
Citation: Wang, T.; Ai, S.; Cao, J.;

Zhao, Y. A Blockchain-Based

Distributed Computational Resource

Trading Strategy for Internet of

Things Considering Multiple

Preferences. Symmetry 2023, 15, 808.

https://doi.org/10.3390/

sym15040808

Academic Editor: Kuo-Hui Yeh

Received: 3 March 2023

Revised: 21 March 2023

Accepted: 23 March 2023

Published: 26 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

A Blockchain-Based Distributed Computational Resource
Trading Strategy for Internet of Things Considering
Multiple Preferences
Tonghe Wang 1, Songpu Ai 2, Junwei Cao 3 and Yuming Zhao 4,*

1 Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
2 Beijing Teleinfo Technology Co., Ltd., Beijing 101399, China
3 Beijing National Research Center for Information Science and Technology, Tsinghua University,

Beijing 100084, China
4 School of Computer Science and Software, Zhaoqing University, Zhaoqing 526061, China
* Correspondence: ymzhao@zqu.edu.cn

Abstract: The architecture of cloud–edge collaboration can improve the efficiency of Internet of
Things (IoT) systems. Recent studies have pointed out that using IoT terminal devices as destinations
for computing offloading can promote further optimized allocation of computational resources. How-
ever, in practice, this idea encounters the problem that participants might lack the motivation to take
over computational tasks from others. Although the edge and the terminal are provided with symmet-
rical positions in collaborative offloading, their computational resources and capabilities are asymmet-
ric. To mitigate this issue, this paper designs a distributed strategy for the trading of computational
resources. The most prominent feature of our strategy is its multi-preference optimization objective
that takes into account the overall satisfaction with task delay, energy cost, trading prices, and user rep-
utation of participants. In addition, this paper proposes a system architecture based on the Blockchain-
as-a-Service (BaaS) design to give full play to the good distributed technology features of blockchain,
such as decentralization, traceability, immutability, and automation. Meanwhile, BaaS delivers decen-
tralized identifier (DID) based distributed identity infrastructure for the distributed computational
resource trading stakeholders as well. In the simulation evaluation, we compare our trading strategy
based on a matching mechanism called multi-preference matching (MPM) to trading using the classi-
cal double auction (DA) matching mechanism. The results show that our computational resource trad-
ing strategy is able to offload and execut more tasks, achieving a better throughput compared to the
DA-based strategy.

Keywords: blockchain; computation offloading; edge computing; internet of things (IoT); resource
trading

1. Introduction

The extensive application of sensor technologies in daily objects has given birth to
the Internet of Things (IoT). With the increasing number of IoT devices being used, the
significant volume of the data acquired from the environment has brought great challenges
to data transmission, processing, and storage services provided by centralized cloud
centers. In many time-sensitive scenarios, e.g., healthcare, vehicular networks, and smart
grids, cloud centers may fail to respond in a timely manner, which can have serious
consequences [1]. In response, the edge computing paradigm emerges as the times require.
Computing offloading is the central topic in the study of edge computing. In an IoT
system based on the cloud–edge architecture, terminal devices with relatively limited
computational resources can transfer their computing tasks to the edge servers nearby.
Furthermore, edge servers can choose to complete these offloaded tasks or defer their tasks
to the cloud center [2]. In this case, local computational resources are mainly dedicated to

Symmetry 2023, 15, 808. https://doi.org/10.3390/sym15040808 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15040808
https://doi.org/10.3390/sym15040808
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-5219-9766
https://orcid.org/0000-0003-1748-6441
https://doi.org/10.3390/sym15040808
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15040808?type=check_update&version=1

Symmetry 2023, 15, 808 2 of 21

the tasks with higher requirements for response time, therefore improving the response
speed and alleviating the bottleneck in the cloud [3].

1.1. Collaborative Computation Task Offloading

To further improve the efficiency of edge computing, the concept of “collaborative
offloading” has recently been proposed [4]. Unlike most related works, collaborative
offloading here emphasizes the in-place task transfer. In other words, the task transfer in
collaborative offloading takes place between two edge servers or from an edge server with
more tasks than it can handle back to nearby terminal devices with surplus computational
resources. In this setting, the edge and the terminal are given symmetrical positions in the
sense that they can be both the departure and the destination of offloaded tasks. Users that
provide resources for others are called collaborators, and users with offloading requirements
are called requesters.

In collaborative offloading, it has been pointed out that collaborators may still lack
the motivation to take over tasks from others. Since the computational resources and
capabilities of the edge and the terminal are nevertheless asymmetric, the impact of the
resources consumed by executing tasks from others is not the same. Recent works have
started to introduce economic incentives to encourage collaborators to contribute surplus
computational resources [5,6]. Due to the different concerns of different participants, their
decisions of task offloading are nevertheless determined by multiple factors in addition to
economic ones. For example, the quality of service, revenue and expenses, and credibility
of the collaborators and requesters can simultaneously impact the experience of the partici-
pation [7]. Therefore, in order to encourage user participation and promote the practical
application of the system, collaborative offloading needs to comprehensively consider the
influence of multiple user preferences.

In this paper, we model collaborative task offloading as a resource trading process
between collaborators and requesters. Its core stage, the transaction matching stage, is
modeled by an optimization problem with multiple attributes (e.g., task delay, energy cost,
price, and participant reputation) considered in the objectives. By satisfying more of the
participants’ personalized trading preferences, the matching strategy intuitively brings
more incentives to its participants.

1.2. Blockchain for Internet of Things

The IoT faces a series of security challenges, and data security, user privacy, and service
trustworthiness are the major concerns addressed in related studies [8]. In recent years, the
blockchain has been widely applied in various fields due to its good distributed technology
features such as transparency, privacy, immutability, and fault tolerance [9]. In essence, a
blockchain is an aggregation of multiple distributed technologies. It stores data in the form
of chained blocks, in which newly generated blocks must be verified and approved by the
participants of the blockchain system through a distributed consensus algorithm before
being stored in the chain. The distributed data storage scheme together with the data struc-
ture makes information transparent, traceable, and immutable. Moreover, blockchain-based
systems can be automated with the support of smart contracts. The Blockchain-as-a-Service
(BaaS) design greatly reduces the implementation difficulty of blockchain-based systems
and promotes the penetration of the blockchain in various industries [10]. Instead of build-
ing an entire blockchain system, developers can use the ready-made blockchain interfaces
and toolkits offered by the BaaS platform. Therefore, making full use of the convenient
services provided by BaaS will better fit blockchain-based collaborative offloading schemes
to the decentralized nature of the IoT. BaaS could additional provide decentralized digi-
tal identity support for IoT, such as decentralized identifiers (DIDs), ensuring the global
uniqueness of identities of participants, devices, services, requirements, etc. during the
lage scope distributed computing resource interactions.

In order to integrate the features of the blockchain more deeply in the IoT collaborative
offloading scenario, this paper extends the BaaS application of [11–13]. Our work exploits

Symmetry 2023, 15, 808 3 of 21

many different features provided by BaaS for collaborative offloading, in addition to using
blockchain as a secure database and a distributed identity infrastructure. In particular, this
paper uses distributed ledger services to maintain reputation chains for participants, so as to
provide incentives for the participation in collaborative transactions in a distributed manner.

1.3. Contributions

The main contributions of this paper are as follows:

1. This paper proposes a distributed computational resource trading strategy for IoT
users, where the BaaS design is adopted in the architecture. Unlike most related works
that simply use a blockchain as a secure database, this paper takes full advantage
of the blockchain to promote the decentralization, reliability, and automation of
resource trading.

2. This paper designs a multi-preference matching (MPM) mechanism for resource
trading. The matching results between requesters and collaborators comprehensively
consider the satisfaction with task delay, energy cost, trading prices, and the reputation
scores of participants. As far as we know, few relevant studies have taken these factors
into account all at once.

3. We compare our MPM mechanism with the matching strategy based on the classical
double-auction (DA) matching mechanism [14]. We perform simulation experiments
to show the advantages of MPM against DA.

The remaining content of this paper is arranged as follows: Section 2 provides a brief
review on related works; Section 3 introduces the system architecture and the workflow
of blockchain-based resource trading; Section 4 explains the MPM mechanism in detail;
Section 5 conducts simulation experiments and numerical analysis by comparing the MPM
mechanism with the DA-based matching mechanism; Section 6 concludes this paper.

2. Related Works

To explain the motivations of our work, we provide a brief summary of the related
works on blockchain-based security for the IoT and on incentivizing collaborative offloading
in this section. See Table 1 for the comparison of the related works in this Section.

Table 1. Highlights and Shortcomings of Related Works.

Topic Ref. Highlights Shortcomings

Blockchain-Based IoT Security

[15] Allows open participation with
public blockchain

Additional Byzantine fault-tolerant
consensus algorithm is not scalable for
public blockchains

[16]
Community detection is included to
specify the scope of data with different
privacy levels

Centralized community detection
algorithm contradicts the decentralized
privacy of the blockchain

[17] Data models are shared by federated
learning instead of raw data

Frequent transmission of training models
can bring large communication workloads

Collaborative Offloading

[18] Social relationship of participants
is considered The use of DRL method in decision making

increases the task delay
[19] DRL is adopted to optimize network

utility of UAVs

[4] Intelligence and selfishness of users
are considered Factors other than economic benefits are

not considered
[6] Near-optimal competitive ratio

is achieved

Symmetry 2023, 15, 808 4 of 21

2.1. Blockchain-Based Security for the IoT

Security issues are the major concerns of IoT-related studies, and the blockchain has
become popular in providing security for IoT systems. For example, ref. [15] combines
deep reinforcement learning with the blockchain to create a data collection and secure data
sharing environment with improved system energy efficiency. Although it allows for open
participation with the public Ethereum blockchain [20], it requires an additional Byzantine
fault-tolerant consensus algorithm to prevent device failure, which is not very scalable
to public blockchains. In [16], a blockchain layer is added to the IoT data sharing system
to validate, sort, and store data trading records in a secure and reliable way. However,
its centralized community detection subprotocol might have the possibility of privacy
disclosure when calculating client similarity based on label data, which also contradicts
the decentralization of the blockchain. Aiming to effectively protect user privacy, the data
sharing architecture of [17] has a permissioned blockchain module to securely store and
retrieve data and a federated learning module to share data models instead of raw data.
In spite of the accuracy and efficiency of collaborative training, the consensus process
requires the frequent transmission of training models between nodes outside the federated
learning process, which could impose a greater workload on the communication network.

These works, as well as many other related works, simply use the blockchain for secure
data storage, and the advantages of the blockchain are not fully exploited [9]. The reason for
thus is that system designers often face huge workloads when developing a sophisticated
blockchain system. BaaS can greatly reduce the difficulty of implementing blockchain-
based systems by providing various basic blockchain functions. The BaaS design in [11]
is deployed into an edge computing platform to support distributed resource trading for
task offloading based on smart contracts. In [12,13], BaaS is integrated to undertake energy
supply–demand matching in fully decentralized electric power systems. They both use the
smart contract service to provide automation, which greatly enhances the performance of
energy trading. In view of its great convenience, BaaS is adopted in this paper in the design
of a decentralized, secure, reliable, incentivizing, and automated computational resource
trading system for the IoT.

2.2. Incentivizing Collaborative Offloading

Recently, the edge computing paradigm has been extensively applied in IoT sys-
tems [21]. To mitigate the response latency issue in edge servers, some works recommend
collaborative offloading to allow terminal users with additional computational resources
to take over the tasks of edge servers [18,19]. For example, the concept of hybrid offload-
ing is proposed in [18], which extends traditional edge computing offloading to hybrid
offloading that combines both edge computing offloading and device-to-device offloading.
The offloading scheme takes social relationships into consideration and tries to reduce
overall execution delay while enhancing its data caching service. In addition, the au-
thors of [19] designed a cooperative offloading structure that allows unmanned aerial
vehicles (UAV) to execute the computation tasks of the others; here, a deep reinforcement
learning (DRL) method is adopted to optimize the long-term utility of the mobile edge
computing network.

However, the promotion of the above collaborative offloading in practice has encoun-
tered some obstacles because users lack incentive mechanisms to complete the computing
tasks offloaded by others [22]. As a result, some studies include economic measures
and transform collaborative offloading into a computational resource trading problem.
In [4], the intelligence and selfishness of terminal users are considered when making trad-
ing decisions. The offloading strategy tries to maximize social welfare by considering
the cooperation between edge devices and terminal users as resource trading. Similarly,
the social welfare maximization problem in computation offloading is also studied in [6].
The authors show that their mechanism has a near-optimal competitive ratio and is able to
guarantee individual rationality, truthfulness, and computational traceability. The problem
is nevertheless that in addition to economic factors, response time, energy consumption,

Symmetry 2023, 15, 808 5 of 21

reputation, and many other factors may also affect the decision of computing task allocation.
The influence of multiple factors in collaborative offloading is rarely addressed in the related
research. Therefore, the comprehensive consideration of various factors in our MPM-based
computational resource trading method is more in line with practical requirements.

3. Computational Resource Trading System Architecture and Workflow

The IoT system considered in this paper is based on the classical three-layered archi-
tecture of edge computing and further extends the application scope of BaaS described
in [11–13]. As shown by Figure 1, this architecture consists of five major components:

Cloud

Edge

Terminal

 Task Offloading Trading Information Task Offloading Trading Information

BaaS

...

P2P

Communication

Cryptographic

Service

Consensus

Mechanisms

Distributed

Ledger
Smart Contracts

Blockchain-Based Resource Trading

Service and

Requirement

MPM

Mechanism

Transaction

Execution

Rejection Rules
Distributed

Reputation

DID

Figure 1. System architecture.

Terminal. The terminal layer is made up by IoT terminal devices embedded with
sensors for data perception. We assume that all IoT terminals are lightweight in the sense
that their computing capabilities are rather limited compared to that of edge servers.

Edge. The edge layer contains edge servers deployed near terminals. These servers
have some computational resources so that they can take over the tasks offloaded from
terminals. However, for economic concerns, edge servers usually have less computational
resources compared to cloud servers. Although the transmission time between terminals
and edge servers can be largely reduced, the latency caused by task queuing in edge servers
cannot be neglected.

Cloud. The cloud layer has cloud servers with powerful computational capabilities
and is far away from the edge servers. It is generally assumed that the cloud can process
any number of tasks at the same time, but with significant transmission latency.

BaaS. The BaaS platform is fundamental to achieve distributed computational re-
source trading for collaborative offloading. The system takes advantage of the following
blockchain services:

Symmetry 2023, 15, 808 6 of 21

• P2P communication. Messages and data are shared and retrieved transparently
without the need of a central server. This makes the system more robust against single-
point failures. Moreover, it allows participants to join and leave the network freely.

• Cryptographic service. Message transmission channels and data storage are secured
by various cryptographic algorithms, and user privacy is also guaranteed.

• Consensus mechanisms. As the central component of the blockchain, consensus
is used to validate newly generated blocks that contain transaction information or
reputation updates. Any change that occurs to smart contracts also needs to be
validated by participants through consensus.

• Distributed ledger. The system uses three distributed ledgers, namely, the transaction
chain, the collaborator reputation chain, and the requester reputation chain, to record
transaction data and reputation scores. This makes all the changes in transaction and
reputation information traceable.

• Smart contract. The execution of resource trading and the application of reputation
update rules can be automated through smart contracts, programmable scripts that
are triggered and executed automatically when predefined conditions are met.

• DID. Transaction participants, devices, services, and requirements are uniquely iden-
tified by DIDs to provide support for upper-level Blockchain-based resource trading,
which is a considerable option for a system composed of multiple ledgers with a large
scale and distributed scenario.

Blockchain-Based Resource Trading. This module is developed upon the BaaS platform.
It contains all the functionalities that support resource trading:

• Service and requirements. This submodule defines and regulates the service infor-
mation submitted by collaborators and the requirement information submitted by
requesters. More details are provided later in this section.

• MPM mechanism. Its purpose is to find matches between services of collaborators
and requirements of requesters with multiple preferences of users considered. As the
core of the resource trading strategy, the MPM mechanism is introduced in detail
in Section 4.

• Rejection rules. It is possible that the matching result of one round fails to satisfy all
participants. If the individual satisfaction scores of participants are not high enough,
they can choose to reject the matching results. More details are given in Section 4.5.

• Transaction execution. If participants do not refuse the matching result, they are
required to fulfill the transaction according to the matching result. The execution
results will affect their reputation scores.

• Distributed reputation. Reputation scores are assigned to all participants to evaluate
their credibility in resource trading. This submodule is simplified from the blockchain-
based reputation system in [23]. More details are given in Section 4.6.

In this paper, task offloading can take place between two terminals, between two edge
servers, or between a terminal and a server. During computational resource trading, collab-
orators can reveal the information of the resources they are willing to offer, and requesters
with computational tasks can then choose the collaborators to whom they will offload tasks
in exchange for payment.

The distributed resource trading workflow is as follows:
Step 1: Collaborator j with surplus computational resources publishes its service

information including:

• Cj: size of the cache offered;
• f j: central processing unit (CPU) frequency offered;
• rj: transmission rate offered;
• εj: maximum acceptable energy consumption per CPU cycle;
• opj: offering price, i.e., (the lowest) price of task execution offered per CPU cycle;
• Rc

j : collaborator reputation score.

Symmetry 2023, 15, 808 7 of 21

Meanwhile, requester i with computational tasks to offload submits their offloading
requirement information including:

• si: size of tasks;
• Qi: CPU cycles required by tasks;
• τi: maximum tolerable delay of tasks;
• bpi: bidding price, i.e., (the highest) acceptable price of task execution per CPU cycle;
• Rr

i : requester reputation score.

Step 2: The service of collaborator j and the requirement of requester i are stored in the
transaction ledger.

Step 3: The smart contract of MPM, a matching mechanism considering multiple pref-
erences, is triggered, and corresponding pre-matching results will be returned to requesters
for confirmation. More details about the MPM mechanism are provided in Section 4.

Step 4: Participants can choose to reject the matching results if they are dissatisfied
(see more details in Section 4.5). Matching results that are not rejected are seen as ac-
cepted. Once accepted, each pre-transaction result will generate a transaction contract
with the trading price calculated and will be stored into a distributed ledger in the form of
smart contract provided by BaaS. Then, requesters make the payment according to their
confirmed transactions.

Step 5: On the execution time, transaction contracts will be triggered automatically,
and the corresponding task offloading will take place. The reputation scores of both the
requester and the collaborator will be updated according to the execution results and
predefined reputation rules. Note that the submitter of an unmatched requirement can
choose to either execute the tasks locally or offload the tasks further to the cloud, while
the submitter of an unmatched service can choose to keep the service and wait for another
round of matching.

Reputation scores of requesters and collaborators, Rr
i and Rc

j , are defined to evaluate
and regulate the behavior of requesters and collaborators. We will provide more details
about our reputation system in Section 4.6.

4. Multi-Preference Matching Mechanism

The core of our resource trading strategy is the MPM mechanism that aims to maximize
the overall satisfaction of both requesters and collaborators considering their respective
preferences. The computational power of IoT terminal devices is much weaker than that
of cloud centers and edge servers. In addition, the diversity of terminal devices makes
the computing tasks they need to complete and the computing services they can provide
vary a lot. Task delay and offering price determine the requesters’ satisfaction with a
service, while energy consumption and bidding price affect the collaborator’s experience
of undertaking a requirement. At the same time, reputation can be used to evaluate the
credibility of participants according to their historical behavior. In this case, expressing
multiple preferences can better meet the matching requirements of both parties, so as to
provide more personalized services.

The operation of our MPM mechanism also relies on the services provided by BaaS.
First, matching results are programmed into smart contracts and encapsulated into blocks.
These blocks will be stored in a distributed ledger, called the transaction chain, once they are
validated through distributed consensus. Second, reputation scores for collaborators and
requesters are also stored in ledgers, called the collaborator reputation chain and the requester
reputation chain, respectively. Participants can query each other’s latest reputation scores
and track the corresponding update history. Furthermore, the rules for reputation updates
are also programmed into smart contracts, and any addition, deletion, and modification of
these rules needs to be validated by participants through distributed consensus.

Suppose there are m requesters and n collaborators in a matching round. For the
sake of simplicity, we assume that no participant is both a collaborator and a requester
at the same time. Moreover, we assume that each requester submits one requirement,
and each collaborator submits one service. These assumptions are for mathematical con-

Symmetry 2023, 15, 808 8 of 21

venience and can be easily removed by assigning unique DiDs to different roles, services,
and requirements of a participant if otherwise.

We use matrix X = (xij)m×n to represent the result of one round of matching, where
xij ∈ [0, 1] represents the proportion of the tasks in requirement i to be offloaded to
collaborator j. The MPM mechanism to decide X works as follows:

Step 1: Fetch the information of the services of collaborators and the requirements of
requesters from the transaction ledger. We require that bidding price bpi and offering price
opj should fall in [pmin, pmax], where pmin and pmax are the lowest and the highest prices
allowed. In practice, pmin and pmax are usually published in market rules and policies,
and the trading service will periodically update and synchronize these values. All the
requirements and services whose prices are out of the range will be forcibly removed
(similar mechanisms can also be found in [24,25]).

Step 2: Calculate the service preference score (SPS) of each collaborator service for
requester i ∈ {1, 2, . . . , m}, and calculate the requirement preference score (RPS) of each
requester requirement for each collaborator j ∈ {1, 2, . . . , n}, with respect to different
preferences. We will provide more details about the calculation of these two scores later on
in Sections 4.1 and 4.2.

Step 3: Calculate the average requester satisfaction (ARS) for all requesters and the av-
erage collaborator satisfaction (ACS) for all collaborators. The calculation will be introduced
in Section 4.3.

Step 4: Model the matching as an optimization problem and find the solution. This
step will be further explained in Section 4.4.

The above steps include the calculation of several scores, and we will introduce the
calculation method of these scores in the following. As in related works such as [4,26],
the energy cost and time delay caused by collaborators when sending back computational
results from requesters are neglected. This approach is based on the consideration that
the data sizes of the computation results in practice are usually very small. In addition,
with the aid of the following definition of characteristic function, we can make our notations
more succinct:

I[X] =

{
1 Event X is true;

0 Otherwise.
(1)

4.1. Service Preference Score Calculation

First, let SPS(xij) be the SPS of service j for requester i. It evaluates i’s comprehensive
satisfaction with j considering i’s preference in task delay, offering price, and collaborator
reputation, which can be calculated by:

SPS(xij) =

(
3

∑
k=1

φk · spsi,j,k

)
· I[xij 6= 0], (2)

where φk (k = 1, 2, 3) are significance factors, and spsi,j,k ∈ [0, 1] (k = 1, 2, 3) will be
explained in the next section. Significance factors are specified by requesters, which
indicates the importance of a certain service preference to the requesters. For example,
if the requester pays more attention to the offering price, it could increase the corresponding
significance factor φ2 and reduce φ1 and φ3.

4.1.1. Task Delay

Task delay is the main factor that influences the quality of service (QoS) of the re-
questers, which composes transmission delay and computation delay:

tij = xijsi/rj + xijQi/ f j. (3)

Symmetry 2023, 15, 808 9 of 21

Then, spsi,j,1, the task delay SPS of service j for requester i, is calculated by:

spsi,j,1 =
(
1− tij/τi

)
· I[tij ≤ τi]. (4)

The shorter the task delay is, the better the QoS is, and the higher spsi,j,1 will be.

4.1.2. Offering Price

The offering price SPS of service j for requester i, denoted by spsi,j,2, is calculated by:

spsi,j,2 = eopj−bpi · I[opj ≤ bpi]. (5)

The closer opj and bpi are, the more satisfied the requester will be with the matching result.

4.1.3. Collaborator Reputation

Collaborator reputation score Rc
j reflects the credibility of service j and directly serves

as spsi,j,3 in the MPM mechanism:

spsi,j,3 = Rc
j . (6)

4.2. Requirement Preference Score Calculation

Then, let RPS(xij) be the RPS of requirement i for collaborator j, which can be calcu-
lated by:

RPS(xij) =

(
3

∑
l=1

ψl · rpsj,i,l

)
· I[xij 6= 0], (7)

where ψl (l = 1, 2, 3) are significance factors, and rpsj,i,l (l = 1, 2, 3) will be explained in
the next section. RPS(xij) evaluates j’s comprehensive satisfaction with i considering j’s
preference in energy consumption, bidding price, and requester reputation, corresponding
to the three terms of (7). Like φk, significance factors ψl are specified by collaborators and
indicate the importance of a certain requirement preference to the collaborators.

4.2.1. Energy Consumption in Collaborator

Compared to task delay, collaborators care more about their energy consumption
when taking over the tasks from requesters. The energy consumption in collaborator i can
be calculated by:

Eji = ecom
j xijsi/rj + eexe

j xijQi/ f j, (8)

where ecom
j and eexe

j are the energy consumption of communication and task execution
per second. The two terms of (8) correspond to the energy cost by receiving the data of
the offloaded tasks and executing them. Considering εj, the maximum energy cost by
executing the tasks offloaded to collaborator j, the RPS of requirement i for collaborator j,
denoted by rpsj,i,1, is calculated by:

rpsj,i,1 =
(
1− Eji/εj

)
· I[Eji ≤ εj]. (9)

We can see that the closer to εj the value of Eji is, the smaller rpsj,i,1 becomes. Moreover,
rpsj,i,1 will become zero if the energy consumption of taking the task exceeds the bearing
limit of collaborator i.

4.2.2. Bidding Price

The bidding price RPS of requirement i for collaborator j, denoted by rpsj,i,2, is calcu-
lated by:

rpsj,i,2 = e−opj/bpi · I[bpi ≥ opj], (10)

Symmetry 2023, 15, 808 10 of 21

which is positively related to the bidding price bpi and negatively related to the offer-
ing price opj, and it becomes zero if the bidding price fails to exceed the offering price.
That is to say, the larger bpi is, the higher the requester is willing to pay, and the more the
collaborator can benefit.

4.2.3. Requester Reputation

Similarly, requester reputation reflects the credibility of requirement, which is directly
regarded as rpsj,i,3:

rpsj,i,3 = Rr
i . (11)

4.3. Average Requester/Collaborator Satisfaction Score Calculation

The requester and collaborator average satisfaction scores, denoted by ARS(X) and
ACS(X), respectively, evaluate the overall degree of satisfaction of all requesters and
collaborators with their matching result X. The two scores are calculated by:

ARS(X) = 1/m ·
m

∑
i=1

n

∑
j=1

SPS(xij)xij, (12)

ACS(X) = 1/n ·
n

∑
j=1

m

∑
i=1

RPS(xij)xij. (13)

By requiring ∑3
k=1 φk = ∑3

l=1 ψl = 1, ARS(X) and ACS(X) are also in the range of [0, 1].

4.4. Modeling and Solving the Optimization Problem

The objective of the MPM mechanism is to find the optimal X = X∗ that maximize
J (X), the overall satisfaction of all participants:

max
X∈[0,1]m×n

J (X) (14)

s.t.
n

∑
j=1

xij ≤ 1, 1 ≤ i ≤ m, (15)

m

∑
i=1

sixij ≤ Cj 1 ≤ j ≤ n, (16)

0 ≤ xij ≤ 1, 1 ≤ i ≤ m, 1 ≤ j ≤ n, (17)

where
J (X) = w1 ARS(X) + w2 ACS(X), (18)

and w1 and w2 are the weights that indicate the significance of requesters and collaborators.
Constraint (15) means that the total tasks offloaded by requester i cannot exceed what
is submitted in requirement i, and constraint (16) means that the total size of the tasks
offloaded to collaborator j cannot exceed the cache size offered by service j.

Since SPS(xij) is a linear function to xij because of the calculation of tij by (3), the op-
timization problem represented by (14) is a quadratic programming problem. Note that
although the modeling and solving of this quadratic programming problem is centralized, it
does not make our MPM strategy centralized. The tasks of the other steps, including service
and requirement submission, matching rejection, transaction execution, and reputation
evaluation, need the cooperation of all requesters and collaborators. The completion of
these tasks cannot be delegated to any centralized individual in the system. Therefore,
according to the theory of “decentralization scope and relativity” [27], the MPM strategy is
distributed if our scope covers all the necessary steps of the MPM.

Symmetry 2023, 15, 808 11 of 21

4.5. Rejection Rules and Transaction Execution

Since the MPM mechanism tries to maximize the overall satisfaction of all participants,
it might be possible that some individuals are not willing to compromise their interests.
In this case, they can choose not to accept the transaction based on their rejection rules.
In more detail, users can also build smart contracts that specify their criteria for rejec-
tion, e.g., the lowest acceptable RPS or SPS in their mind, fixed requester/collaborator
ID, or requester/collaborator type (i.e., whether the request/service is from a terminal
or an edge). Note that these smart contracts also need to be validated by participants
via distributed consensus. Any matching result that fails to meet these criteria will be
automatically rejected. As a result, unmatched requirements and services will enter the
next round of matching together with new ones. Otherwise, the submitter of unmatched
requirements can also choose to offload their tasks to the cloud center.

On the other hand, all matching transactions that are not rejected are seen as accepted.
They will be saved in the transaction ledger as smart contracts and will come into effect
immediately, automatically, and mandatorily. It is worth noting that transaction execution
may fail when the requester fails to pay the price, or the collaborator fails to provide the
resource as promised. Whether it is successful or not, the transaction execution results
will be fed back to the reputation system, which could then affect the reputation scores of
participants involved.

4.6. Distributed Requester/Collaborator Reputation

As mentioned before, requester reputation Rr
i and collaborator reputation Rc

j evaluate
the credibility of requester i and collaborator j respectively. This is a kind of distributed
reputation mechanism where reputation scores rely on the mutual evaluation between
requesters and collaborators, which can promote the collaborative regulation of the resource
trading behavior. In this paper, we adopt a similar idea as [23] in the design of the
distributed reputation mechanism.

The design of the blockchain-based distributed reputation mechanism of this paper is
shown in Figure 2. Two blockchains are maintained, one for requester reputation and the
other for collaborator reputation. These reputation scores can be queried by any participant
in the system. Reputation rules are smart contracts that specify the methods for reputation
updates and the conditions under which these updates are triggered. All requesters and
collaborators make the decision on the addition, deletion, and modification of reputation
rules together by running consensus.

......

......Requester Reputation Chain

Collaborator Reputation Chain

Reputation Rules

(Smart Contracts)
Requesters/Collaborators

Trigger automatic update

reputation scores when

conditions are satisfied

Decide reputation rules after

reaching consensus

Query for latest requester/

collaborator reputation

scores

Figure 2. Blockchain-based distributed reputation.

According to [23], blockchain can provide many favorable features for our distributed
reputation mechanism. First, reputation rules are implemented in the form of smart
contracts. Any addition, deletion, or modification of these rules cannot come into effect
until they are approved by all participants by running distributed consensus. This not only
increases the transparency and traceability of reputation records, but it also encourages
the participation of requesters and collaborators in system regulation. Second, these

Symmetry 2023, 15, 808 12 of 21

smart contracts containing reputation rules can automatically run once their predefined
conditions are triggered. This circumvents the time cost and possible error of human labor
in reputation update. Furthermore, reputation records are stored in reputation chains using
the linked list data structure in chronological order, and different replicas of the chains are
shared among participants. To tamper with the data in any block, the adversary also needs
to modify all the data in the subsequent blocks in all replicas. This makes it prohibitively
difficult to tamper with reputation data.

To guarantee the correctness of smart contracts, formal verification of smart contracts
is necessary. There are different methods and goals of formal verification, including
model checking, theorem proving, symbolic execution, runtime verification, and so on [28].
Reference [29] also provides a list of tools for smart contract verification. One convenient
way is to convert smart contracts into Solidity files and verify them through the Remix tool
provided by Ethereum [30].

4.6.1. Reputation-Based Trading Price

The traditional double auction method usually sets the final trading price as the
bidding price submitted by the buyer. In order to increase fairness, we adopt the reputation-
based α-double auction [23], which calculates the trading price as follows:

tpij = α · bpi + (1− α) · opj, (19)

where α = Rc
j /
(

Rr
i + Rc

j

)
. The resulting trading price will be closer to the price given

by the party with the lower reputation, which is more beneficial to the party with the
higher reputation.

4.6.2. Reputation Rules

Reputation rules are the core of the distributed reputation mechanism. To reduce the
system complexity, we adopt the following simple rules:

• A new participant is assigned with an initial reputation score of 0.6.
• On a successful resource transaction, the reputation scores of both the requester and

collaborator increase by 0.01.
• For every failed resource transaction: if requester i fails to pay the trading price, then

Rr
i is decreased by 0.1; if collaborator j fails to provide the claimed service, then Rc

j is
decreased by 0.1.

• The final reputation scores should be restricted in [0, 1].

The parameters in these rules are determined by repeated simulation tests. Every new
participant is assumed to be benign and is assigned with a “pass” reputation score of 0.6.
Moreover, the penalty of 0.1 for a failed transaction is much higher than the reward of
0.01 for a successful transaction. This can intuitively encourage participants to effectively
complete each transaction. These reputation rules are implemented as smart contracts.
Once the current trading period is over, these rules will automatically trigger reputation
updates once the predefined conditions are satisfied.

5. Evaluation

This section evaluates our system through simulation. In the evaluation, we mainly
compare our MPM mechanism with the classical DA matching mechanism [14].

5.1. Simulation Setup

All simulation programs are written using Python 3.8 (64 bit) and are implemented
on a laptop computer with an Intel® Core™ i7-6500U CPU 2.50 GHz 2.59 GHz, and the
size of the random access memory (RAM) is 8 GB. The optimization problem (14) is solved
via the GEKKO Python library, which can automatically choose the most suitable solver
without explicitly specifying which type of optimization problem needs to be solved (i.e.,
linear, quadratic, nonlinear, and mixed integer programming) [31]. In addition, we use

Symmetry 2023, 15, 808 13 of 21

“reputation for blockchain-based trading (RBT)” as our BaaS in our simulation, which uses a
delegated version of practical Byzantine Fault Tolerance (PBFT) as its consensus mechanism
(readers can refer to [23] for more details). We built a distributed environment, and we use
independent and asynchronous threads to simulate both edge servers and IoT nodes. We
use a Poisson process to simulate the generation of services and requirements.

The ranges of parameters in the simulation are shown by Table 2, and all parameters
are selected in their ranges uniformly at random. The selection of these ranges is based on
the works of [4,5,11,26,32]. We set m = n, and the ratio of the numbers of edge servers and
IoT terminals is set as 1 to 30. In addition, by repeated adjustment and verification, we
choose w1 = w2 = 0.5, φ1 = φ3 = ψ1 = ψ3 = 0.36, and φ2 = ψ2 = 0.28.

Table 2. Selection Ranges of Parameters for Simulation.

Parameter Explanation Edge Terminal

si Size of tasks (GB) [0.06, 10] [0.06, 10]
Qi CPU cycles required (Gcycle) [0.6, 90] [0.6, 90]
τi Maximum tolerable delay (s) [10, 30] [5, 15]
Cj Cache size offered (GB) [5, 10] [1, 5]
f j CPU frequency offered (GHz) [3, 15] [1, 5]
rj Transmission rate offered (Gbps) [0.5, 2.5] [0.1, 0.9]
εj Maximum tolerable energy consumption (J) [150, 250] [5, 15]

ecom
j Unit energy consumption for transmission (J/s) [0.2, 0.5] [0.1, 0.3]

eexe
j Unit energy consumption for execution (J/s) [0.75, 1.25] [0.3, 0.6]

bpi Bidding price (USD/Gcycle) [0.1, 10] [0.1, 10]
opj Offering price (USD/Gcycle) [0.1, 10] [0.1, 10]

Rc
i , Rr

j Requester/Collaborator reputation [40, 100] [40, 100]

5.2. Double Auction

DA is one of the most popular matching strategies in market designs of various
settings, e.g., computational resource allocation [33], energy trading [34], data trading [35],
and asset markets [36]. We believe that it is worthwhile to compare our method with the
DA method because it is such a widely used matching mechanism. Specifically, DA sorts
the requirement list and the service list in different orders. The requirement list is sorted
based on the ascending order of bidding prices, and the service list is sorted based on the
descending order of offering prices [14]. It then traverses each list from the top and finds a
match when it encounters an offering price in the service list that is lower than the bidding
price at the current location of the requirement list. The trading price of this match will be
the bidding price provided by the requester.

For each group of requirements and services generated, we execute MPM and DA
separately and compare their performance indices under the same conditions. We use solid
lines to represent MPM and dashed lines to represent DA in all the figures that follow.

5.3. Satisfaction Scores

Figure 3 compares the ARS, ACS, and objective values of the MPM and DA mecha-
nisms. We can see that there are significant gaps between the two methods in these scores:
the values of ARS(X), ACS(X), and J (X) of MPM are more than twice that of DA. Note
that these three scores evaluate the average satisfaction of requesters, collaborators, and all
participants towards matching result X. It can also be interpreted that, on average, partici-
pants are more likely to accept the matching results of MPM than DA. This intuitively pro-
vides an incentive for collaborative with offloading participants when the MPM mechanism
is adopted.

Symmetry 2023, 15, 808 14 of 21

50 100 150 200 250 300

m or n

0.2

0.3

0.4

0.5

MPM ARS(X)

MPM ACS(X)

MPM J (X)

DA ARS(X)

DA ACS(X)

DA J (X)

Figure 3. Comparisons of ARS, ACS, and objective values.

To further analyze the differences between the matching results of MPM and DA,
we extract the average scores of SPS and RPS that rank the top 10% and the bottom 10%
from each group of data for nonzero matching results. We can see from the two graphs
in Figure 4 that the high scores of SPS and RPS of MPM are slightly higher than that of
DA. Moreover, the low scores of SPS and RPS of MPM fall between 0.5 and 0.6, but the low
scores of DA remain below 0.3. This indicates that more than 10% of the matching results
of DA will be rejected if the participants apply the same rejection rules as in MPM. Detailed
analysis of the rejection rates is deferred to Appendix A.

50 100 150 200 250 300

m

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
P
S

(x
ij

)

MPM High

MPM Low

DA High

DA Low

(a) SPS

50 100 150 200 250 300

n

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
P
S

(x
ij

)

MPM High

MPM Low

DA High

DA Low

(b) RPS
Figure 4. Comparisons of high/low SPS and RPS.

5.4. Matching Results

Figure 5 visualizes an example of the matching result X of both mechanisms when
m = n = 30. In Figure 5a, the color difference of the blocks is not very obvious, but the
distribution is quite uniform. This is because matrix X of MPM does not have many zero
entries, but all nonzero entries are relatively small. In other words, most requirements will
be matched, but each matching collaborator receives a fairly small portion of these tasks. On

Symmetry 2023, 15, 808 15 of 21

the other hand, Figure 5b has several dark-colored blocks, meaning that matrix X of DA has
only a small number of nonzero entries. This suggests that the number of matches DA gen-
erates is much smaller, but some of the matched collaborators may need to undertake a large
proportion of the offloaded tasks. The same pattern also holds when there are more than
30 requesters and 30 services. Due to the limited space, the details of these cases will be
omitted here.

5 10 15 20 25 30

i

5

10

15

20

25

30

j

0.0

0.2

0.4

0.6

0.8

1.0

(a) X of MPM

5 10 15 20 25 30

i

5

10

15

20

25

30

j

0.0

0.2

0.4

0.6

0.8

1.0

(b) X of DA
Figure 5. Comparison of matching results X with m = n = 30.

5.5. Task Completion of Requesters

Here, we observe the completion of the requesters’ tasks. Figure 6 compares the total
sizes of the tasks executed using both mechanisms. The figure shows that the total size
of tasks completed by using MPM is about 2.5 times of that of DA. On the other hand,
compared with DA, Figure 7 exhibits a reduction of more than 60 times in the maximum
task delay of MPM. The huge gaps in Figures 6 and 7 are caused by MPM’s more equal
distribution of tasks among collaborators. This is also supported by the example in Figure 5.
We also deferred detailed efficiency analysis to Appendix B.

50 100 150 200 250 300

m

0

200

400

600

800

T
ot

al
T

as
k

(G
B

)

MPM

DA

Figure 6. Comparison of total sizes of tasks executed.

50 100 150 200 250 300

m

0

10

20

30

40

50

60

70

80

M
ax

D
el

ay
(s

)

MPM

DA

Figure 7. Comparison of maximum task delays.

Symmetry 2023, 15, 808 16 of 21

5.6. Resource Consumption of Collaborators

Next, we evaluate the resource consumption of collaborators. Figure 8 compares
the consumption of total CPU cycles, cache sizes, and energy of collaborators between
two mechanisms. By calculation, we find that compared with DA, MPM increases the
consumption of these three resources by 89%, 152%, and 97%, respectively. This significant
increase in resource consumption of collaborators is because more tasks can be executed by
adopting the matching results of MPM.

50 100 150 200 250 300

n

2,000

4,000

6,000

8,000

10,000

T
ot

al
C

P
U

C
on

su
m

ed
(G

cy
cl

e) MPM

DA

(a) CPU Cycles

50 100 150 200 250 300

n

0

200

400

600

800

T
ot

al
C

ac
h

e
C

on
su

m
ed

(G
B

) MPM

DA

(b) Cache Sizes

50 100 150 200 250 300

n

500

1,000

1,500

2,000

T
ot

al
E

n
er

gy
C

on
su

m
ed

(J
) MPM

DA

(c) Energy
Figure 8. Comparisons of resource consumption of collaborators.

5.7. Trade Price

Figure 9 compares the average trade prices of two matching mechanisms. The trade
prices of MPM are about 37.99% lower than those of DA on average. This drop is because
MPM adopts α-double auction in (19), where the reputation scores of both the collaborators
and requesters are taken into account while calculating the trade price. The analysis of the
influence of reputation scores on trading prices is deferred to Appendix C.

Symmetry 2023, 15, 808 17 of 21

50 100 150 200 250 300

m or n

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

T
ra

d
e

P
ri

ce
(U

S
D

/G
cy

cl
e)

MPM

DA

Figure 9. Comparison of average trade prices.

6. Conclusions

In this paper, we design a distributed computational resource trading strategy for IoT
systems. The trading adopts a matching mechanism that takes into account the multiple
preferences of requesters and collaborators. With the help of the blockchain, the decen-
tralization of resource trading is achieved; the security, traceability, and immutability of
transaction records are guaranteed; and the automation of distributed matching and rep-
utation mechanisms is enabled. Compared with the classical DA matching mechanism,
our MPM mechanism has more tasks offloaded and executed and can encourage the par-
ticipation of collaborators with higher reputation scores. The efficiency and scalability
of our simulation program can be further improved by adopting heuristic algorithms as
subsitutions for traditional GEKKO solvers.

It is worth noting that the reputation mechanism in our system is simplified for
illustrative purposes. A practical reputation system can be more comprehensive and
complicated. For one thing, a complete reputation system needs to cover all possible
behavior of participants and specify corresponding reputation update rules. For another,
the design, deployment, and maintenance of a reputation system depends on either an
authority or the distributed trust. How to design a reasonable reputation mechanism
for IoT systems in a distributed way is a direction worthy of further study. In addition,
the evaluation of our resource trading strategy is mainly based on simulation experiments.
Furthermore, experiments that consider the impact of the heterogeneity in processing time,
task load, communication media, and blockchain platform in the real environment can
be more helpful to test the practicability of our work. This will take place in our future
work. Finally, our strategy needs multiple negotiation iterations, which risks delaying the
execution of urgent computing tasks. We use the cloud or local execution as the backup plan,
but practical implementation may require a more detailed real-time scheduling method.
Therefore, combining our resource trading strategy with a real-time task scheduling method
will be another direction of our future work.

Author Contributions: T.W.: Conceptualization, Investigation, Software, Data Curation, Visual-
ization, Writing—Original Draft; S.A.: Methodology, Formal Analysis, Validation; J.C.: Supervi-
sion, Project administration; Y.Z.: Resources, Funding Acquisition, Writing—Review and Editing.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The raw data supporting the conclusion of this article will be made
available by the authors with reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

Symmetry 2023, 15, 808 18 of 21

Abbreviations

The following abbreviations are used in this manuscript:

ACS Average Collaborator Satisfaction
ARS Average Requester Satisfaction
BaaS Blockchain-as-a-Service
CPU Central Processing Unit
DA Double Auction
DID Decentralized Identifier
DRL Deep Reinforcement Learning
IoT Internet of Things
MPM Multi-Preference Matching
P2P Peer-to-Peer
PBFT Practical Byzantine Fault Tolerance
QoS Quality of Service
RAM Random Access Memory
RBT Reputation for Blockchain-based Trading
RPS Requirement Preference Score
SPS Service Preference Score
UAV Unmanned Aerial Vehicle

Appendix A. Rejection Rate Analysis

As we mentioned in Section 4.5, the reasons for rejecting a matching result can vary
a lot according to the individual interests of different participants. For the sake of sim-
plicity, we chose the lowest acceptable RPS or SPS as the rejection rule for our simulation
(other rules are rather subjective and have lower analytical value). In more detail, we
set the lowest acceptable RPS and the lowest acceptable SPS to 0.5. For matching result
xij > 0, if SPS(xij) < 0.5 or RPS(xij) < 0.5, then the match between requester i and collab-
orator j will be rejected, and xij is set to 0. According to Figure A1, we can find that the
rejection rate of MPM decreases dramatically when the number of participants increases.
In other words, the absolutely dominant majority of the participants will be satisfied with
the matching results.

50 100 150 200 250 300

m or n

0

2

4

6

8

10

R
ej

ec
ti

on
R

at
e

(%
)

MPM

Figure A1. Rejection rate of MPM.

Appendix B. Computational Efficiency Analysis

Figure A2 compares the computational efficiency of MPM and DA. We can see from
the figure that the time cost of MPM rises dramatically as the number of participants
increases, while DA completes within 0.2 s and its time cost barely changes. This is
because that MPM needs to solve quadratic programming problem (14). Calling traditional
solvers in GEKKO is the main reason for the large time consumption of MPM. Moreover,
the procedures of evaluating matching results, applying rejection rules, and generating the
final matching results are also time consuming. On the other hand, DA does not need to
solve any optimization problem or updating matching results. Its computational cost is
mainly caused by traversing requirement lists and service lists.

Symmetry 2023, 15, 808 19 of 21

50 100 150 200 250 300

m or n

0

5

10

15

20

25

T
im

e
C

os
t

(s
)

MPM DA

Figure A2. Comparison of computational efficiency.

Appendix C. Reputation Analysis

We look into the relationship between requester/collaborator reputation and average
cost/income. Figure A3 looks into the matching results of the case of m = n = 300.
In Figure A3b, we plot the scatter chart of average cost versus requester reputation and then
draw the corresponding linear fitting line. The slope of the linear fitting line, denoted by
corr, is the correlation coefficient between average cost and requester reputation. Since the
corr of DA is negative but has a greater absolute value, the DA mechanism is friendlier to
requesters with higher reputation scores. Similarly, Figure A3a shows that the corr of MPM
is positive and has a slightly greater absolute value, it indicates that our MPM mechanism
is more advantageous for collaborators with higher reputation. This also indirectly proves
that our resource trading system with MPM can better incentivize the participation of
collaborators through the distributed reputation system.

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Requester Reputation

0

2

4

6

8

10

A
ve

ra
ge

C
os

t
(U

S
D

/G
cy

cl
e)

corr = 0.2848

corr = −0.9752
MPM

DA

(a)

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Collaborator Reputation

0

2

4

6

8

10

A
ve

ra
ge

In
co

m
e

(U
S

D
/G

cy
cl

e)

corr = 0.8640corr = 0.1186 MPM

DA

(b)
Figure A3. Comparisons of average costs of requesters and average incomes of collaborators.
(a) Average Cost vs. Requester Reputation. (b) Average Income vs. Collaborator Reputation.

Symmetry 2023, 15, 808 20 of 21

References
1. Wu, H.; Yan, Y.; Sun, D.; Wu, H.; Liu, P. Multibuffers Multiobjects Optimal Matching Scheme for Edge Devices in IIoT. IEEE

Internet Things J. 2021, 8, 11514–11525. [CrossRef]
2. Vakilian, S.; Fanian, A.; Falsafain, H.; Gulliver, T.A. Node cooperation for workload offloading in a fog computing network via

multi-objective optimization. J. Netw. Comput. Appl. 2022, 205, 103428. [CrossRef]
3. Liyanage, M.; Porambage, P.; Ding, A.Y.; Kalla, A. Driving forces for Multi-Access Edge Computing (MEC) IoT integration in 5G.

ICT Express 2021, 7, 127–137. [CrossRef]
4. Li, G.; Cai, J. An Online Incentive Mechanism for Collaborative Task Offloading in Mobile Edge Computing. IEEE Trans. Wirel.

Commun. 2020, 19, 624–636. [CrossRef]
5. Ng, J.S.; Lim, W.Y.B.; Garg, S.; Xiong, Z.; Niyato, D.; Guizani, M.; Leung, C. Collaborative Coded Computation Offloading:

An All-pay Auction Approach. arXiv 2020, arXiv:2012.04854.
6. He, J.; Zhang, D.; Zhou, Y.; Zhang, Y. A Truthful Online Mechanism for Collaborative Computation Offloading in Mobile Edge

Computing. IEEE Trans. Ind. Inform. 2020, 16, 4832–4841. [CrossRef]
7. Ai, S.; Hu, D.; Guo, J.; Jiang, Y.; Rong, C.; Cao, J. Distributed Multi-Factor Electricity Transaction Match Mechanism based on

Blockchain. In Proceedings of the IEEE International Conference on Energy Internet (ICEI), Sydney, Australia, 24–28 August 2020;
pp. 121–127. [CrossRef]

8. Yousefpoor, M.S.; Yousefpoor, E.; Barati, H.; Barati, A.; Movaghar, A.; Hosseinzadeh, M. Secure data aggregation methods and
countermeasures against various attacks in wireless sensor networks: A comprehensive review. J. Netw. Comput. Appl. 2021,
190, 103118. [CrossRef]

9. Wang, T.; Hua, H.; Wei, Z.; Cao, J. Challenges of blockchain in new generation energy systems and future outlooks. Int. J. Electr.
Power Energy Syst. 2022, 135, 107499. [CrossRef]

10. Samaniego, M.; Jamsrandorj, U.; Deters, R. Blockchain as a Service for IoT. In Proceedings of the 2016 IEEE International
Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber,
Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Chengdu, China, 16–19 December 2016. [CrossRef]

11. Nguyen, D.C.; Pathirana, P.N.; Ding, M.; Seneviratne, A. Blockchain as a Service for Multi-Access Edge Computing: A Deep
Reinforcement Learning Approach. arXiv 2019, arXiv:2001.08165.

12. Ai, S.; Hu, D.; Zhang, T.; Jiang, Y.; Rong, C.; Cao, J. Blockchain based Power Transaction Asynchronous Settlement System.
In Proceedings of the 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Virtual, 25–28 May 2020; pp. 1–6.
[CrossRef]

13. Ai, S.; Hu, D.; Guo, J.; Jiang, Y.; Rong, C.; Cao, J. A Blockchain-based Distributed Controllable Electricity Transaction Match
System. In Proceedings of the IEEE International Conference on Energy Internet (ICEI), Sydney, Australia, 24–28 August 2020;
pp. 56–62. [CrossRef]

14. Bandara, K.Y.; Thakur, S.; Breslin, J.G. Flocking-based decentralised double auction for P2P energy trading within neighbourhoods.
Int. J. Electr. Power Energy Syst. 2021, 129, 106766. [CrossRef]

15. Liu, C.H.; Lin, Q.; Wen, S. Blockchain-Enabled Data Collection and Sharing for Industrial IoT With Deep Reinforcement Learning.
IEEE Trans. Ind. Inform. 2019, 15, 3516–3526. [CrossRef]

16. Chi, J.; Li, Y.; Huang, J.; Liu, J.; Jin, Y.; Chen, C.; Qiu, T. A secure and efficient data sharing scheme based on blockchain in
industrial Internet of Things. J. Netw. Comput. Appl. 2020, 167, 102710. [CrossRef]

17. Lu, Y.; Huang, X.; Dai, Y.; Maharjan, S.; Zhang, Y. Blockchain and Federated Learning for Privacy-Preserved Data Sharing in
Industrial IoT. IEEE Trans. Ind. Inform. 2020, 16, 4177–4186. [CrossRef]

18. Yu, S.; Langar, R. Collaborative Computation Offloading for Multi-access Edge Computing. In Proceedings of the 2019 IFIP/IEEE
Symposium on Integrated Network and Service Management (IM), Arlington, VA, USA, 8–12 April 2019; pp. 689–694.

19. Liu, Y.; Xie, S.; Zhang, Y. Cooperative Offloading and Resource Management for UAV-Enabled Mobile Edge Computing in Power
IoT System. IEEE Trans. Veh. Technol. 2020, 69, 12229–12239. [CrossRef]

20. Liu, L.; Tsai, W.T.; Bhuiyan, M.Z.A.; Peng, H.; Liu, M. Blockchain-enabled fraud discovery through abnormal smart contract
detection on Ethereum. Future Gener. Comput. Syst. 2022, 128, 158–166. [CrossRef]

21. Porambage, P.; Okwuibe, J.; Liyanage, M.; Ylianttila, M.; Taleb, T. Survey on Multi-Access Edge Computing for Internet of Things
Realization. IEEE Commun. Surv. Tutorials 2018, 20, 2961–2991. [CrossRef]

22. Wang, S.; Huang, X.; Tan, B.; Yu, R. A Contract-Based Incentive Mechanism for Resource Sharing and Task Allocation in Container-
Based Vehicular Edge Computing. In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications
Engineering; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 116–129.

23. Wang, T.; Guo, J.; Ai, S.; Cao, J. RBT: A distributed reputation system for blockchain-based peer-to-peer energy trading with
fairness consideration. Appl. Energy 2021, 295, 117056. [CrossRef]

24. Li, J.; Zhou, Z.; Wu, J.; Li, J.; Mumtaz, S.; Lin, X.; Gacanin, H.; Alotaibi, S. Decentralized On-Demand Energy Supply for
Blockchain in Internet of Things: A Microgrids Approach. IEEE Trans. Comput. Soc. Syst. 2019, 6, 1395–1406. [CrossRef]

25. Yao, H.; Mai, T.; Wang, J.; Ji, Z.; Jiang, C.; Qian, Y. Resource Trading in Blockchain-Based Industrial Internet of Things. IEEE Trans.
Ind. Inform. 2019, 15, 3602–3609. [CrossRef]

26. Wang, J.; Wu, W.; Liao, Z.; Sangaiah, A.K.; Sherratt, R.S. An Energy-Efficient Off-Loading Scheme for Low Latency in Collaborative
Edge Computing. IEEE Access 2019, 7, 149182–149190. [CrossRef]

http://doi.org/10.1109/JIOT.2021.3053017
http://dx.doi.org/10.1016/j.jnca.2022.103428
http://dx.doi.org/10.1016/j.icte.2021.05.007
http://dx.doi.org/10.1109/TWC.2019.2947046
http://dx.doi.org/10.1109/TII.2019.2960127
http://dx.doi.org/10.1109/ICEI49372.2020.00030
http://dx.doi.org/10.1016/j.jnca.2021.103118
http://dx.doi.org/10.1016/j.ijepes.2021.107499
http://dx.doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2016.102
http://dx.doi.org/10.1109/VTC2020-Spring48590.2020.9129593
http://dx.doi.org/10.1109/ICEI49372.2020.00019
http://dx.doi.org/10.1016/j.ijepes.2021.106766
http://dx.doi.org/10.1109/TII.2018.2890203
http://dx.doi.org/10.1016/j.jnca.2020.102710
http://dx.doi.org/10.1109/TII.2019.2942190
http://dx.doi.org/10.1109/TVT.2020.3016840
http://dx.doi.org/10.1016/j.future.2021.08.023
http://dx.doi.org/10.1109/COMST.2018.2849509
http://dx.doi.org/10.1016/j.apenergy.2021.117056
http://dx.doi.org/10.1109/TCSS.2019.2917335
http://dx.doi.org/10.1109/TII.2019.2902563
http://dx.doi.org/10.1109/ACCESS.2019.2946683

Symmetry 2023, 15, 808 21 of 21

27. Slepak, G.; Petrova, A. The DCS Theorem. arXiv 2018, arXiv:1801.04335.
28. Krichen, M.; Lahami, M.; Al-Haija, Q.A. Formal Methods for the Verification of Smart Contracts: A Review. In Proceedings of

the 2022 15th International Conference on Security of Information and Networks (SIN), Sousse, Tunisia, 11–13 November 2022.
[CrossRef]

29. Almakhour, M.; Sliman, L.; Samhat, A.E.; Mellouk, A. Verification of smart contracts: A survey. Pervasive Mob. Comput. 2020,
67, 101227. [CrossRef]

30. Remix—Ethereum IDE. Available online: https://remix.ethereum.org/ (accessed on 17 March 2023).
31. Beal, L.; Hill, D.; Martin, R.; Hedengren, J. GEKKO Optimization Suite. Processes 2018, 6, 106. [CrossRef]
32. Li, Z.; Zhou, X.; Liu, Y.; Fan, C.; Wang, W. A Computation Offloading Model over Collaborative cloud–edge Networks with

Optimal Transport Theory. In Proceedings of the 2020 IEEE 19th International Conference on Trust, Security and Privacy in
Computing and Communications (TrustCom), Guangzhou, China, 29 December 2020–1 January 2021. [CrossRef]

33. Li, L.; Li, Y.; Li, R. Double Auction-Based Two-Level Resource Allocation Mechanism for Computation Offloading in Mobile
Blockchain Application. Mob. Inf. Syst. 2021, 2021, 1–15. [CrossRef]

34. Haggi, H.; Sun, W. Multi-Round Double Auction-Enabled Peer-to-Peer Energy Exchange in Active Distribution Networks. IEEE
Trans. Smart Grid 2021, 12, 4403–4414. [CrossRef]

35. Mao, J.; Tian, L.; Zhang, J.; Duan, G.; Wang, C. Many-to-Many Data Trading Algorithm Based on Double Auction Theory. Proc.
Comput. Sci. 2020, 174, 200–209. [CrossRef]

36. Miklánek, T.; Zajicek, M. Personal Traits and Trading in an Experimental Asset Market. J. Behav. Exp. Econ. 2020, 86, 101538.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/sin56466.2022.9970534
http://dx.doi.org/10.1016/j.pmcj.2020.101227
https://remix.ethereum.org/
http://dx.doi.org/10.3390/pr6080106
http://dx.doi.org/10.1109/TrustCom50675.2020.00134
http://dx.doi.org/10.1155/2021/8821583
http://dx.doi.org/10.1109/TSG.2021.3088309
http://dx.doi.org/10.1016/j.procs.2020.06.075
http://dx.doi.org/10.1016/j.socec.2020.101538

	Introduction
	Collaborative Computation Task Offloading
	Blockchain for Internet of Things
	Contributions

	Related Works
	Blockchain-Based Security for the IoT
	Incentivizing Collaborative Offloading

	Computational Resource Trading System Architecture and Workflow
	Multi-Preference Matching Mechanism
	Service Preference Score Calculation
	Task Delay
	Offering Price
	Collaborator Reputation

	Requirement Preference Score Calculation
	Energy Consumption in Collaborator
	Bidding Price
	Requester Reputation

	Average Requester/Collaborator Satisfaction Score Calculation
	Modeling and Solving the Optimization Problem
	Rejection Rules and Transaction Execution
	Distributed Requester/Collaborator Reputation
	Reputation-Based Trading Price
	Reputation Rules

	Evaluation
	Simulation Setup
	Double Auction
	Satisfaction Scores
	Matching Results
	Task Completion of Requesters
	Resource Consumption of Collaborators
	Trade Price

	Conclusions
	Appendix A
	Appendix B
	Appendix C
	References

