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Abstract: Developing earth-abundant electrocatalysts useful for hydrogen evolution reactions (HER)
is critical for electrocatalytic water splitting driven by renewable energy. Molybdenum carbide
(Mo2C) with the crystal structure of hexagonal symmetry has been identified to be an excellent
HER catalyst due to its platinum-like electronic structure while the synthesis of Mo2C is generally
time consuming and energy intensive. Herein, we demonstrated the ultrafast synthesis of a Mo2C-
based electrocatalyst with Joule heating at 1473 K for only 6 s. Benefitting from several advantages
including efficient catalytic kinetics, enhanced charge transport kinetics and high intrinsic activity, the
as-prepared catalyst exhibited drastically enhanced HER performance compared with commercial
Mo2C. It showed an overpotential of 288 mV for achieving a current density of −50 mA cm−2 and
good stability, which highlighted the feasibility of the Joule heating method towards preparing
efficient electrocatalysts.

Keywords: Joule heating; molybdenum carbide; hydrogen evolution reaction; electrocatalytic water
splitting

1. Introduction

The production of hydrogen (H2) through electrocatalytic water splitting is a promising
approach to convert renewable energy into storable chemical energy [1–6]. The hydrogen
evolution reaction (HER) is critical in water electrolysis processes. However, because
of the sluggish reaction kinetics of HER, a large overpotential must be overcome [7,8].
As a result, identifying efficient electrocatalysts to reduce the HER energy barrier is
highly desirable [9,10]. Although noble metals such as Pt have been considered the bench-
mark catalysts for HER [11], their high costs and scarcity severely limit their large-scale
applications [12,13]. Therefore, developing a high-performance electrocatalyst based on
noble-metal-free materials is essential.

In the past few decades, a range of earth-abundant materials, including metal ni-
tride [14,15], sulphide [16,17], phosphide [18,19], carbide [20,21], and alloys [22,23], have
been identified as excellent catalysts for the HER process. Among all these materials,
molybdenum carbide (Mo2C) with hexagonal crystal symmetry has emerged as a strong
contender due to its platinum-like electronic structure [24–26]. For example, Ma et al.
demonstrated that Mo2C nanoparticles coated with 1–3 graphene layers exhibited an excel-
lent HER performance with an overpotential of 78 mV for achieving a current density of
10 mA cm−2 [27]. Cheng et al. fabricated an electrocatalyst with a ribbon-like nanostructure
by embedding Mo2C in nitrogen-doped carbon nanomesh [28]. This catalyst displayed
superior HER activity comparable to commercial Pt/C in 0.5 M H2SO4. Up to now, several
methods have been developed for the synthesis of Mo2C catalyst, such as carbonization
of metal complexes [29], chemical vapor deposition [30], and pyrolysis of metal precur-
sors [31]. Different synthesis approaches affect the surface structure and therefore the HER
performance of Mo2C [24,32]. However, although these methods can successfully prepare
Mo2C, annealing at high temperatures and for long durations is inevitable because of the
slow reaction kinetics between solid–solid interfaces [33–35].
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Recently, Joule heating has emerged as an attractive method for synthesizing a variety
of materials, such as graphene [36,37], high-entropy alloy nanoparticles [38,39], and single-
atom catalysts [40,41]. In the process of Joule heating, a current pulse will flow through
the precursor, thus allowing for the rapid heating of the precursor to the desired reaction
temperature, followed by rapid cooling to room temperature [42], which demonstrates the
possibility of using Joule heating to synthesize Mo2C.

In this work, we reported the successful synthesis of a Mo2C-based electrocatalyst
using an ultrafast Joule heating method. The synthesis was time-saving, which can be
completed in just 6 s at 1473 K. The as-prepared Mo2C-based electrocatalyst exhibited an
overpotential of 288 mV to yield a current density of −50 mA cm−2 for HER. Moreover, after
1000 cycles of cyclic voltammetry, the current density showed no apparent degradation.
The good performance of the as-prepared catalyst was mainly attributed to the efficient
catalytic kinetics, high intrinsic activity and reduced charge transfer resistance between the
catalyst and electrolyte interface.

2. Materials and Methods
2.1. Reagents

(NH4)6Mo7O24·4H2O was bought from Aladdin Reagent Ltd. Carbon paper and
carbon black were supplied by Gaossunion. Nafion (5 wt%) was purchased from Alfa
Aesar. Ethanol was provided by Tianjin Damao Chemical Reagent Co., Ltd. All the
chemicals in this study were purchased commercially and used without further purification.
Deionized (DI) water from a Milli-Q purification system (resistivity > 18 MΩ cm) was used
to prepare solutions.

2.2. Preparation of the Mo2C-Based Electrocatalyst

The Mo2C-based electrocatalyst was synthesized by ultrafast Joule heating according
to the reported method with some modifications [40]. (NH4)6Mo7O24·4H2O and carbon
black (molar ratio Mo:C = 1:10) were mixed and ground by using a mortar and pestle.
The mixture (20 mg) was loaded into a conductive carbon paper. The conductive carbon
paper was then put onto a reaction platform. The reaction platform was placed into the
chamber and connected to the Joule heating instrument (Eshock Co., Ltd. Changchun,
China). When the system was evacuated to a pressure of 150 Pa, the reaction was carried
out. The temperature quickly soared to 1473 K with a heating rate of ca. 5000 K s−1. After
being heated for 6 s at 1473 K, the temperature rapidly dropped to room temperature at a
rate of ca. 1000 K s−1.

2.3. Material Characterizations

X-ray diffraction (XRD) patterns were obtained on a Rigaku D/Max-2500/PC powder
diffractometer equipped with Cu Kα radiation. The morphology was investigated by scan-
ning electron microscopy (SEM, Quanta 200 FEG). High-resolution transmission electron
microscopy (HRTEM) was conducted by a JEM-2100F. X-ray photoelectron spectroscopy
(XPS) was carried out on a Thermo ESCLAB 250Xi with a monochromatic Al Kα X-ray
source. The obtained XPS spectra were analyzed by XPSPEAK software.

2.4. Electrode Preparation

The carbon paper was cut into squares with an area of 0.5 × 0.5 cm2, and then washed
by ultrasonication in ethanol and DI water for 20 min, respectively. Next, 1 mg of Mo2C-
based electrocatalyst was dispersed in a solution containing 50 µL DI water, 45 µL ethanol
and 5 µL Nafion (5 wt%). The mixture was then sonicated for 20 min to form a catalyst ink.
Afterwards, 35 µL of the ink was dropped onto the carbon paper and allowed to dry at
room temperature.
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2.5. Electrochemical Measurements

The electrochemical measurements were performed using a CHI 660E potentiostat in
0.5 M H2SO4. A three-electrode configuration was used with the drop-coated carbon paper
electrode, a graphite plate and a saturated calomel electrode (SCE) as the working, counter
and reference electrodes, respectively. Linear sweep voltammetry (LSV) curves were
recorded at a scan rate of 10 mV s−1 without iR compensation. Cyclic voltammetry (CV)
tests were conducted from −0.27 V to −0.53 V at a scan rate of 100 mV s−1. Electrochemical
impedance spectroscopy (EIS) was carried out at −0.48 V using an amplitude of 5 mV
and a frequency range of 0.05 Hz to 100 kHz. The measured potentials versus SCE were
transferred to the reversible hydrogen electrode (RHE) scale employing the following
equation: ERHE = ESCE + 0.2415 V + 0.059 × pH.

3. Results and Discussion

Figure 1a shows the schematic procedure for the ultrafast preparation of a Mo2C-
based catalyst via the Joule heating method. A mixture of (NH4)6Mo7O24·4H2O and carbon
black (CB) was heated at 1473 K for 6 s under a pressure of 150 Pa. During the Joule
heating process, bright light radiation was released (Figure 1b) because of high temperature
produced by the current pulse. As a result, the Mo precursors quickly reacted with the CB,
thus forming the Mo2C-based catalysts.
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Figure 1. (a) The schematic illustration of the synthesis of the Mo2C-based catalyst with Joule heating.
(b) The picture of the Joule heating system during synthesis.

The crystal structure of the catalyst was analyzed by XRD. As shown in Figure 2a,
the XRD pattern of the as-prepared sample displayed a set of diffraction peaks. The broad
diffraction peak located at 21◦ was assigned to CB according to the literature [43]. Other
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distinctive diffraction peaks can be well indexed to Mo2C and Mo, respectively. Therefore,
a composite catalyst of Mo2C and Mo anchored on CB was obtained (denoted as Mo2C-
Mo/CB). The morphology of the Mo2C-Mo/CB electrocatalyst was investigated by SEM.
Figure 2b,c demonstrated that the sample exhibited a nanoparticle morphology with no
obvious agglomeration.
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The structures of Mo2C-Mo/CB were further characterized by HRTEM. Figure 3a
showed that the Mo2C-Mo nanoparticles were evenly and intimately anchored on the CB
surface. Figure 3b exhibited that the average particle size of the Mo2C-Mo nanoparticle
was 12 nm. The small particle size indicated rapid nucleation kinetics because of the high
temperature provided instantaneously by the Joule heating method [44–46]. As shown in
Figure 3c, lattice fringes with an interspace of 0.22 nm and 0.23 nm were observed in the
HRTEM image, corresponding to the (110) lattice plane of metallic Mo and the (101) lattice
plane of Mo2C, respectively. Moreover, energy-dispersive spectroscopy (EDS) mapping
images revealed the distribution of elemental Mo and C. Figure 3d showed that the Mo
and C elements were uniformly distributed over the catalyst particles.

XPS was used to investigate the chemical compositions of the Mo2C-Mo/CB. As
shown in Figure 4a, there were four chemical states for the Mo, including Mo6+, Mo4+,
Mo2+ and Mo0. Peaks at 228.6 and 231.8 eV can be assigned to the 3d5/2 and 3d3/2 of
Mo0, respectively [47,48]. Peaks located at 228.8 and 232.2 eV can be assigned to the 3d5/2
and 3d3/2 of Mo2+, respectively [47,48]. Other peaks can be attributed to Mo6+ and Mo4+,
respectively [48,49]. As for C, peaks at 284.2 eV (C 1s) and 284.8 eV (C 1s) can be assigned
to carbon species of C-Mo and C-C, respectively (Figure 4b) [50,51]. Other peaks can be
indexed to carbon species of C-O and O=C-O, respectively [50,51]. According to previous
studies [48,52], the presence of higher-valence Mo and C species such as Mo6+, Mo4+,
C-O and O=C-O was ascribed to superficial oxidation upon exposure to air. Therefore,
these results indicated that the Mo2C-Mo/CB catalyst was successfully synthesized via the
present Joule heating method.

The HER performances of the Mo2C-Mo/CB electrocatalyst were evaluated in
0.5 M H2SO4 with a three-electrode system. For comparison, the HER performances
of bare carbon paper and commercial Mo2C were also investigated. As shown in Figure 5a,
the bare carbon paper demonstrated a negligible cathodic current density. Meanwhile,
commercial Mo2C showed an overpotential of 300 mV to achieve a current density of
−8 mA cm−2. In contrast, the Mo2C-Mo/CB exhibited significantly enhanced HER ac-
tivity, requiring an overpotential of 180 mV to yield a current density of −8 mA cm−2.
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Additionally, an impressive current density of −50 mA·cm−2 was achieved for the Mo2C-
Mo/CB electrocatalyst at an overpotential of 288 mV. The Tafel slope can be calculated
from the linear sweep voltammetry curve, which reflects the reaction kinetics [53,54]. As
shown in Figure 5b, Mo2C-Mo/CB displayed a smaller Tafel slope (125 mV dec−1) than
that of commercial Mo2C (458 mV dec−1), demonstrating more efficient HER catalytic
kinetics of Mo2C-Mo/CB. Moreover, the Mo2C-Mo/CB exhibited good stability for HER.
After 1000 cycles of cyclic voltammetry, no obvious decrease in current density was ob-
served (Figure 5c). The good stability of Mo2C-Mo/CB was ascribed to the immobilization
of the Mo2C-Mo nanoparticle on CB, which can avoid the detachment of the Mo2C-Mo
nanoparticle in the HER process. Furthermore, The EIS analysis was employed to in-
vestigate the change in charge transfer resistance between the catalyst and electrolyte
interface [55,56]. As shown in Figure 5d, the charge transfer resistance of Mo2C-Mo/CB
was lower than that of commercial Mo2C, which indicated that the Mo2C-Mo/CB could act
as a facilitator to drastically enhance charge transport kinetics. The lower charge transfer
resistance may be attributed to the formation of an efficient charge transfer channel in the
Mo2C-Mo/CB electrocatalyst.
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Figure 3. (a) TEM image of the Mo2C-Mo/CB catalyst. (b) The statistics of Mo2C-Mo/CB particle size
distribution. (c) HRTEM image of the interface between Mo2C (101) and Mo (110) in Mo2C-Mo/CB.
(d) EDS mapping of Mo and C elements in Mo2C-Mo/CB.

In addition, the double-layer capacitance (Cdl) of the electrocatalyst was measured.
The electrochemically active surface area (ECSA) is usually related to Cdl [57,58]. Figure 6a
showed that the capacitance of Mo2C-Mo/CB (49.7 mF cm−2) was higher than that of
commercial Mo2C (9.5 mF cm−2), which indicated that Mo2C-Mo/CB possessed increased
ECSA and catalytic active sites for HER. This may be because of the smaller Mo2C-Mo
particle size in Mo2C-Mo/CB. Furthermore, Figure 6b presents the normalization of the
geometric current density with active site concentration at an overpotential of 300 mV. Be-
cause of the unknown capacitive behavior (Cs) of the Mo2C, active site activity*Cs (ASA*Cs)
was employed to compare the intrinsic activity [59,60]. The ASA*Cs of Mo2C-Mo/CB was
1.18 mA cm−2, which was larger than that of commercial Mo2C (0.83 mA cm−2). There-
fore, it is reasonable to demonstrate that the good performance of Mo2C-Mo/CB catalyst
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is attributed to efficient catalytic kinetics, enhanced charge transport kinetics and high
intrinsic activity.
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Figure 5. (a) Linear sweep voltammetry curves of bare carbon paper, commercial Mo2C and Mo2C-
Mo/CB in 0.5 M H2SO4 without iR compensation. (b) Tafel plots of commercial Mo2C and Mo2C-
Mo/CB. (c) Linear sweep voltammetry curves of Mo2C-Mo/CB before and after 1000 cycles of cyclic
voltammetry in 0.5 M H2SO4 without iR compensation. (d) Nyquist plots of commercial Mo2C and
Mo2C-Mo/CB recorded at −0.24 V vs RHE in 0.5 M H2SO4.
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Figure 6. (a) Capacitive current densities of commercial Mo2C and Mo2C-Mo/CB plotted against
scan rates. (b) Normalization of the geometric current density with active site concentration at an
overpotential of 300 mV. Because of the unknown capacitive behavior (Cs) of the Mo2C, active site
activity*Cs was employed to compare the intrinsic activity.

4. Conclusions

In conclusion, we employed an ultrafast Joule heating method to prepare a Mo2C-
Mo/CB electrocatalyst for HER. The reaction was conducted at 1473 K for only 6 s. The
Mo2C-Mo/CB electrocatalyst showed an overpotential of 288 mV to achieve a current
density of −50 mA cm−2. Furthermore, after 1000 cycles of cyclic voltammetry, no obvious
decrease in current density was observed. The good activity and durability of the Mo2C-
Mo/CB electrocatalyst was due to the favourable catalytic kinetics, decreased charge
transport resistance and high intrinsic activity. The earth-abundant nature and good
electrochemical performance of Mo2C-Mo/CB will enable it to be a promising candidate
for future electrocatalytic hydrogen evolution driven by renewable energy.
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