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Abstract: The masses of hadrons in the vacuum, where the chiral symmetry is restored, and in the
medium are generally different even when the changes in the order parameters of chiral symmetry
are the same. Here, we first discuss the relation between the hadron masses and the chiral symmetry
breaking in approaches based on operator product expansion (OPE). We then discuss what additional
changes occur to the hadron masses when going from the chiral symmetry restored vacuum to
nuclear medium and/or finite temperature. The work will highlight how we can identify the effects
of chiral symmetry restoration from experimental observations.
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1. Introduction

We typically express the masses of composite particles as the sum of their constituents
and small binding energies. Such decomposition is not possible in quantum chromodynam-
ics (QCD) as confinement and chiral symmetry breaking are intricately related to generating
the hadron mass. Yet, it is known that chiral symmetry breaking is an important ingredient,
so isolating its effects would provide an important cornerstone in understanding the origin
of the hadron mass [1–4].

In the original application of the QCD sum rules approaches to the vector meson
masses in the nuclear medoum [3], the meson masses were found to change due to the
changes of the light 4-quark condensates for the ρ, ω mesons and the strange quark
condensates for the φ meson. In the case of J/ψ in the medium, the changes occur due to
the change of gluon condensate, which is related to the scale-breaking effects through trace
anomaly. Since then, experiments have been performed worldwide to observe mass shifts
of hadrons from heavy ion collisions and nuclear target experiments, which are expected to
reflect finite temperature or density configurations, respectively [5,6].

Experimental efforts were concentrated on measuring the electromagnetic signals from
heavy ion collisions and nuclear target experiments. While experiments trying to measure
dilepton spectra from heavy ion collisions are still going on and planned in the future,
these signals have many sources throughout the evolution of the system. Furthermore,
information about chiral partners is hidden in the continuum. On the other hand, nuclear
target experiments have advantages: the target nuclear density remains almost constant,
and even at these densities, the order parameter is known to decrease substantially around
30% [7,8]. Moreover, signals from hadronic decays are viable as long as one focuses on
small-width mesons. Furthermore, one can combine excitation function measurements
and the transparency ratios [9] to estimate the mass and width changes simultaneously.
However, to identify the effect of chiral symmetry restoration, it seems essential to first look
at the chiral partners and measure their mass differences. Such measurement will establish
the cornerstone for the relation between mass shift and chiral symmetry restoration. One
should then measure the individual masses.

In this review, we will summarize what happens to hadrons in medium from the
perspective of operator product expansion (OPE). We will first show how to isolate the
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chiral symmetry-breaking effects in the hadron masses from the OPE perspective. The
method will be applied to the vector mesons and then to other hadrons. Through this
method, we will be able to isolate the effects of chiral symmetry breaking and, thus, calculate
the mass of hadrons in the chiral-symmetry restored vacuum. Here, the chiral-symmetry
restored vacuum means the QCD configuration where the chiral-symmetry breaking effects
are taken away while other non-perturbative effects are left intact. Such a configuration
can be probed in the OPE formalism by taking all the quark operators proportional to
the chiral order parameter to be zero while keeping all other quark or gluon operators
intact. From a lattice point of view, one can also probe such a configuration by taking
away all the quark zero modes when calculating hadron properties. We will then discuss
what other effects will emerge when we place hadrons in a medium [10,11]: these effects
do not contribute when one looks at the differences between the chiral partners. Finally,
we introduce the mass of K1 and K∗ as a suitable example for chiral partners that can be
realistically measured in a nuclear target experiment [12,13].

2. Chiral Order Parameter

In this section, we discuss how to isolate the chiral symmetry-breaking part of any
quark operator [10,11]: the breaking part is the chiral order parameter. In any expectation
value, the quark part will involve the quark propagator Sq(x, 0) ≡ Sq(x, y)|y=0, which can
be written into a part that is symmetric and anti-symmetric under chiral rotation: this can
be accomplished by adding and subtracting its chiral partner. The respective parts are also
denoted as chiral even (S) and odd (B) components.

Sq(x, 0) =

(
SB

q (x, 0) + SS
q (x, 0)

)
, (1)

SB
q (x, 0) =

1
2

(
Sq(x, 0)− iγ5Sq(x, 0)iγ5

)
, (2)

SS
q (x, 0) =

1
2

(
Sq(x, 0) + iγ5Sq(x, 0)iγ5

)
. (3)

The separation can also be understood as making a specific chiral transformation to
the quark operator q→ γ5q so that Sq(x, y)→ iγ5Sq(x, y)iγ5 leading to the symmetric and
breaking part as given in Equations (3) and (2), respectively.

The usual chiral condensate is the dimension 3 two-quark operator. Here, because of
the trace or due to parity, only the chiral symmetry-breaking part contributes.

〈q̄q〉 = − lim
x→0
〈Tr[SB

q (x, 0)]〉

= −π〈ρ(0)〉,
(4)

where ρ(0) is the zero mode density, a formula derived by Casher and Banks [14].
Let us now move on to a typical four-quark condensate. Such operators have two

distinct forms when using quark connectivity: these are the quark-disconnected (dis) and
quark-connected (con) pieces denoted below by the respective subscripts,

〈(q̄Γq)(q̄Γq)〉 = 〈Tr[Si
qΓ]Tr[Si

qΓ]〉dis − 〈Tr[ΓSi
qΓSi

q]〉con, (5)

where Γ is any combination of Dirac, color, and/or flavor matrix. The cross terms in
the summation in i = B, S do not contribute to the Γ matrices that we discuss. SB

q is the
difference between the original quark operator and its chiral rotated form: this part does
not vanish if the chiral symmetry remains broken. Moreover, as given in Equation (4), it is
proportional to the zero mode density.

Let us look at a few examples. For now, let us introduce the flavor matrix normalized
as Tr τa

2
τb

2 = δab

2 ,
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• When Γ = γµ, using the trace property one finds

〈(q̄ τ3
√

2
γµq)(q̄

τ3
√

2
γµq)〉 = −〈Tr[γµSB

q γµSB
q ]〉con − 〈Tr[γµSS

q γµSS
q ]〉con, (6)

with no cross-term between the symmetric and breaking part of the propagator. Hence,
it contains both the breaking and symmetric operators.
On the other hand, one notes

γ5SS
q , γ5 = −SS

q , γ5SB
q γ5 = SB

q (7)

Hence,

〈(q̄ τ3
√

2
iγ5γµq)(q̄

τ3
√

2
iγ5γµq)〉 = −〈Tr[γµSB

q γµSB
q ]〉con + 〈Tr[γµSS

q γµSS
q ]〉con. (8)

Therefore, one can isolate the breaking and symmetric parts as follows

〈(q̄ τ3
√

2
γµq)(q̄

τ3
√

2
γµq)〉B =

1
2

(
〈(q̄ τ3
√

2
γµq)(q̄

τ3
√

2
γµq)〉+ 〈(q̄ τ3

√
2

iγ5γµq)(q̄
τ3
√

2
iγ5γµq)〉

)
,

〈(q̄ τ3
√

2
γµq)(q̄

τ3
√

2
γµq)〉S =

1
2

(
〈(q̄ τ3
√

2
γµq)(q̄

τ3
√

2
γµq)〉 − 〈(q̄ τ3

√
2

iγ5γµq)(q̄
τ3
√

2
iγ5γµq)〉

)
,

(9)

where the subscripts B and S indicate the breaking and symmetric part of the four-
quark operator, respectively.

• When Γ = 1, we also have the quark disconnect contribution denoted by the subscript
dis below.

〈(q̄q)(q̄q)〉 = 〈Tr[SB
q ]Tr[SB

q ]〉dis − 〈Tr[SB
q SB

q ]〉con − 〈Tr[SS
q SS

q ]〉con. (10)

To isolate the connected piece above, we introduce the following two quark operators.

〈(q̄iγ5 τ3
√

2
q)(q̄iγ5 τ3

√
2

q)〉 = 〈Tr[SB
q SB

q ]〉con − 〈Tr[SS
q SS

q ]〉con,

〈(q̄ τ3
√

2
q)(q̄

τ3
√

2
q)〉 = −〈Tr[SB

q SB
q ]〉con − 〈Tr[SS

q SS
q ]〉con.

(11)

Therefore,

〈(q̄q)(q̄q)〉B = 〈(q̄q)(q̄q)〉 − 1
2

(
〈(q̄iγ5 τ3

√
2

q)(q̄iγ5 τ3
√

2
q)〉+ 〈(q̄ τ3

√
2

q)(q̄
τ3
√

2
q)〉
)

〈(q̄q)(q̄q)〉S =
1
2

(
〈(q̄iγ5 τ3

√
2

q)(q̄iγ5 τ3
√

2
q)〉+ 〈(q̄ τ3

√
2

q)(q̄
τ3
√

2
q)〉
)

.
(12)

Throughout this work, we will use this method: although a similar separation can be
made by writing the quark operators in terms of right and left-handed quarks.

• The method can be generalized for all Γ matrices. We refer to references [10,11] for
details.

• Because the static heavy quark probes all the gluon configurations, it can be shown
that the gluon condensate can also be expressed in terms of the eigenvalues of the
Dirac modes [15].

〈αs

π
G2〉 = 12〈∑

λ

ρ(λ)〉. (13)

As can be seen from the above formula, the chiral-symmetry breaking effect ρ(0) is
multiplied by dλ and does not contribute to the gluon condensate. This shows that
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the physics of the gluon condensate and that of the chiral-symmetry breaking have
different origins.

3. Vector and Axial-Vector Meson Mass

We will now look at how the method can be applied to calculate the hadron masses in
the chiral symmetry-restored vacuum.

3.1. ρ and a1

Let us start by looking at the OPE of the following correlation function

Πµν(q) = i
∫

d4xeiqx〈T[Jµ(x), Jν(0)], (14)

where Jµ = q̄γµτ3q for the ρ meson; for the axial vector meson, we extract the spin 1 part
of JA

µ = q̄γ5γµτ3q. We use the OPE appearing in the polarization function defined as
Π = Πµ

µ/(−3q2). The most important contribution to the vector mesons comes from the
dimension-6 four-quark operators. These operators appear as −παsM/Q6, where for ρ
and a1 mesons are given as follows, respectively.

Mρ = 2〈(q̄γµγ5λaτ3q)2〉+ 4
9
〈(q̄γµλaq)( ∑

q=u,d,s
q̄γµλaq)〉,

Ma1 = 2〈(q̄γµλaτ3q)2〉+ 4
9
〈(q̄γµλaq)( ∑

q=u,d,s
q̄γµλaq)〉.

(15)

Here λa and τ3 represent the color and SU(2) flavor matrices, respectively. Hence, q denotes
the contribution from both the u and d quarks. On the other hand, the second set of
operators has a summation included as the contribution from strange quark is added. We
can now use the methods discussed in the previous section and divide the operators into
chiral symmetric and breaking pieces. We further introduce the auxiliary parameters κρ

and κa1 : these parameters reduce to 1 when the vacuum saturation hypothesis is used for
the quark-quark operators. The four-quark operators can now be written as below.

Mρ = κρ
448
81
〈ūu〉2 =

28
9
〈Buu〉B + 〈Sρ−a1〉S,

Ma1 = − κa1

704
81
〈ūu〉2 = −44

9
〈Buu〉B + 〈Sρ−a1〉S,

(16)

where

〈Buu〉B =
1
2

(
(ūγµγ5λd)(d̄γµγ5λu)− (ūγµλad)(d̄γµλau)

)
B

,

〈Sρ−a1〉S =
11
9

(
(q̄γµγ5λaτ3q)2 + (q̄γµλaτ3q)2

)
S
+

4
9

(
(q̄γµλaq)2 − (q̄γµλaτ3q)2

)
S

+
4
9
(q̄γµλaq)(s̄γµλas)S.

(17)

There is an important point to note in the second set of terms in Equation (15). These
terms appear with the same coefficients in both the ρ and a1 parts. However, the operator
has chiral symmetry-breaking contributions: the zero modes contribute to the connected
quark diagrams of this operator.

One notes that the symmetric parts of the ρ and a1 channels are identical while the
breaking operator Buu contributes with different coefficients. Using the observed masses
and widths of the ρ and a1 meson in their respective sum rules, we can uniquely determine
the vacuum expectation values of the 4-quark operators and, thus, their breaking and
symmetric parts. Then, one can uniquely determine the respective κ values. Using these
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results, we can estimate the masses of the hadrons in the chiral symmetry-restored vacuum.
This is accomplished for the ρ and a1 mesons by deleting the breaking part of the operator
keeping only the chiral symmetric operators to their vacuum value and performing the
QCD sum rules. Table 1 shows the results for both the matrix elements and the masses in
the vacuum where chiral symmetry is restored. For ρ− a1, the result in Table 1 is obtained
by taking the a1 width to be 400 MeV. When Γa1 = 250(600) MeV is taken, we find that
mρ−a1

sym decreases (increases) by about 27.5 MeV.

Table 1. The κ’s (equivalent to Equation (16) for the respective particles) are evaluated using QCD sum
rules with the observed mass and width. The value in the bracket shows the threshold parameter s0.
The ratio S/B shows the fraction of the chiral symmetric part S to the chiral symmetry-breaking part
B. The mass in the chiral symmetry-restored vacuum is given in the column m̄sym. The uncertainties
in m̄sym come from taking the width of a1 meson from 250 MeV to 600 MeV, the central values are
those obtained with the a1 width of 400 MeV [11].

Particle κ(
√

s0(GeV)) S/B m̄sym (MeV)

ρ 2.60(1.17) 0.760 572.5 ± 27.5a1 0.76(1.55) −0.485

ω 3.20(1.15) 1.165 655 ± 15
f1 1.85(1.58) 0.253 1060 ± 30

K∗ 2.097(1.33) 2.831 545 ∓ 5K1 0.39(1.56) −0.227

3.2. Other Hadrons

As with (ρ, a1), (K1, K∗) are also chiral partners. On the other hand, (ω, f1) do not
form chiral partners: this is due to the disconnected diagrams. These features can be
understood from the OPE perspective. Nevertheless, we can start from the symmetry-
breaking operators determined from the ρ and the a1 sum rule, and use the physical masses
and widths of the other hadrons to determine the additional 4-quark operators that are
symmetric and breaking under chiral symmetry that appear in the isospin singlet sum
rules. One can then determine the corresponding mass in the chiral symmetric limit. The
details are given in Ref. [11] and summarized in Table 1.

4. Other Effects in Medium

In the previous section, we have shown how to estimate the masses of hadrons in
a hypothetical vacuum where the chiral symmetry is restored. Experiments probe finite
temperature and/or density configuration where chiral symmetry is restored. However,
in these configurations, there are other effects that smear the signal. We will discuss other
important effects not related to chiral symmetry restoration that affect the mass of a hadron
in the medium.

4.1. Dispersion Effects

The medium can be characterized by its frame of reference, which is usually taken to
be at rest nµ = (1, 0, 0, 0). The medium introduces effects that break Lorentz invariance but
are not related to chiral symmetry. In general, the introduction of nµ makes the correlation
function in the momentum space a function of both q2 and q · n. Depending on the current
and the medium, the polarization can be even or odd with respect to q · n.

4.1.1. Scalar Particle

Let us start with a simple example and consider a charge-neutral scalar particle in an
isospin-symmetric medium. The self-energy Σ(ω,~q) of the scalar particle can be expanded
near the mass shell as follows.

Σ(ω,~q) = a(q2 −m2) + b~q2 + S. (18)
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Substituting this into the dispersion relation, q2−m2 = Σ(ω,~q), will lead to pole mass shift
that depends on the momentum of the particle

∆m2 =
b~q2 + S
1− a

. (19)

The question relating the mass shift in medium and chiral symmetry breaking is where the
effects of the latter are hidden: a, b or S. It is in S.

4.1.2. Nucleon in Medium

For spin 1/2 particle, there is the additional dependence coming from the gamma
matrix. To understand the complexity, we just assume a self-energy typically parameterized
in the Walecka type model in nuclear matter at rest.

/q−m = S + γ0V. (20)

This leads to the following pole mass shift at~q = 0.

∆m = S + V. (21)

It is known phenomenologically that there are a large scalar attraction (∼−400 MeV) and a
vector repulsion of similar magnitude due to the nuclear density: both have small energy
dependencies.

When analyzing the OPE for the nucleon, one introduces a nucleon interpolating field
η composed of three quarks and studies the two-point correlation function.

ΠN(ω,~q) = i
∫

d4xeiqx〈T[η(x)η̄(0)]〉. (22)

The phenomenological side of Equation (22) can be parameterized using Equation (20) as

ΠN(ω,~q) = −λ2
N
(ω−V)γ0 + (m + S)
(ω−V)2 − (m + S)2 +, (23)

where λN is the coupling between the nucleon interpolating field and the nucleon state. Per-
forming the OPE for Equation (22), it was shown that the leading operators that contribute
to the scalar and vector self-energy are respectively given as[16]

m + S ∝ −〈q̄q〉,
V ∝ 〈q̄γ0q〉.

(24)

Therefore, while the scalar attraction is partly related to the decrease in the quark
condensate, the vector repulsion is related to the quark density effect. Hence, while the
scalar attraction is related to the condensate, its quenching can not be directly seen in the
pole mass due to the presence of baryon (quark) density. Furthermore, as the nucleon
interpolating field is not an eigenstate of the parity, there will be contributions from the
negative parity nucleon state that contributes with an opposite sign in the scalar mass.
Hence, quenching of the chiral condensate in the OPE will induce the vanishing of the mass
difference between the parity partner nucleon states but will not tell us anything about the
nucleon mass change just by looking at the scalar part of the correlation function.
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4.1.3. Vector Particles

There are even more complications for the vector particles due to the different re-
sponses of the moving vector meson with respect to the medium. The vector meson
self-energy in the medium can, in general, be written as follows[17].

Pµν(q2 −m2) = PT
µνΠT(ω,~q) + PL

µνΠL(ω,~q), (25)

where Pµν = (qµqν/q2 − gµν), PT
ij = (δij −~qi~qj/~q2), where i, i are spatial indices and the

remaining polarization parts begin zero, and PL
µν = (qµqν/q2 − gµν − PT

µν).

• When~q = 0, then ΠT = ΠL = Π(ω) and the mass in medium can be obtained from
Equation (25), which reduces to below.

(ω2 −m2) = Π(ω). (26)

• When ~q 6= 0, then ΠT 6= ΠL and the mass in the medium can be obtained from
Equation (25) separately for the transverse and longitudinal modes, which after the
projection reduces to below.{

Transverse mode : (q2 −m2) = ΠT(ω,~q)
Longitudinal mode : (q2 −m2) = ΠL(ω,~q)

(27)

By analyzing the OPE for light vector particles, one notes that the chiral symmetry
breaking operators constitute an important contribution to Π but do not contribute signif-
icantly in ΠT −ΠL. Hence when measuring chiral symmetry-breaking effects from the
medium, it is important to measure vector particles with low momenta with respect to the
medium.

One can estimate the importance of the momentum dependence of the mass shift
by looking at the OPE term that contributes to this effect. To leading order in αs, nuclear
density ρn and~q the lowest order operator that contributes to the difference is [18]

ΠT(ω,~q)−ΠL(ω,~q) =
mAu+d

2 ~q2

ω6 ρn. (28)

Here m is the nucleon mass and Aq
2 = 2

∫
dxx[q(x) + q̄(x)], where q(x) is the quark

distribution function inside the proton at scale µ taken to be 1 GeV for this work. It is found
that this contributes to about 2% correction to the mass at ~q ∼ 0.5 GeV at nuclear matter
density [17]. Hence, it is important to study the mass shift for vector meson traveling with
small momentum.

5. Chiral Partners: K1 and K∗ Mesons

As discussed above, isolating the effects of chiral symmetry restoration from experi-
mental measurements of hadron masses is problematic as there are many different medium
effects. On the other hand, it can be shown from OPE and/or general arguments that
the mass difference between chiral partners depends only on chiral symmetry breaking.
Therefore, it is important first to measure the mass differences between chiral partners.
Such measurements will establish among other things whether mass shifts indeed occur.
There are several candidates. The obvious choice is the pion and the sigma meson. These
particles have been analyzed frequently in a medium, where these particles are expected to
become degenerate when chiral symmetry is restored. On the other hand, the sigma meson
has a large width decaying into two pions and hence is very difficult to measure. While
the decay width into two pions is expected to decrease as the phase space becomes smaller
when the sigma meson mass decreases in a dense medium, the decaying pions will interact
with the medium smearing any significant observable signals. Hence, it is important to
identify chiral partners with reasonably small vacuum widths.
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The masses and widths of the vector mesons are given in Table 2. The ρ and a1 are
chiral partners: on the other hand, because they both have large widths, previous attempts
failed to measure any significant mass shift. The small width ω and f1(1285) make them
more accessible experimentally: but they are isospin singlets and, thus, are not chiral
partners [19]. Nevertheless, ω and f1(1285) are chiral partners when we neglect the flavor-
changing disconnected contributions. Hence, when experiments can measure their masses,
it would still be useful as we can use this information to extract the density dependence of
flavor-changing disconnected four-quark condensates. Finally, the best candidates seem
to be the K∗ and K1. They are chiral partners and both have reasonably small widths.
Furthermore, the chiral symmetry-breaking effects are in the ground states as the spectra of
excited states are similar. Below, we will now discuss K∗ and K1 states.

Table 2. Physical parameters of the vector and axial vector mesons. Units are in MeV.

JPC = 1−− Mass Width JPC = 1++ Mass Width

ρ 770 150 a1 1260 250–600

ω 782 8.49 f1 1285 24.2

φ 1020 4.266 f1 1420 54.9

K∗(1−) 892 50.3 K1(1+) 1270 90

K∗(1−) 1410 236 K1(1+) 1400 174

5.1. K1 and K∗ Correlation Functions

We will now study the correlation functions for the K∗ and K1 mesons [12]. The
time-ordered current correlation function is given by

Πµν(ω, q) = i
∫

d4xeiq·x〈|T[jµ, j̄ν]|〉, (29)

where qµ = (ω, q) and

j
K+

1
µ = s̄γµγ5u , j

K−1
µ = ūγµγ5s

jK∗+
µ = s̄γµu , jK∗−

µ = ūγµs. (30)

We will only consider isospin symmetric nuclear matter. Therefore, the result obtained by
interchanging the u quark with the d quark will be the same.

The polarization functions for both the vector and axial vector are not conserved.
Therefore, they will have contributions from the scalar and pseudo-scalar mesons, respec-
tively. To extract the spin-1 part, we use the following projection.

1
3
(qµqν/q2 − gµν)Πµν(q)

q→0−→ Π(ω, 0). (31)

Because the medium is at rest, the dispersion relation for a vector particle with non-zero
three momenta will have both a transverse and longitudinal polarization component. As
discussed in the previous section, we will, therefore, choose the external three-momentum
to be zero qµ = (ω, 0).
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5.1.1. 4-Quark Operators in the K∗ − K1 Sector

When we choose the currents to be JK∗
µ = ūγµs and JK1

µ = ūγµγ5s, the corresponding
dimension-6 4-quark operators are given below.

ΠK∗ =
2παs

Q6 〈(ūγµγ5λas)(s̄γµγ5λau)〉+ 2παs

9Q6 〈(s̄γµλas + ūγµλau)(q̄γµλaq)〉,

ΠK1 =
2παs

Q6 〈(ūγµλas)(s̄γµλau)〉+ 2παs

9Q6 〈(s̄γµλas + ūγµλau)(q̄γµλaq)〉. (32)

These operators can also be decomposed in terms of chiral symmetry breaking and sym-
metric pieces.

5.1.2. Weinberg Relations for K1, K∗

We first study the difference between the correlation functions for the vector and axial
vector currents. Up to dimension 6 operators, it has the following form.

− 2
Q2 ms〈ūu〉0 +

2π

Q4 αs

(
〈(ūγµλas)((s̄γµλau)〉 − c.p

)
− 8π

3Q6 qµqναs

(
〈(ūγµλas)((s̄γνλau)〉ST − c.p.

)
. (33)

Here, c.p is the operator where the γµ is replaced by γµγ5 in the 4-quark operator. The
operators appearing in the second line of Equation (33) are the twist-4 matrix element. Since
the difference between the chiral partners is an order parameter of the chiral symmetry
breaking, Equation (33) is also a chiral order parameter. In fact, all the operators to higher
dimensions are all order parameters of the chiral symmetry. When the vacuum saturation
hypothesis is applied the operators appearing in Equation (33) are ms〈ūu〉 at dimension 4
and 〈s̄s〉〈ūu〉 at dimension 6. As one can see, in this case, the operators are chiral symmetry-
breaking parts in the strangeness sector multiplied by those in the light quark sector.
Therefore, irrespective of whether the vacuum saturation hypothesis is valid, the fact that it
should be proportional to the chiral order parameter remains valid. Therefore, to estimate
their changes in the nuclear medium, one can approximate their values in terms of the
changes in the light and strange condensates.

To obtain the Weinberg type sum rule in the current case, we follow the same set of
approximations as in the original works [20]. That is, for the phenomenological side, we
take the vector and axial vector ground state to be different but take the form for the excited
states, including the continuum, to be the same for both cases. We then make an asymptotic
expansion in 1/Q2 and equate the phenomenological side to the OPE. Since we work up to
dimension 6 operators, we obtain the following two relations.

f 2
K∗m

4
K∗ − f 2

K1
m4

K1
= −2ms〈ūu〉,

f 2
K∗m

6
K∗ − f 2

K1
m6

K1
= −64

9
παs〈ūu〉〈s̄s〉. (34)

When the two relations are combined, we obtain the following relation.

f 2
K∗m

4
K∗(m

2
K1
−m2

K∗) = −2ms〈ūu〉m2
K1

+
64
9

παs〈ūu〉〈s̄s〉. (35)

Hence, we obtain m2
K1

= m2
K∗ when chiral symmetry is restored. We expect that the chiral

order parameter changes by 30% in nuclear matter, which means that there will be a non-
trivial change in the mass difference between mK1 and mK∗ . In a detailed QCD sum rule
analysis in Ref. [12], it was found that the mass shift in the nuclear matter will be maximal
−249 (−35) MeV for K−1 (K+

1 ).
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6. Phenomenological Observations

The decay channel that is dominant for the K∗ and K1 mesons are given in Table 3.
Using the coupling, we find that both K∗ (K1) can be produced by a kaon beam via the π
(ρ) exchange with a nucleon.

Table 3. Dominant hadronic decay channels of K∗ and K1 meson.

1− Decay Mode 1+ Decay Mode

K∗(892) Kπ (100%) K1(1270) Kρ (42%)
K∗π (16%)

There are different charge states for the K∗ and K1. The chiral partners are between
the same charge states. Therefore, when a K− beam is used on a nuclear target at the
JPARC facility, for example, the produced these particles and their final states for K1 will be
as follows.

K−1 →


ρ0K−

ρ−K̄0

π0K∗−

π−K̄∗0

, K̄0
1 →


ρ+K−

ρ0K̄0

π+K∗−

π0K̄∗0

,

and for K∗,

K∗− →
{

π0K−

π−K̄0 , K̄∗0 →
{

π+K−

π0K̄0 .

Similar production of both K∗ and K1 can be achieved by a pion beam at GSI [21].
The degeneracy between K∗ and K1 mass when chiral symmetry is restored can also

be probed in a relativistic heavy ion collision [22]. This is so because, at the initial stages of
the collision, the hadronic phase will undergo a phase transition to the quark–gluon plasma
state, where chiral symmetry is expected to be restored. As the system cools down, one will
cross the hadronization point where hadrons are formed: statistical hadronization model
(SHM) predicts the hadronization temperature at LHC energies to be around 156 MeV [23].
At this point, however, the order parameter is still quite small [24]. As the mass difference
depends only on the chiral order parameter, the masses of chiral partners will be similar. It
is well-known that particle production follows the statistical hadronization model (SHM).
The prediction for the individual particles will depend on the details of the model that is
determined by the system size, strangeness enhancement, and whether the system should
be treated as a canonical or grand canonical ensemble. However, K∗ and K1 have the
same number of strangeness and their production ratio will be similar when their masses
become degenerate. Hence we expect that the initial number of K∗ and K1 at the chemical
hadronization point will be similar. One still has to consider the possible changes in their
number as the systems go through the hadronic phase [25]. This effect is called the hadronic
rescattering effect, which typically depends on the vacuum width of the hadron of interest.
Fortunately, here again, the small and similar vacuum width between K1 and K∗ will lead to
a similar reduction so that the ratio can be estimated perturbatively. If the vacuum masses
are used in the SHM, the expected particle ratio between K1 and K∗ will be very small
due to the much larger mass of K1 in the vacuum. The anomalously large ratio is more
enhanced in a peripheral collision, as the hadronic lifetime will be shorter there. Therefore,
measuring the production of both the K1 and K∗ from heavy ion collision in both central
and peripheral collisions and then comparing the observed production ratios to those
obtained in the SHM with vacuum masses will provide a signature for chiral symmetry
restoration in heavy ion collisions.
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7. Conclusions

Understanding the origin of the masses of hadrons is a key topic of interest. It is
believed that chiral symmetry breaking is partly responsible for the generation of the
hadron mass in QCD. Here, using OPE perspective, we discussed how one can isolate the
effects of chiral symmetry breaking in the hadron mass. While chiral symmetry is expected
to be resorted to in the medium, there are difficulties in measuring the mass shift and
isolating the effects of chiral symmetry breaking. We have used OPE perspective to analyze
the other effects. We have further emphasized that to isolate the chiral symmetry-breaking
effects, one has to start by measuring the mass differences between chiral partners. Finally,
we showed that experimentally measuring the mass shift between K∗ and K1 mass should
be the first priority.
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