e′

d′ c′ b′ a′

1

Fig. 1

This poset is not an orthomodular poset since a ≤ c′, but a ∨ c does not exist.

4

Figure 1. A non-orthomodular non-lattice Boolean poset.

This poset is not an orthomodular poset since a ≤ c′, but a ∨ c does not exist.

3. The Smallest Non-Lattice Orthomodular Poset

As mentioned in the introduction, as far as we know, the smallest non-lattice ortho-
modular poset is not known up to now. Sometimes, the following 20-element non-lattice
orthomodular poset was considered (Figure 2). It is the poset of all subsets A of the set
{1, . . . , 6} having an even number of elements and satisfying |A∩ {1, 2, 3}| = |A∩ {4, 5, 6}|.

3 The smallest non-lattice orthomodular poset

As mentioned in the introduction, as far as we know, the smallest non-lattice ortho-
modular poset is not known up to now. Sometimes the following 20-element non-lattice
orthomodular poset was considered (Fig. 2). It is the poset of all subsets A of the set
{1, . . . , 6} having an even number of elements and satisfying |A∩{1, 2, 3}| = |A∩{4, 5, 6}|.

∅

a b c d e f g h i

i′ h′ g′ f ′ e′ d′ c′ b′ a′

N

Fig. 2

Here a = {1, 4}, b = {1, 5}, c = {1, 6}, d = {2, 4}, e = {2, 5}, f = {2, 6}, g = {3, 4},
h = {3, 5}, i = {3, 6}, a′ = {2, 3, 5, 6}, b′ = {2, 3, 4, 6}, c′ = {2, 3, 4, 5}, d′ = {1, 3, 5, 6},
e′ = {1, 3, 4, 6}, f ′ = {1, 3, 4, 5}, g′ = {1, 2, 5, 6}, h′ = {1, 2, 4, 6}, i′ = {1, 2, 4, 5} and
N = {1, . . . , 6}. For

P := {A ⊆ N | |A ∩ {1, 2, 3}| = |A ∩ {4, 5, 6}|},

the poset P = (P,⊆, ′, ∅, N) is not a lattice since e.g. a ∨ b does not exist. Note that
P is the smallest orthomodular subposet of the orthomodular poset (Q,⊆, ′, ∅, N) with
Q := {A ∈ 2N | A has an even number of elements} containing a = {1, 4} and b = {1, 5}.
However, we will prove the following result.

Theorem 3.1. The smallest non-lattice orthomodular poset is depicted in Fig. 3 and is
unique up to isomorphism.

0

a b c d e f g h

h′ g′ f ′ e′ d′ c′ b′ a′

1

Fig. 3

5

Figure 2. A 20-element non-lattice orthomdular poset.

Here a = {1, 4}, b = {1, 5}, c = {1, 6}, d = {2, 4}, e = {2, 5}, f = {2, 6}, g = {3, 4},
h = {3, 5}, i = {3, 6}, a′ = {2, 3, 5, 6}, b′ = {2, 3, 4, 6}, c′ = {2, 3, 4, 5}, d′ = {1, 3, 5, 6},
e′ = {1, 3, 4, 6}, f ′ = {1, 3, 4, 5}, g′ = {1, 2, 5, 6}, h′ = {1, 2, 4, 6}, i′ = {1, 2, 4, 5} and
N = {1, . . . , 6}. For

P := {A ⊆ N | |A ∩ {1, 2, 3}| = |A ∩ {4, 5, 6}|},

the poset P = (P,⊆, ′, ∅, N) is not a lattice since, e.g., a ∨ b does not exist. Note that
P is the smallest orthomodular subposet of the orthomodular poset (Q,⊆, ′, ∅, N) with
Q := {A ∈ 2N | A has an even number of elements} containing a = {1, 4} and b = {1, 5}.

However, we will prove the following result.

Theorem 1. The smallest non-lattice orthomodular poset is depicted in Figure 3 and is unique up
to isomorphism.
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3 The smallest non-lattice orthomodular poset

As mentioned in the introduction, as far as we know, the smallest non-lattice ortho-
modular poset is not known up to now. Sometimes the following 20-element non-lattice
orthomodular poset was considered (Fig. 2). It is the poset of all subsets A of the set
{1, . . . , 6} having an even number of elements and satisfying |A∩{1, 2, 3}| = |A∩{4, 5, 6}|.

∅

a b c d e f g h i

i′ h′ g′ f ′ e′ d′ c′ b′ a′

N

Fig. 2

Here a = {1, 4}, b = {1, 5}, c = {1, 6}, d = {2, 4}, e = {2, 5}, f = {2, 6}, g = {3, 4},
h = {3, 5}, i = {3, 6}, a′ = {2, 3, 5, 6}, b′ = {2, 3, 4, 6}, c′ = {2, 3, 4, 5}, d′ = {1, 3, 5, 6},
e′ = {1, 3, 4, 6}, f ′ = {1, 3, 4, 5}, g′ = {1, 2, 5, 6}, h′ = {1, 2, 4, 6}, i′ = {1, 2, 4, 5} and
N = {1, . . . , 6}. For

P := {A ⊆ N | |A ∩ {1, 2, 3}| = |A ∩ {4, 5, 6}|},

the poset P = (P,⊆, ′, ∅, N) is not a lattice since e.g. a ∨ b does not exist. Note that
P is the smallest orthomodular subposet of the orthomodular poset (Q,⊆, ′, ∅, N) with
Q := {A ∈ 2N | A has an even number of elements} containing a = {1, 4} and b = {1, 5}.
However, we will prove the following result.

Theorem 3.1. The smallest non-lattice orthomodular poset is depicted in Fig. 3 and is
unique up to isomorphism.

0

a b c d e f g h

h′ g′ f ′ e′ d′ c′ b′ a′

1

Fig. 3

5

Figure 3. The smallest non-lattice orthomodular poset.

Proof. Let P = (P,≤, ′, 0, 1) be a minimal non-lattice orthomodular poset. Then there exist
a, b ∈ P having no supremum. Let g′ and h′ be two minimal upper bounds of a and b. If
g′ and h′ had an infimum, they would not be minimal upper bounds of a and b. Hence,
g′ and h′ have no infimum. Thus, the Hasse diagram of P must contain the configuration
shown in Figure 4:

Proof. Let P = (P,≤, ′, 0, 1) be a minimal non-lattice orthomodular poset. Then there
exist a, b ∈ P having no supremum. Let g′ and h′ be two minimal upper bounds of a
and b. If g′ and h′ had an infimum, they would not be minimal upper bounds of a and
b. Hence g′ and h′ have no infimum. Thus the Hasse diagram of P must contain the
configuration shown in Fig. 4:

a b

h′ g′

Fig. 4

Since P is bounded and its unary operation ′ is an antitone involution being a comple-
mentation, P must contain the configuration visualized in Fig. 5 and P must have an
even number of elements. We also conclude that a′ and b′ have no infimum and g and h
have no supremum.

0

a b g h

h′ g′ b′ a′

1

Fig. 5

It is clear that these 10 elements are pairwise distinct. Let us mention that this poset is
orthogonal. Put

c := h′ ∧ b′,

d := h′ ∧ a′,

e := g′ ∧ b′,

f := g′ ∧ a′.

Because of orthomodularity we have

h′ = b ∨ c,

h′ = a ∨ d,

g′ = b ∨ e,

g′ = a ∨ f.

Using the facts b 6= 0, h 6= 0, h 6= b′ and that neither a ∨ b nor g ∨ h exists, we can prove
c 6= 0, a, b, g, h, a′, b′, g′, h′, 1.

6

Figure 4. The conguration.

Since P is bounded and its unary operation ′ is an antitone involution being a com-
plementation, P must contain the configuration visualized in Figure 5 and P must have an
even number of elements. We also conclude that a′ and b′ have no infimum and g and h
have no supremum.

Proof. Let P = (P,≤, ′, 0, 1) be a minimal non-lattice orthomodular poset. Then there
exist a, b ∈ P having no supremum. Let g′ and h′ be two minimal upper bounds of a
and b. If g′ and h′ had an infimum, they would not be minimal upper bounds of a and
b. Hence g′ and h′ have no infimum. Thus the Hasse diagram of P must contain the
configuration shown in Fig. 4:

a b

h′ g′

Fig. 4

Since P is bounded and its unary operation ′ is an antitone involution being a comple-
mentation, P must contain the configuration visualized in Fig. 5 and P must have an
even number of elements. We also conclude that a′ and b′ have no infimum and g and h
have no supremum.

0

a b g h

h′ g′ b′ a′

1

Fig. 5

It is clear that these 10 elements are pairwise distinct. Let us mention that this poset is
orthogonal. Put

c := h′ ∧ b′,

d := h′ ∧ a′,

e := g′ ∧ b′,

f := g′ ∧ a′.

Because of orthomodularity we have

h′ = b ∨ c,

h′ = a ∨ d,

g′ = b ∨ e,

g′ = a ∨ f.

Using the facts b 6= 0, h 6= 0, h 6= b′ and that neither a ∨ b nor g ∨ h exists, we can prove
c 6= 0, a, b, g, h, a′, b′, g′, h′, 1.

6

Figure 5. An orthogonal poset.
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It is clear that these 10 elements are pairwise distinct. Let us mention that this poset is
orthogonal. Put

c := h′ ∧ b′,

d := h′ ∧ a′,

e := g′ ∧ b′,

f := g′ ∧ a′.

Because of orthomodularity we have

h′ = b ∨ c,

h′ = a ∨ d,

g′ = b ∨ e,

g′ = a ∨ f .

Using the facts b 6= 0, h 6= 0, h 6= b′ and that neither a ∨ b nor g ∨ h exists, we can
prove c 6= 0, a, b, g, h, a′, b′, g′, h′, 1.

c = 0 would imply h′ = b ∨ 0 = b, a contradiction,
c = a would imply a = h′ ∧ b′ ≤ b′ and hence a ∨ b would exist, a contradiction,
c = b would imply h′ = b ∨ b = b, a contradiction,
c = g would imply g = h′ ∧ b′ ≤ h′ and hence g ∨ h would exist, a contradiction,
c = h would imply h ≤ b ∨ h = h′ and hence h = h ∧ h′ = 0, a contradiction,
c = a′ would imply a′ = h′ ∧ b′ ≤ b′ and hence a∨ b would exist, a contradiction,
c = b′ would imply h′ = b ∨ b′ = 1, a contradiction,
c = g′ would imply g′ ≤ b∨ g′ = h′ and hence g∨ h would exist, a contradiction,
c = h′ would imply b ≤ b ∨ h′ = h′ = h′ ∧ b′ ≤ b′ and hence b = b ∧ b′ = 0,
a contradiction,
c = 1 would imply h′ = b ∨ 1 = 1, a contradiction.

This shows c 6= 0, a, b, g, h, a′, b′, g′, h′, 1. Hence also c′ is different from these 10 el-
ements. Because of symmetry reasons, also d, e, f , d′, e′, f ′ are different from these 10 el-
ements. Altogether, we see that any of the elements c, d, e, f , c′, d′, e′, f ′ is different from
0, a, b, g, h, a′, b′, g′, h′, 1. Using the facts c 6= 0, h 6= 0 and that g ∨ h does not exist, we can
prove c 6= c′, d′, e′, f ′.

c = c′ would imply c = c ∧ c′ = 0, a contradiction,
c = d′ would imply h ≤ h ∨ a = d′ = h′ ∧ b ≤ h′ and hence h = h ∧ h′ = 0,
a contradiction,
c = e′ would imply g ≤ g ∨ b = e′ = h′ ∧ b′ ≤ h′ and hence g ∨ h would exist, a
contradiction,
c = f ′ would imply g ≤ g ∨ a = f ′ = h′ ∧ b′ ≤ h′ and hence g ∨ h would exist, a
contradiction.

This shows c 6= c′, d′, e′, f ′. Because of symmetry reasons, also d, e, f are different from
c′, d′, e′, f ′. Altogether, we see that any of the elements c, d, e, f is different from c′, d′, e′, f ′.
Using the facts a 6= b and g 6= h, we can prove that c, d, e, f are pairwise different.

c = d would imply h′ ∧ b′ = h′ ∧ a′ and hence a′ = h ∨ (a′ ∧ h′) = h ∨ (b′ ∧ h′) =
b′, a contradiction.
c = e would imply g′ = b ∨ e = b ∨ c = h′, a contradiction.
c = f would imply a ≤ h′, f = c = h′ ∧ b′ ≤ h′, b ≤ g′ and c = f = g′ ∧ a′ ≤ g′

and hence g′ = a ∨ f ≤ h′ = b ∨ c ≤ g′ whence g′ = h′, a contradiction.
d = e would imply b ≤ h′, e = d = h′ ∧ a′ ≤ h′, a ≤ g′ and d = e = g′ ∧ b′ ≤ g′

and hence g′ = b ∨ e ≤ h′ = a ∨ d ≤ g′ whence g′ = h′, a contradiction.
d = f would imply g′ = a ∨ f = a ∨ d = h′, a contradiction.
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e = f would imply g′ ∧ b′ = g′ ∧ a′ and hence a′ = g∨ (a′ ∧ g′) = g∨ (b′ ∧ g′) =
b′, a contradiction.

This shows that c, d, e, f are pairwise different. Thus, c′, d′, e′, f ′ are also pairwise
different. Altogether, we have proved that the 18 elements

0, a, b, c, d, e, f , g, h, a′, b′, c′, d′, e′, f ′, g′, h′, 1

are pairwise different. Therefore, P must contain the poset depicted in Figure 3. However,
this is already a non-lattice orthomodular poset and hence the smallest one with respect to
the number of its elements. We need to show that it is unique up to isomorphism. If another
18-element orthomodular poset not isomorphic to P existed, then its Hasse diagram would
have to contain an edge not included in the Hasse diagram of P. Let us check this. Consider
that the orthomodular poset in question contains, e.g., the edge (a, b′) and hence also (b, a′).
Then (OM) is violated since h′ 6= a ∨ (h′ ∧ a′). If it contained, e.g., the edges (c, g′) and
(g, c′), similarly g′ 6= c ∨ (g′ ∧ c′). If it contained, e.g., (d, b) and (b′, d′), (OM) would also
be violated since

by adding the edge (d, b) such that d ≤ b we would get h′ 6= a ∨ (h′ ∧ a′),
by adding the edge (d, b) such that b ≤ d we would get g′ 6= a ∨ (g′ ∧ a′).

All the remaining cases can be checked in a similar way. All possible cases would lead
to a contradiction, which proves that the poset P is unique up to isomorphism.

4. Horizontal Sums

The aim of this section is to describe a construction of skew orthomodular posets by
means of so-called horizontal sums. For the reader’s convenience, let us recall this concept.

Let Pi = (Pi,≤, ′, 0, 1), i ∈ I, be a non-empty family of bounded posets with an antitone
involution. By the horizontal sum of the Pi we mean a poset P being the union of disjoint
copies of the posets Pi where the bottom and top elements of the Pi, respectively, are
identified.

Proposition 2. Let Pi = (Pi,≤, ′, 0, 1), i ∈ I, be a non-empty family of skew orthomodular posets.
Then the horizontal sum (P,≤, ′, 0, 1) of the Pi, i ∈ I, is a skew orthomodular poset.

Proof. If a, b ∈ P and a ≤ b then there exists some i ∈ I with a, b ∈ Pi, thus (GOM) surely
holds. If there does not exist some i ∈ I with a, b ∈ Pi then a ‖ b and hence (GOM) is
obviously satisfied for these elements a and b.

Let us note that if |I| > 1 and each Pi is non-trivial (i.e., has more than two elements).
Then the horizontal sum of the Pi is a non-distributive skew orthomodular poset. Namely,
if j, k ∈ I, j 6= k, a ∈ Pj \ {0, 1} and b ∈ Pk \ {0, 1} then

L
(
U(a, a′), b

)
= L(1, b) = L(b) 6= L(0) = LU(0) = LU(0, 0) = LU

(
L(a, b), L(a′, b)

)
.

Corollary 1. The horizontal sum of a family of Boolean posets is a skew orthomodular poset.

Proof. By Proposition 1, every Boolean poset is a skew orthomodular poset. The rest
follows from Proposition 2.

Example 2. The orthomodular poset P depicted in Figure 3 is not a horizontal sum of Boolean
posets.

The question is whether every skew orthomodular poset is the horizontal sum of
Boolean posets. In the next example we show that this is not the case.

Example 3. Consider the poset P depicted in Figure 6:
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Example 4.4. Consider the poset P depicted in Fig. 6:

0

a b c d

d′ c′ b′ a′

1

Fig. 6

P is a non-lattice Boolean poset that is not orthomodular since a ≤ d′, but a ∨ (d′ ∧ a′)
is not defined. Considering the horizontal sum of P and some non-distributive skew
orthomodular poset (e.g. the poset visualized in Fig. 3), we obtain a non-lattice skew
orthomodular poset being neither distributive, nor a horizontal sum of Boolean posets nor
orthomodular.

In what follows we will study horizontal sums of Boolean posets. For this purpose, we
introduce the compatibility relation analogously as it was done for orthomodular lattices,
see e.g. [6].

In orthomodular lattices (L,∨,∧) the compatibility relation C is defined as follows:

a C b if a = (a ∧ b) ∨ (a ∧ b′)

(a, b ∈ L). Of course, in a Boolean algebra every two elements are compatible. For our
reasons, we define the relation C in a skew orthomodular poset (P,≤, ′, 0, 1) as follows:

a C b if U(a) = U
(
L(a, b), L(a, b′)

)

(a, b ∈ P ). Then a, b are called compatible and C is called the compatibility relation.

Lemma 4.5. Let (P,≤, ′, 0, 1) be a skew orthomodular poset and a, b ∈ P . Then the
following holds:

(i) a C b if and only if a C b′,

(ii) a ≤ b implies a C b,

(iii) if {a, b} ∩ {0, 1} 6= ∅ then a C b.

Proof.

(i) This is clear.

(ii) a ≤ b implies U(a) = UL(a) = U
(
L(a), L(a, b′)

)
= U

(
L(a, b), L(a, b′)

)
.

9

Figure 6. A non-orthomodular skew orthomodular poset not being a horizontal sum of Boolean
posets.

P is a non-lattice Boolean poset that is not orthomodular since a ≤ d′, but a ∨ (d′ ∧ a′) is
not defined. Considering the horizontal sum of P and some non-distributive skew orthomodular
poset (e.g., the poset visualized in Figure 3), we obtain a non-lattice skew orthomodular poset being
neither distributive, nor a horizontal sum of Boolean posets nor orthomodular.

In what follows we will study horizontal sums of Boolean posets. For this purpose, we
introduce the compatibility relation analogously as it was done for orthomodular lattices,
see, e.g., [8].

In orthomodular lattices (L,∨,∧) the compatibility relation C is defined as follows:

a C b if a = (a ∧ b) ∨ (a ∧ b′)

(a, b ∈ L). Of course, in a Boolean algebra every two elements are compatible. For our
reasons, we define the relation C in a skew orthomodular poset (P,≤, ′, 0, 1) as follows:

a C b if U(a) = U
(

L(a, b), L(a, b′)
)

(a, b ∈ P). Then a, b are called compatible and C is called the compatibility relation.

Lemma 2. Let (P,≤, ′, 0, 1) be a skew orthomodular poset and a, b ∈ P. Then the following holds:

(i) a C b if and only if a C b′,
(ii) a ≤ b implies a C b,
(iii) if {a, b} ∩ {0, 1} 6= ∅ then a C b.

Proof.

(i) This is clear.
(ii) a ≤ b implies U(a) = UL(a) = U

(
L(a), L(a, b′)

)
= U

(
L(a, b), L(a, b′)

)
.

(iii) If a = 0 or b = 1 then a C b follows from (ii).
If a = 1 then a C b follows from

U(a) = U(1) = {1} = U(b, b′) = U
(

L(b), L(b′)
)
= U

(
L(1, b), L(1, b′)

)
=

= U
(

L(a, b), L(a, b′)
)
.

If b = 0 then a C b follows from (i) and (ii).

The next result is almost evident.

Lemma 3. Let (B,≤, ′, 0, 1) be a Boolean poset and a, b ∈ B. Then a C b.
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Proof. We have U(a) = UL(a) = UL(a, 1) = UL
(
a, U(b, b′)

)
= U

(
L(a, b), L(a, b′)

)
.

However, we can prove a more interesting and important result.

Theorem 2. Let (P,≤, ′, 0, 1) be the horizontal sum of the Boolean posets (Bi,≤, ′, 0, 1), i ∈ I,
and a, b ∈ P. Then the following are equivalent:

(i) a C b,
(ii) there exists some i ∈ I with a, b ∈ Bi.

Proof.
(i)⇒ (ii):
If no i ∈ I with a, b ∈ Bi existed, then there would exist j, k ∈ I with j 6= k, a ∈ Bj \ {0, 1}
and b ∈ Bk \ {0, 1}, which would imply

U(a) 6= U(0) = U(0, 0) = U
(

L(a, b), L(a, b′)
)
,

a contradiction.
(ii)⇒ (i):
If {a, b} ∩ {0, 1} 6= ∅ then a C b according to Lemma 2. Now assume a, b ∈ Bi \ {0, 1}.
Because of Lemma 3 we have

U
(

L(a, b), L(a, b′)
)
∩ Bi = U

(
L(a, b) ∩ Bi, L(a, b′) ∩ Bi

)
∩ Bi = U(a) ∩ Bi = U(a)

which implies L(a, b) ∪ L(a, b′) 6= {0} and hence

U(a) = U
(

L(a, b), L(a, b′)
)
∩ Bi = U

(
L(a, b), L(a, b′)

)
,

i.e., a C b.

For orthomodular lattices (L,∨,∧), the commutator c(x, y) was introduced as follows:

c(x, y) := (x ∧ y) ∨ (x ∧ y′) ∨ (x′ ∧ y) ∨ (x′ ∧ y′)

for all x, y ∈ L (cf. e.g., [8]). In skew orthomodular posets (P,≤, ′, 0, 1) we analogously
define

c(x, y) := Min U
(

L(x, y), L(x, y′), L(x′, y), L(x′, y′)
)

for all x, y ∈ P. Here and in the following Min A for a subset A of a poset means the set of
all minimal elements of A, and Min U(A) means Min

(
U(A)

)
. Let us note that Min A if A

may be empty.
In the following, we often identify singletons with their unique element.

Lemma 4. Let (P,≤, ′, 0, 1) be a skew orthomodular poset and a, b ∈ P. Then, the following holds:

(i) c(a, b) = c(b, a),
(ii) c(a, b) = c(a, b′) = c(a′, b) = c(a′, b′),
(iii) c(0, b) = c(1, b) = 1,
(iv) if a C b and a′ C b then c(a, b) = 1.

Proof.

(i) and (ii) are clear.
(iii) According to (ii) we have

c(0, b) = c(1, b) = Min U
(

L(1, b), L(1, b′), L(0, b), L(0, b′)
)
= Min U(b, b′, 0) = 1.
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(iv) If a C b and a′ C b then

c(a, b) = Min U
(

L(a, b), L(a, b′), L(a′, b), L(a′, b′)
)
=

= Min
(

U
(

L(a, b), L(a, b′)
)
∩U

(
L(a′, b), L(a′, b′)

))
= Min

(
U(a) ∩U(a′)

)
=

= Min U(a, a′) = 1.

Corollary 2. Let (B,≤, ′, 0, 1) be a Boolean poset and a, b ∈ B. Then c(a, b) = 1.

Proof. We have a, a′, b ∈ B and hence a C b and a′ C b according to Lemma 3, which
implies c(a, b) = 1 by Lemma 4.

Now we prove a result similar to Theorem 2 for the commutator instead of
compatibility.

Theorem 3. Let (P,≤, ′, 0, 1) be the horizontal sum of the Boolean posets (Bi,≤, ′, 0, 1), i ∈ I,
and a, b ∈ P. Then

c(a, b) =
{

1 if there exists some i ∈ I with a, b ∈ Bi
0 otherwise.

Hence c(a, b) = 1 if and only if there exists some i ∈ I with a, b ∈ Bi.

Proof. First assume there exists some i ∈ I with a, b ∈ Bi. If {a, b} ∩ {0, 1} 6= ∅ then
c(a, b) = 1 according to Lemma 4. Now assume a, b ∈ Bi \ {0, 1}. Because of Corollary 2
we have

U
(

L(a, b) ∪ L(a, b′) ∪ L(a′, b) ∪ L(a′, b′)
)
∩ Bi =

= U
(

L(a, b) ∩ Bi, L(a, b′) ∩ Bi, L(a′, b) ∩ Bi, L(a′, b′) ∩ Bi
)
∩ Bi = 1

which implies L(a, b) ∪ L(a, b′) ∪ L(a′, b) ∪ L(a′, b′) 6= 0 and therefore

c(a, b) = Min U
(

L(a, b), L(a, b′), L(a′, b), L(a′, b′)
)
=

= Min
(

U
(

L(a, b) ∪ L(a, b′) ∪ L(a′, b) ∪ L(a′, b′)
)
∩ Bi

)
= 1.

Conversely, assume there exists no i ∈ I with a, b ∈ Bi. Then there exist j, k ∈ I with
j 6= k, a ∈ Bj \ {0, 1} and b ∈ Bk \ {0, 1} and hence

c(a, b) = Min U
(

L(a, b), L(a, b′), L(a′, b), L(a′, b′)
)
= Min U(0) = 0.

It is worth noting that the assumptions of Theorem 3 are essential. Namely, if the skew
orthomodular poset (P,≤, ′, 0, 1) is neither Boolean nor a horizontal sum of such posets
then for x, y ∈ P it may happen that c(x, y) differs from both 0 and 1, see the following
example.

Example 4.

(i) Consider the orthomodular poset (P,≤, ′, 0, 1) depicted in Figure 3. Then we compute

c(a, b) = Min U
(

L(a, b), L(a, b′), L(a′, b), L(a′, b′)
)
= Min U(0, 0, 0, 0, g, h}) =

= Min U(g, h) = {a′, b′}

which differs from both 0 and 1.
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(ii) However, the condition from Theorem 3 does not characterize the class of horizontal sums
of Boolean posets. For example, consider the ortholattice O6 = (O6,≤, ′, 0, 1) visualized in
Figure 7:

which implies L(a, b) ∪ L(a, b′) ∪ L(a′, b) ∪ L(a′, b′) 6= 0 and therefore

c(a, b) = MinU
(
L(a, b), L(a, b′), L(a′, b), L(a′, b′)

)
=

= Min
(
U
(
L(a, b) ∪ L(a, b′) ∪ L(a′, b) ∪ L(a′, b′)

)
∩Bi

)
= 1.

Conversely, assume there exists no i ∈ I with a, b ∈ Bi. Then there exist j, k ∈ I with
j 6= k, a ∈ Bj \ {0, 1} and b ∈ Bk \ {0, 1} and hence

c(a, b) = MinU
(
L(a, b), L(a, b′), L(a′, b), L(a′, b′)

)
= MinU(0) = 0.

It is worth noticing that the assumptions of Theorem 4.10 are essential. Namely if the
skew orthomodular poset (P,≤, ′, 0, 1) is neither Boolean nor a horizontal sum of such
posets then for x, y ∈ P it may happen that c(x, y) differs from both 0 and 1, see the
following example.

Example 4.11.

(i) Consider the orthomodular poset (P,≤, ′, 0, 1) depicted in Fig. 3. Then we compute

c(a, b) = MinU
(
L(a, b), L(a, b′), L(a′, b), L(a′, b′)

)
= MinU(0, 0, 0, 0, g, h}) =

= MinU(g, h) = {a′, b′}

which differs from both 0 and 1.

(ii) However, the condition from Theorem 4.10 does not characterize the class of hori-
zontal sums of Boolean posets. For example, consider the ortholattice O6 = (O6,≤
, ′, 0, 1) visualized in Fig. 7:

0

a b

b′ a′

1

Fig. 7

One can easily check that c(x, y) = 1 for all x, y ∈ O6 (if we define the commutator
in ortholattices in the same way as it was done for orthomodular lattices). Of course,
this lattice is neither a horizontal sum of Boolean posets nor a skew orthomodular
poset.

On the other hand, for arbitrary skew orthomodular posets we can prove the following
result.

12

Figure 7. An ortholattice not being a horizontal sum of Boolean posets.

One can easily check that c(x, y) = 1 for all x, y ∈ O6 (if we define the commutator in
ortholattices in the same way as it was done for orthomodular lattices). Of course, this lattice
is neither a horizontal sum of Boolean posets nor a skew orthomodular poset.

On the other hand, for arbitrary skew orthomodular posets we can prove the following
result.

Proposition 3. Let (P,≤, ′, 0, 1) be a skew orthomodular poset. Then the following are equivalent:

(i) c(x, y) ∈ {0, 1} for all x, y ∈ P,
(ii) If x, y ∈ P then either L(x, y) = L(x, y′) = L(x′, y) = L(x′, y′) = 0 or

U
(

L(x, y), L(x, y′), L(x′, y), L(x′, y′)
)
= 1.

Proof. Let a, b ∈ P. Then the following are equivalent:

c(a, b) = 0,

Min U
(

L(a, b), L(a, b′), L(a′, b), L(a′, b′)
)
= 0,

0 ∈ U
(

L(a, b), L(a, b′), L(a′, b), L(a′, b′)
)
,

L(a, b) ∪ L(a, b′) ∪ L(a′, b) ∪ L(a′, b′) = 0,

L(a, b) = L(a, b′) = L(a′, b) = L(a′, b′) = 0.

Moreover, the following are equivalent:

c(a, b) = 1,

Min U
(

L(a, b), L(a, b′), L(a′, b), L(a′, b′)
)
= 1,

U
(

L(a, b), L(a, b′), L(a′, b), L(a′, b′)
)
= 1.

Next, we describe the mutual relationship between the compatibility relation and the
commutator.

Corollary 3. If (P,≤, ′, 0, 1) is a horizontal sum of Boolean posets and a, b ∈ P then a C b if and
only if c(a, b) = 1.

Proof. This follows from Theorems 2 and 3.
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Now we extend the notion of the commutator from elements to subsets. For a skew
orthomodular poset (P,≤, ′, 0, 1) and subsets A and B of P we define

c(A, B) :=
⋃

a∈A,b∈B

c(a, b).

Corollary 4. The class of horizontal sums of Boolean posets satisfies the identity c(c(x, y), z) ≈ 1.

Proof. We have c(x, y) ∈ {0, 1} according to Theorem 3 and c(0, z) ≈ c(1, z) ≈ 1 according
to Lemma 4.

Let (P,≤, ′, 0, 1) be a skew orthomodular poset and A ⊆ P. Then we put A′ := {x′ |
x ∈ A} and define

t(x, y, z) := Min U
(

L
((

c(x, y)
)′, x

)
, L
(
c(x, y), z

))

for all x, y, z ∈ P.
The next theorem shows that t behaves on horizontal sums of Boolean posets similarly

to the ternary discriminator.

Theorem 4. Let (P,≤, ′, 0, 1) be a horizontal sum of Boolean posets and a, b, c ∈ P. Then

t(a, b, c) =
{

c if a C b
a otherwise.

Proof. If a C b then according to Theorem 3 we have c(a, b) = 1 and hence

t(a, b, c) = Min U
(

L
((

c(a, b)
)′, a

)
, L
(
c(a, b), c

))
= Min U

(
L(0, a), L(1, c)

)
=

= Min U(0, c) = c.

Otherwise, according to Theorem 3 we have c(a, b) = 0 and therefore

t(a, b, c) = Min U
(

L
((

c(a, b)
)′, a

)
, L
(
c(a, b), c

))
= Min U

(
L(1, a), L(0, c)

)
=

= Min U(a, 0) = a.

5. Conclusions

We have proved that up to isomorphism, there exists exactly one 18-element non-
lattice orthomodular poset and that it is the minimal one. Since orthomodular posets
form an algebraic counterpart to the logic of quantum mechanics, this result is of some
importance for the properties of this logical calculus. Concerning quantum mechanics
and related structures, we refer the reader to [9,10]. Further, we have shown that contrary
to the case of Boolean algebras, Boolean posets need not be orthomodular. Hence, we
introduced the class of so-called skew orthomodular posets including the class of Boolean
posets. In addition to the other properties of skew orthomodular posets investigated herein,
we have introduced the compatibility relation and the commutator, which allowed us to
describe horizontal sums of Boolean posets (which may be considered as particular skew
orthomodular posets). Moreover, we have used the compatibility relation for introducing a
kind of ternary discriminator for horizontal sums of Boolean posets.
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